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Abstract: In this paper, the problem of robust stability for a class of linear switched
positive time-varying delay systems with all unstable subsystems and interval uncertainties is
investigated. By establishing suitable time-scheduled multiple copositive Lyapunov-Krasovskii
functionals (MCLKF) and adopting a mode-dependent dwell time (MDDT) switching strategy,
new delay-dependent sufficient conditions guaranteeing global uniform asymptotic stability of the
considered systems are formulated. Apart from past studies that studied switched systems with at
least one stable subsystem, in the present study, the MDDT switching technique has been applied to
ensure robust stability of the considered systems with all unstable subsystems. Compared with the
existing results, our results are more general and less conservative than some of the previous studies.
Two numerical examples are provided to illustrate the effectiveness of the proposed methods.

Keywords: mode-dependent dwell time; global stability; switched positive systems; time-varying
delay systems; unstable subsystems

1. Introduction

Positive systems are systems whose state variables take only non-negative values [1–4]. Examples
of positive systems are discovered in real-world systems such as biological systems, pharmacological
models, and physiological processes. Switched systems, which are composed of a family of subsystems
and a switching rule orchestrating the switching among subsystems, are an important class of hybrid
systems [5–7]. For specific switched systems with all individual positive subsystems, these systems
are called switched positive systems and widely arise in various applications such as wireless power
control [8], congestion control [9], compartmental model [2], water-quality model [6,10], and so on.
Stabilities of switched positive systems have been extensively investigated under an appropriate
switching rule; for example, the stability analysis of switched positive systems [11–17], robust stability
analysis of switched positive systems [18,19], and L1-gain analysis of switched positive systems [19,20].

The evolution of the state variables relies not only on their present values but also on
their past values. Such dynamical systems are called time-delay systems, which are appeared
in practical systems [21–24]. It is well-known that the existence of a time-delay in the system
can usually degrade the system performance or even cause instability. Results from the study
related to time-delay can be divided into two kinds: delay-independent and delay-dependent
results. The delay-independent results apply to the arbitrary size of the time-delay, while the
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delay-dependent results contain the information on the size of the time-delay. Generally speaking,
the delay-dependent results are less conservative than the delay-independent ones when the size of
the time-delay is small [7]. For these reasons, the topics of stability analysis for dynamical systems
with time-delay have been studied by several researchers; especially switched positive systems with
constant time-delay [25,26] and time-varying delay [27–31]. Most dynamical systems often contain
uncertainties owing to some unpredictable factors such as the existence of modeling error or parameter
fluctuation during hardware implementation. These systems can be modeled in the form of interval
uncertainties [32,33]. Consequently, there are many results on the interval uncertainties systems;
for example, switched systems [34,35], switched positive systems [18,19,32,33,36], and switched
positive time-delay systems [37].

