# Global Uniform Asymptotic Stability Criteria for Linear Uncertain Switched Positive Time-Varying Delay Systems with All Unstable Subsystems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Definition**

**1.**

**Definition**

**2.**

**Lemma**

**1.**

**Assumption**

**1.**

**Remark**

**1.**

**Assumption**

**2.**

**Definition**

**3.**

**Remark**

**2.**

**Definition**

**4.**

**Definition**

**5.**

**Remark**

**3.**

**Assumption**

**4.**

## 3. Main Results

**Theorem**

**1.**

**Proof.**

**Remark**

**4.**

**Remark**

**5.**

**Corollary**

**1.**

**Proof.**

**Remark**

**6.**

## 4. Numerical Examples

**Example**

**1.**

**Remark**

**7.**

**Example**

**2.**

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Farina, L.; Rinaldi, S. Positive Linear Systems: Theory and Applications; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Haddad, W.M.; Chellaboina, V.; Hui, Q. Nonnegative and Compartmental Dynamical Systems; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Kaczorek, T. Positive 1D and 2D Systems; Springer: London, UK, 2002. [Google Scholar]
- Sau, N.H.; Niamsup, P.; Phat, V.N. Positivity and stability analysis for linear implicit difference delay equations. Linear Algebra Appl.
**2016**, 510, 25–41. [Google Scholar] [CrossRef] - Liberzon, D. Switching in Systems and Control; Birkhauser: Boston, MA, USA, 2003. [Google Scholar]
- Mahmoud, M.S. Switched Time-Delay Systems: Stability and Control; Springer: New York, NY, USA, 2010. [Google Scholar]
- Wang, D.; Shi, P.; Wang, W. Robust Filtering and Fault Detection of Switched Delay Systems; Springer: Berlin, Germany, 2013. [Google Scholar]
- Mason, O.; Shorten, R. On linear copositive Lyapunov functions and the stability of switched positive linear systems. IEEE Trans. Autom. Control
**2007**, 52, 1346–1349. [Google Scholar] [CrossRef][Green Version] - Bolajraf, M.; Tadeo, F.; Alvarez, T.; Rami, M.A. State-feedback with memory for controlled positivity with application to congestion control. IET Control Theory Appl.
**2010**, 4, 2041–2048. [Google Scholar] [CrossRef] - Mahmoud, M.S. Switched delay-dependent control policy for water-quality systems. IET Control Theory Appl.
**2009**, 3, 1599–1610. [Google Scholar] [CrossRef] - Blanchini, F.; Colaneri, P.; Valcher, M.E. Co-positive Lypunov functions for the stabilization of positive switched systems. IEEE Trans. Autom. Control
**2012**, 57, 3038–3050. [Google Scholar] [CrossRef] - Lian, J.; Liu, J. New results on stability of switched positive systems: An average dwell-time approach. IET Control Theory Appl.
**2013**, 7, 1651–1658. [Google Scholar] [CrossRef] - Tian, Y.; Sun, Y. Stability analysis of switched positive nonlinear systems by mode-dependent average dwell time method. IEEE Access
**2019**, 7, 15584–15589. [Google Scholar] [CrossRef] - Wang, G.; Liu, Y.; Lu, J.; Wang, Z. Stability analysis of totally positive switched linear systems with average dwell time switching. Nonlinear Anal. Hybrid Syst.
**2020**, 36, 100877. [Google Scholar] [CrossRef] - Zhang, J.S.; Wang, Y.W.; Xiao, J.W.; Shen, Y.J. Stability analysis of switched positive linear systems with stable and unstable subsystems. Int. J. Syst. Sci.
**2014**, 45, 2458–2465. [Google Scholar] [CrossRef] - Zhao, H.; Li, Y. Exponential stability of switched positive linear systems without stable subsystems. In Proceedings of the IEEE 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017; pp. 984–988. [Google Scholar]
- Zhou, Z.-Y.; Wang, Y.-W.; Yang, W.; Hu, M.-J. Exponential stability of switched positive systems with all modes being unstable. Int. J. Robust Nonlinear Control
**2020**. [Google Scholar] [CrossRef] - Feng, S.; Wang, J.; Zhao, J. Stability and robust stability of switched positive linear systems with all modes unstable. IEEE/CAA J. Autom. Sin.
**2019**, 6, 167–176. [Google Scholar] [CrossRef] - Li, Y.; Zhang, H.B.; Zheng, Q.X. Robust stability and L
_{1}-gain analysis of interval positive switched T-S fuzzy systems with mode-dependent dwell time. Neurocomputing**2017**, 235, 90–97. [Google Scholar] [CrossRef] - Xiang, W.; Lam, J.; Shen, J. Stability analysis and L
_{1}-gain characterization for switched positive systems under dwell-time constraint. Automatica**2017**, 58, 1–8. [Google Scholar] [CrossRef] - Fridman, E. Introduction to Time-Delay Systems: Analysis and Control; Springer: Basel, Switzerland, 2014. [Google Scholar]
- Kharitonov, V. Time-Delay Systems: Lyapunov Functionals and Matrices; Springer: New York, NY, USA, 2012. [Google Scholar]
- Wu, M.; He, Y.; She, J.-H. Stability Analysis and Robust Control of Time-Delay Systems; Springer: Berlin, Germany, 2010. [Google Scholar]
- Elmadssia, S.; Saadaoui, K. New stability conditions for a class of nonlinear discrete-time systems with time-varying delay. Mathematics
