Some Inverse Source Problems of Determining a Space Dependent Source in Fractional-Dual-Phase-Lag Type Equations
Abstract
:1. Introduction
1.1. Modeling
1.2. Derivation of the Source Term
1.3. Existing Results of the Phase-Lag Type Models
1.4. Organization of the Paper
2. Uniqueness for Isp by Determination of from the Final Time Observation
3. Modified Model for
- (i)
- If for , then for .
- (ii)
- If for , then for .
4. Modified Model for
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cattaneo, C. A Form of Heat-Conduction Equations Which Eliminates the Paradox of Instantaneous Propagation. Compt. Rendus 1958, 247, 431. [Google Scholar]
- Vernotte, P. Les paradoxes de la theorie continue de l’equation de la chaleur. Compt. Rendus 1958, 246, 3154–3155. [Google Scholar]
- Tzou, D.Y. A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Quintanilla, R. A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory. J. Therm. Stress. 2003, 26, 713–721. [Google Scholar] [CrossRef]
- Xu, H.Y.; Jiang, X.Y. Time fractional dual-phase-lag heat conduction equation. Chin. Phys. 2015, 24, 034401. [Google Scholar] [CrossRef]
- Podlubný, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Mathematics in Science and Engineering; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Nohel, J.; Shea, D. Frequency domain methods for Volterra equations. Adv. Math. 1976, 22, 278–304. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Gupta, P.K.; Rai, K. Solution of fractional bioheat equations by finite difference method and HPM. Math. Comput. Model. 2011, 54, 2316–2325. [Google Scholar] [CrossRef]
- Kumar, D.; Rai, K. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. J. Therm. Biol. 2017, 67, 49–58. [Google Scholar] [CrossRef]
- Tzou, D. Macro- To Micro-Scale Heat Transfer: The Lagging Behavior; Chemical and Mechanical Engineering Series; Taylor & Francis: New York, NY, USA, 1996. [Google Scholar]
- Nassar, R.; Dai, W. Modelling of Microfabrication Systems; Microtechnology and MEMS; Springer: Berlin, Germany, 2003. [Google Scholar]
- Gajewski, H.; Gröger, K.; Zacharias, K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen; Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38; Akademie-Verlag: Berlin, Germany, 1974. [Google Scholar]
- Slodička, M. An investigation of convergence and error estimate of approximate solution for a quasilinear parabolic integrodifferential equation. Apl. Mat. 1990, 35, 16–27. [Google Scholar]
- Slodička, M. On the Rothe-Galerkin method for a class of parabolic integrodifferential problems. Mat. Model. 1991, 3, 12–25. [Google Scholar]
- Slodička, M. Application of Rothe’s method to evolution integrodifferential systems. Comment. Math. Univ. Carol. 1989, 30, 57–70. [Google Scholar]
- Slodička, M. Smoothing effect and regularity for evolution integrodifferential systems. Comment. Math. Univ. Carol. 1989, 30, 303–316. [Google Scholar]
- Grimmonprez, M.; Slodička, M. Full discretization of a nonlinear parabolic problem containing Volterra operators and an unknown Dirichlet boundary condition. Numer. Methods Partial Differ. Equ. 2015, 31, 1444–1460. [Google Scholar] [CrossRef]
- Khoa, V.A.; Dao, M.K. Convergence analysis of a variational quasi-reversibility approach for an inverse hyperbolic heat conduction problem. arXiv 2020, arXiv:2002.08573. [Google Scholar]
- Tuan, N.H.; Nguyen, D.V.; Au, V.V.; Lesnic, D. Recovering the initial distribution for strongly damped wave equation. Appl. Math. Lett. 2017, 73, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Rukolaine, S.A. Unphysical effects of the dual-phase-lag model of heat conduction: Higher-order approximations. Int. J. Therm. Sci. 2017, 113, 83–88. [Google Scholar] [CrossRef]
- Rukolaine, S.A. Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 2014, 78, 58–63. [Google Scholar] [CrossRef]
- Liu, Z.; Quintanilla, R.; Wang, Y. On the regularity and stability of the dual-phase-lag equation. Appl. Math. Lett. 2020, 100, 106038. [Google Scholar] [CrossRef]
- Slodička, M.; Šišková, K.; Bockstal, K.V. Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation. Appl. Math. Lett. 2019, 91, 15–21. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum Principle and Its Application for the Time-Fractional Diffusion Equations. Fract. Calc. Appl. Anal. 2011, 14, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 2009, 351, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Mclean, W. Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 2010, 52, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Stynes, M. Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 2016, 9, 1554–1562. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.S.; Chen, L. Solution of Fractional Differential Equation Systems and Computation of Matrix Mittag–Leffler Functions. Symmetry 2018, 10, 503. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef] [Green Version]
- Schneider, W.R. Completely monotone generalized Mittag-Leffler functions. Expo. Math. 1996, 14, 3–16. [Google Scholar]
- Miller, K.S.; Samko, S.G. A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Anal. Exch. 1999, 23, 753–756. [Google Scholar] [CrossRef]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; Dover: New York, NY, USA, 1964. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maes, F.; Slodička, M. Some Inverse Source Problems of Determining a Space Dependent Source in Fractional-Dual-Phase-Lag Type Equations. Mathematics 2020, 8, 1291. https://doi.org/10.3390/math8081291
Maes F, Slodička M. Some Inverse Source Problems of Determining a Space Dependent Source in Fractional-Dual-Phase-Lag Type Equations. Mathematics. 2020; 8(8):1291. https://doi.org/10.3390/math8081291
Chicago/Turabian StyleMaes, Frederick, and Marián Slodička. 2020. "Some Inverse Source Problems of Determining a Space Dependent Source in Fractional-Dual-Phase-Lag Type Equations" Mathematics 8, no. 8: 1291. https://doi.org/10.3390/math8081291
APA StyleMaes, F., & Slodička, M. (2020). Some Inverse Source Problems of Determining a Space Dependent Source in Fractional-Dual-Phase-Lag Type Equations. Mathematics, 8(8), 1291. https://doi.org/10.3390/math8081291