During recent decades, the existing research articles about switched systems mainly concentrate
on the (robust) stability and (robust) stabilization problems. In accordance with the dynamic behavior
of the subsystems, switched systems can be classified into three types; (i) all subsystems are stable,
(ii) there is at least one stable subsystem, (iii) all subsystems are unstable. The main idea of analyzing
the stability for the second type is that the stable subsystems are activated for a sufficiently long time
to compensate for the state divergence made by unstable subsystems. Nevertheless, the above idea
fails when all subsystems are unstable. Therefore, the stabilization problems of switched systems
without delay [34,38], stability problems of switched sytems with time-delay [39,40], and without
delay [41–44] have drawn much attention in the control community. By employing the discretized
Lyapunov function method, a set of sufficient conditions ensuring the asymptotic stability of switched
continuously-time systems with all unstable subsystems was derived in [38]. In 2016, Wang et al. [40]
constructed multiple discretized Lyapunov-Krasovskii functionals to study the stability of switched
delay systems with all unstable subsystems. Both results were mainly focused on the dwell time
(DT) switching law. Recently, the problems of exponential stability for switched systems with all
unstable subsystems under the bounded maximum average dwell time switching law were discussed
for continuous-time case [43] and for discrete-time case [44]. The methods of the discretized Lyapunov
function and the multiple discretized Lyapunov-Krasovskii functionals can also be extended to the
discretized copositive Lyapunov function and the multiple discretized copositive Lyapunov-Krasovskii
functionals, which have been used in formulating stability conditions of (some) switched positive
(delay) systems with all unstable subsystems [18,28]. DT and MDDT are common switching laws that
are designed to investigate the stability and stabilization problems for the switched positive (delay)
systems. The main advantage of the MDDT switching law is that each mode in the underlying system
not only has its own DT but also has its own control strategy. Therefore, the MDDT switching law
is more suitable in practice than the DT switching law. Past studies on switched positive systems
with all unstable subsystems were investigated in [18,28,31]. In 2018, Liu et al. [28] investigated
the stabilization problem of linear switched positive delay systems with all unstable subsystems by
employing the multiple discretized copositive Lyapunov-Krasovskii functionals and the DT switching
law. In 2019, Feng et al. [18] studied the stability and robust stability for linear switched positive
systems with all unstable subsystems by utilizing the discretized copositive Lyapunov function and the
MDDT switching rule, but the existence of the time-delay was not taken into account. More recently,
Yang et al. [31] proposed a time-scheduled MCLKF technique combining with fast average dwell
time switching law to derive a sufficient stability criterion for continuous-time switched positive
delay systems with all unstable subsystems. Note that the interval uncertainties were not considered
in [28,31]. To the best of our knowledge, there is no work in the literature on the robust stability analysis
for linear uncertain switched positive time-varying delay systems with all unstable subsystems.

The above discussions motivate us to study the robust stability for a class of continuous-time linear
switched positive time-varying delay systems with all unstable subsystems and interval uncertainties
under the MDDT switching strategy. The main contributions of this paper are summarized as follows.

(1) A time-scheduled MCLKF method combined with the MDDT switching law is utilized to
derive new delay-dependent sufficient conditions for global uniform asymptotic stability of the
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underlying systems.
(2) The stability criteria for continuous-time switched positive time-varying delay systems without

the interval uncertainties are also obtained.
(3) Apart from the studies in [12,15,25,36] that proposed stability conditions for switched positive

systems with at least one stable subsystem, our research mainly concentrates on the (robust) stability
of switched positive time-varying delay systems with all unstable subsystems. Note that conditions
in [18] also guarantee globally asymptotically stable of switched positive systems under all unstable
subsystems, but the existence of the time-delay was not taken into account.

(4) Unlike the existing results in [28,31,36,38,40], the MDDT switching law, which is less
conservative and more applicable in practice than the DT switching law, is utilized for the robust
stability analysis of the continuous-time linear switched positive time-varying delay systems with all
unstable subsystems and interval uncertainties in the present study.

The rest of this work is organized as follows. In Section 2, necessary preliminaries are presented.
The main results are shown in Section 3. Two numerical simulations are provided to justify the
efficiency of our theoretical results in Section 4. The conclusions are given in Section 5.

Notations: Throughout this paper, the sets of non-negative and positive integers are represented by
N0 and N, respectively. For any L ∈ N, L0 = {0, 1, 2, ..., L}. Rn and Rn

+ are the vectors of n-tuples of real
and positive real numbers, respectively. Rm×n stands for the set of all m× n real matrices. In is the n× n
dimensional identity matrix. AT symbolizes the transpose of matrix A. For ν = [ν1 ν2 · · · νn]T ∈ Rn,
ν � 0 (ν � 0) is non-negative (positive) vector meaning that νi ≥ 0 (νi > 0), ∀i. Matrix A is called
non-negative if all entries are non-negative and denoted by A � 0. The notation A � B means that

A− B � 0. For x ∈ Rn, define ‖x‖1 = ∑n
i=1 |xi| as the 1-norm, ‖x‖2 =

(
∑n

i=1 x2
i
) 1

2 as the Euclidean
norm, and ‖x‖ω̂ = sup−ω̂≤θ≤0 ‖x(θ)‖2, ω̂ > 0, respectively. Moreover, β(ν), β(ν) stand for the
maximal and minimal elements of ν ∈ Rn, respectively.