**2020**, 8, 1531. [Google Scholar] [CrossRef] - Liu, L.-J.; Zhao, X.; Wu, D. Stability of switched positive linear time-delay systems. IET Control Theory Appl.
**2019**, 13, 912–919. [Google Scholar] [CrossRef] - Zhao, X.; Zhang, L.; Shi, P. Stability of a class of switched positive linear time-delay systems. Int. J. Robust Nonlinear Control
**2013**, 23, 578–589. [Google Scholar] [CrossRef] - Liu, X.; Dang, C. Stability analysis of positive switched linear systems with delays. IEEE Trans. Autom. Control
**2011**, 56, 1684–1690. [Google Scholar] [CrossRef] - Liu, Z.; Zhang, X.; Lu, X.; Liu, Q. Stabilization of positive switched delay systems with all modes unstable. Nonlinear Anal. Hybrid Syst.
**2018**, 29, 110–120. [Google Scholar] [CrossRef] - Shi, R.; Tian, X.; Zhao, X.; Zheng, X. Stability and L
_{1}-gain analysis for switched delay positive systems with stable and unstable subsystems. Circuits Syst. Signal Process.**2015**, 34, 1683–1696. [Google Scholar] [CrossRef] - Xiang, M.; Xiang, Z.; Lu, X.; Liu, Q. Stability, L
_{1}-gain and control synthesis for positive switched systems with time-varying delay. Nonlinear Anal. Hybrid Syst.**2013**, 9, 9–17. [Google Scholar] [CrossRef] - Yang, G.; Hao, F.; Zhang, L.; Li, B. Exponential stability for continue-time switched positive delay systems with all unstable subsystems. IEEE Access
**2019**, 7, 165428–165436. [Google Scholar] [CrossRef] - Ma, R.; Wang, X.; Liu, Y. Robust stability of switched positive linear systems with interval uncertainties via multiple time-varying linear copositive Lyapunov functions. Nonlinear Anal. Hybrid Syst.
**2018**, 30, 285–292. [Google Scholar] [CrossRef] - Zhang, J.; Han, Z. Robust stabilization of switched positive linear systems with uncertainties. Int. J. Control Autom. Syst.
**2013**, 11, 41–47. [Google Scholar] [CrossRef] - Allerhand, L.; Shaked, U. Robust stability and stabilization of linear switched systems with dwell time. IEEE Trans. Autom. Control
**2011**, 56, 381–386. [Google Scholar] [CrossRef] - Rodriguse-Licea, M.-A.; Perez-Pinal, F.-J.; Olivares, J.P. Robust stabilization of linear switched systems with unstable subsystems. Appl. Sci.
**2018**, 8, 2620. [Google Scholar] [CrossRef][Green Version] - Liu, J.J.; Zhang, K.J.; Wei, H.K. Robust stability of positive switched systems with dwell time. Int. J. Syst. Sci.
**2016**, 47, 2553–2562. [Google Scholar] [CrossRef] - Liu, J.; Zhu, C.; Li, Z. Robust stabilization for constrained switched positive linear systems with uncertainties and delays. In Proceedings of the IEEE Proceedings 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 2459–2464. [Google Scholar]
- Xiang, W.; Xiao, J. Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica
**2014**, 50, 940–945. [Google Scholar] [CrossRef] - Tian, Y.; Cai, Y.; Sun, Y. Stability of switched nonlinear time-delay systems with stable and unstable subsystems. Nonlinear Anal. Hybrid Syst.
**2017**, 24, 58–68. [Google Scholar] [CrossRef] - Wang, Q.; Sun, H.; Zong, G. Stability analysis of switched delay systems with all subsystems unstable. Int. J. Control Autom. Syst.
**2016**, 14, 1262–1269. [Google Scholar] [CrossRef] - Dehghan, M.; Ong, C.-J. Computations of mode-dependent dwell times for discrete-time switching system. Automatica
**2013**, 49, 1804–1808. [Google Scholar] [CrossRef] - Lee, T.C.; Jiang, Z.P. Uniform asymptotic stability of nonlinear switched systems with an application to mobile robots. IEEE Trans. Autom. Control
**2008**, 53, 1235–1252. [Google Scholar] [CrossRef] - Mao, X.; Zhu, H.; Chen, W.; Zhang, H. New results on stability of switched continuous-time systems with all subsystems unstable. ISA Trans.
**2019**, 87, 28–33. [Google Scholar] [CrossRef] [PubMed] - Mao, X.; Zhu, H.; Chen, W.; Zhang, H. Results on stability of switched discrete-time systems with all subsystems unstable. IET Control Theory Appl.
**2019**, 13, 152–158. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rojsiraphisal, T.; Niamsup, P.; Yimnet, S. Global Uniform Asymptotic Stability Criteria for Linear Uncertain Switched Positive Time-Varying Delay Systems with All Unstable Subsystems. *Mathematics* **2020**, *8*, 2118.
https://doi.org/10.3390/math8122118

**AMA Style**

Rojsiraphisal T, Niamsup P, Yimnet S. Global Uniform Asymptotic Stability Criteria for Linear Uncertain Switched Positive Time-Varying Delay Systems with All Unstable Subsystems. *Mathematics*. 2020; 8(12):2118.
https://doi.org/10.3390/math8122118

**Chicago/Turabian Style**

Rojsiraphisal, Thaned, Piyapong Niamsup, and Suriyon Yimnet. 2020. "Global Uniform Asymptotic Stability Criteria for Linear Uncertain Switched Positive Time-Varying Delay Systems with All Unstable Subsystems" *Mathematics* 8, no. 12: 2118.
https://doi.org/10.3390/math8122118