2. Preliminaries

In this paper, we consider the following class of continuous-time linear switched positive
time-varying delay systems, with Aσ(t) and Dσ(t) being in the form of interval uncertainties, satisfying{

ẋ(t) = Aσ(t)x(t) + Dσ(t)x(t−ω(t)), t ≥ 0,

x(t0 + θ) = ψ(θ), θ ∈ [−ω̂, 0],
(1)

where x(t) ∈ Rn is the state vector. The switching signal σ(t) : [0, ∞) → N = {1, 2, ..., N} is a
piecewise constant function depending on time t. N ∈ N is the number of subsystems or modes of
the overall switched system. The switching instants are expressed by a sequence t0 < t1 < t2 <

· · · < tm < tm+1 < · · · < +∞, where t0 = 0 and m ∈ N0. When t ∈ [tm, tm+1), we suppose that
σ(t) = σ(tm) = i, i ∈ N and the ith subsystem is activated which implies that the trajectory x(t)
of system (1) is the trajectory of this subsystem. Note that the switching signal σ(t), t ∈ [tm, tm+1),
is continuous from the right at t = tm. Under the control of the switching signal σ(t) at the switching
instant tm, system (1) switches from the jth subsystem to the ith subsystem, where σ(tm−1) = j, j ∈ N.
The time-varying delay ω(t) satisfies 0 ≤ ω(t) ≤ ω̂ and ω̇(t) ≤ d < 1 for known constants ω̂ and d.
Moreover, ψ(· ) : [−ω̂, 0]→ Rn is a continuous and differentiable initial function.

As mentioned in [18,19], the system matrices Ai and Di are constant matrices with appropriate
dimensions and i denotes the ith subsystem with i ∈ N. These system matrices are supposed to be
interval uncertain, namely, ∀i ∈ N,

Ai � Ai � Ai, (2)

and
Di � Di � Di, (3)
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which can be denoted by Ai ∈ [Ai, Ai] and Di ∈ [Di, Di] where Ai, Di, Ai, Di are constant matrices
with appropriate dimensions.

The main goal in this paper is to derive robust stability criteria for a class of continuous-time linear
switched positive time-varying delay systems with all unstable subsystems and interval uncertainties
by designing switching signals based on the MDDT switching law.

First, we introduce some definitions and the lemma used in this research.

Definition 1. [28] System (1) is said to be positive if for any initial condition ψ(θ) � 0, θ ∈ [−ω̂, 0] and any
switching signal σ(t), the corresponding trajectory x(t) satisfies x(t) � 0 for any t ≥ 0.

Definition 2. [18] A matrix A is said to be a Metzler matrix if its offdiagonal entries are non-negative.

Lemma 1. [28] System (1) is positive if and only if Ai, ∀i ∈ N are Metzler matrices and Di � 0, ∀i ∈ N.

Then, we provide required assumptions and definitions which are useful for deriving the main
results in this research.

Assumption 1. [18,32,37] For each Ai and Di in system (1), there are the known Metzler matrices Ai and
Di � 0 such that Ai ∈ [Ai, Ai] and Di ∈ [Di, Di], ∀i ∈ N.

Remark 1. It is well known that most existing control engineerings contain some uncertainties [18,32,37].
The uncertain systems can be represented in the form of interval uncertain systems. Consequently, Assumption
1 is reasonable.

Assumption 2. [18,40] The state of switched systems does not jump at each switching instant, namely, the state
trajectory x(t) is continuous everywhere.

Assumption 3. [18,28] All subsystems of system (1) are unstable.

Definition 3. [38] System (1) with switching signal σ(t) is said to be uniformly stable (US) with respect to
σ(t) if ∀ε > 0, ∃δ(ε) > 0 such that ‖x(t)‖2 < ε, ∀t ∈ [0,+∞) whenever ‖ψ‖ω̂ < δ. When ∀δ > 0 we have
‖x(t)‖2 < ε, ∀t ∈ [0,+∞) then system (1) is globally uniformly stable (GUS) with respect to σ(t). Moreover,
if system (1) is GUS and satisfies limt→+∞ x(t) = 0, system (1) is globally uniformly asymptotically stable
(GUAS) with respect to σ(t).

Remark 2. Generally, the robust stability analysis of switched systems can be achieved whenever either all
subsystems are stable or there is at least one stable subsystem for compensating another unstable one. However,
the above existing idea is invalid for the case that all subsystems are unstable. How to design appropriate
switching laws to stabilize the switched positive time-varying delay systems with all unstable subsystems and
interval uncertainties? This question not only considers finding the appropriate switching laws for the system
but also regards the positivity and the existence of the time-delay of the system. Therefore, it is challenging to
cope with this problem.

A switching signal plays an important role in the research of robust stability analysis for switched
systems. In this paper, the switching signal used to study robust stability for a class of linear switched
positive time-varying delay systems with all unstable subsystems and interval uncertainties is a
time-dependent switching signal. There are well-known types of time-dependent switching signals,
namely, DT and MDDT switching laws. To describe a sufficiently long active interval, the notion of a
DT switching law is stated as follows.

Definition 4. [5,7] For given two successive switching times tm and tm+1, m ∈ N0, if there exists a constant
τ > 0 such that tm+1 − tm ≥ τ holds for any m ∈ N0, then the constant τ is called DT.
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Recently, the concept of the DT switching law is extended to the concept of the MDDT switching
law. It has been recognized that the MDDT switching law is more general and less conservative than
the DT switching law. The definition of MDDT is given as follows.

Definition 5. [19,41] For the length between successive switching instants during which the ith subsystem is
activated, if there exists a constant τi,m > 0 such that tm+1 − tm ≥ τi,m holds for any i ∈ N, m ∈ N0, then the
constant τi,m is called MDDT.

Remark 3. It is well-known that too small or too large DT switching would make system (1) unstable with
respect to σ(t) [18]. Thus, the MDDT switching strategy is confined by a pair of upper and lower bounds to
ensure the asymptotic stability, namely, τi,m ∈ [τi,min, τi,max], i ∈ N, m ∈ N0 where 0 < τi,min ≤ τi,max.
Moreover, we call Ω[τi,min ,τi,max ]

the set of all switching policies with MDDT τi,m ∈ [τi,min, τi,max], i ∈ N,
m ∈ N0.

Assumption 4. [18] Every subsystem has its own DT. Namely, the DT of the ith subsystem is denoted by
τi,m, i ∈ N, m ∈ N0.

3. Main Results

In this present section, we utilize the time-scheduled MCLKF technique to formulate the robust
stability conditions for a class of linear switched positive time-varying delay systems with all unstable
subsystems and interval uncertainties (1) under the MDDT switching strategy. Moreover, we propose
new delay-dependent sufficient conditions to guarantee global uniform asymptotic stability of
system (1) without the interval uncertainties.

For convenience, the essential symbols are firstly introduced as follows:

D̃ =
(

dkl

)
∈ Rn×n, dkl = max

i∈N

{
D(kl)

i

}
, (4)

where D(kl)
i represents the kth row and lth column entry of system matrices Di, i ∈ N. We are now

ready to derive new delay-dependent sufficient conditions to ensure the global uniform asymptotic
stability of system (1) satisfying Assumptions 1–4 as in the following theorem.

Theorem 1. Consider system (1) satisfying Assumptions 1–4. Given constants λi > 0, 0 < µi < 1, τi,min >

0, i ∈ N, and L ∈ N. If there exist a set of positive vectors νi,q, i ∈ N, q ∈ L0 and constants τi,max ≥
τi,min, i ∈ N such that for any i, j ∈ N, i 6= j, and for any q = 0, 1, ..., L− 1, the following inequalities hold

Φi,q +

[
AT

i +

(
1 + ω̂

1− d

)
D̃T − λi In

]
νi,q ≺ 0, (5)

Φi,q +

[
AT

i +

(
1 + ω̂

1− d

)
D̃T − λi In

]
νi,q+1 ≺ 0, (6)

D̃T (Φi,q − νi,q
)
≺ 0, (7)

D̃T (Φi,q − νi,q+1
)
≺ 0, (8)[

AT
i +

(
1 + ω̂

1− d

)
D̃T − λi In

]
νi,L ≺ 0, (9)

νi,0 − µiνj,L � 0, (10)

ln µi + λjτj,max < 0, (11)
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where

Φi,q =

(
νi,q+1 − νi,q

)
L

τi,min
,

and D̃ is defined as in (4). Then, system (1) is GUAS under any switching signal σ(t) ∈ Ω[τi,min ,τi,max ]
.

Proof. By Assumption 1, we obtain that Ai are also Metzler matrices and Di � 0, ∀i ∈ N, respectively.
By Lemma 1, we can conclude that system (1) is positive.

For a given t > 0, suppose that t ∈ [tm, tm+1) = [tm, tm + τi,min) ∪ [tm + τi,min, tm+1), m ∈ N0,
and the interval [tm, tm + τi,min) is divided into L segments with equal length hi =

τi,min
L . Furthermore,

we define Ni
m,q = [tm + qhi, tm + (q+ 1)hi), q = 0, 1, ..., L− 1, i ∈ N, then [tm, tm + τi,min) =

⋃L−1
q=0 Ni

m,q.
Based on the concept of discretized Lyapunov function used in [28,38], we establish the following

vector function

νi(t) = νi(tm + qhi + α(t)hi)

=

{
(1− α(t))νi,q + α(t)νi,q+1, t ∈ Ni

m,q, q = 0, 1, ..., L− 1,

νi,L, t ∈ [tm + τi,min, tm+1),
(12)

where i = σ(t) ∈ N, m ∈ N0, α(t) = t−tm−qhi
hi

with 0 ≤ α(t) ≤ 1, and νi,q are positive vectors for

i ∈ N, q ∈ L0. For t ∈ Ni
m,q, we obtain

ν̇i(t) = α̇(t)νi,q+1 − α̇(t)νi,q

=
νi,q+1 − νi,q

hi

=
(νi,q+1 − νi,q)L

τi,min

= Φi,q.

For each subsystem, we construct the time-scheduled MCLKF in the form of

Vi(t) = (1− d)xT(t)νi(t) +
∫ t

t−ω(t)
xT(s)D̃Tνi(t)ds +

∫ 0

−ω̂

∫ t

t+w
xT(s)D̃Tνi(s)dsdw. (13)

Differentiating Vi(t) in (13) along the trajectories of system (1), we have

V̇i(t) = (1− d)xT(t)ν̇i(t) + (1− d)xT(t)AT
i νi(t) + (1− d)xT(t−ω(t))DT

i νi(t)

+
∫ t

t−ω(t)
xT(s)D̃T ν̇i(t)ds + xT(t)D̃Tνi(t)− xT(t−ω(t))D̃Tνi(t)(1− ω̇(t))

+ ω̂xT(t)D̃Tνi(t)−
∫ t

t−ω̂
xT(s)D̃Tνi(s)ds

≤ (1− d)xT(t)ν̇i(t) + (1− d)xT(t)AT
i νi(t) + (1− d)xT(t−ω(t))DT

i νi(t)

+
∫ t

t−ω(t)
xT(s)D̃T ν̇i(t)ds + xT(t)D̃Tνi(t)− xT(t−ω(t))D̃Tνi(t)(1− ω̇(t))

+ ω̂xT(t)D̃Tνi(t)−
∫ t

t−ω̂
xT(s)D̃Tνi(s)ds.
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It follows that

V̇i(t)− λiVi(t) ≤ (1− d)xT(t)ν̇i(t) + (1− d)xT(t)AT
i νi(t) + (1− d)xT(t−ω(t))DT

i νi(t)

+
∫ t

t−ω(t)
xT(s)D̃T ν̇i(t)ds + xT(t)D̃Tνi(t)− xT(t−ω(t))D̃Tνi(t)(1− ω̇(t))

+ ω̂xT(t)D̃Tνi(t)−
∫ t

t−ω̂
xT(s)D̃Tνi(s)ds− λi(1− d)xT(t)νi(t)

− λi

∫ t

t−ω(t)
xT(s)D̃Tνi(t)ds− λi

∫ 0

−ω̂

∫ t

t+w
xT(s)D̃Tνi(s)dsdw.

Together with ω̇(t) ≤ d, 0 < λi and Di � D̃, ∀i ∈ N, one has

V̇i(t)− λiVi(t) ≤ (1− d)xT(t)ν̇i(t) + (1− d)xT(t)AT
i νi(t)− λi(1− d)xT(t)νi(t) + xT(t)D̃Tνi(t)

+
∫ t

t−ω(t)
xT(s)D̃T ν̇i(t)ds + ω̂xT(t)D̃Tνi(t)−

∫ t

t−ω̂
xT(s)D̃Tνi(s)ds

≤ xT(t)
[
(1− d)ν̇i(t) + (1− d)AT

i νi(t) + (1 + ω̂)D̃Tνi(t)− λi(1− d)νi(t)
]

+
∫ t

t−ω(t)
xT(s)D̃T [ν̇i(t)− νi(s)] ds.

When t ∈ Ni
m,q ⊂ [tm, tm + τi,min), we obtain

(1− d)ν̇i(t) + (1− d)AT
i νi(t) + (1 + ω̂)D̃Tνi(t)− λi(1− d)νi(t)

= (1− α(t))
[
(1− d)Φi,q +

(
(1− d)AT

i + (1 + ω̂)D̃T − λi(1− d)In

)
νi,q

]
+ α(t)

[
(1− d)Φi,q +

(
(1− d)AT

i + (1 + ω̂)D̃T − λi(1− d)In

)
νi,q+1

]
,

and

D̃T [ν̇i(t)− νi(s)] = (1− α(s))D̃T (Φi,q − νi,q
)
+ α(s)D̃T (Φi,q − νi,q+1

)
.

According to conditions (5)–(8), we have

V̇i(t)− λiVi(t) < 0, t ∈ Ni
m,q.

This yields

V̇i(t) < λiVi(t), t ∈
L−1⋃
q=0

Ni
m,q = [tm, tm + τi,min). (14)

For t ∈ [tm + τi,min, tm+1), we observe that

(1− d)ν̇i(t) + (1− d)AT
i νi(t) + (1 + ω̂)D̃Tνi(t)− λi(1− d)νi(t)

=
(
(1− d)AT

i + (1 + ω̂)D̃T − λi(1− d)In

)
νi,L,

and
D̃T [ν̇i(t)− νi(s)] = −D̃Tνi,L ≺ 0.

Using condition (9), we get

V̇i(t) < λiVi(t), t ∈ [tm + τi,min, tm+1). (15)
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Combining (14) with (15), we obtain

V̇i(t) < λiVi(t), t ∈ [tm, tm+1), m ∈ N0. (16)

Integrating both sides of (16) over [tm, t) for t ∈ [tm, tm+1), m ∈ N0, we have

Vi(t) < eλi(t−tm)Vi(tm). (17)

It follows from condition (10) that νi,0 − µiνj,L � 0, ∀i, j ∈ N, i 6= j, which implies

νi(tm) � µiνj(t−m).

From (12) and (13), we obtain

Vi(tm) = (1−d)xT(tm)νi(tm)+
∫ tm

tm−ω(tm)
xT(s)D̃Tνi(tm)ds+

∫ 0

−ω̂

∫ tm

tm+w
xT(s)D̃Tνi(s)dsdw

≤ (1−d)xT(t−m)µiνj(t−m)+
∫ t−m

t−m−ω(t−m)
xT(s)D̃Tµiνj(t−m)ds+

∫ 0

−ω̂

∫ t−m

t−m+w
xT(s)D̃Tµiνj(s)dsdw

= µiVj(t−m), ∀i, j ∈ N, i 6= j. (18)

From (17) and (18), we can derive

Vσ(tm)(t) < eλσ(tm)(t−tm)Vσ(tm)(tm)

≤ µσ(tm)e
λσ(tm)(t−tm)Vσ(tm−1)

(t−m)

< µσ(tm)e
λσ(tm)(t−tm)eλσ(tm−1)

(tm−tm−1)Vσ(tm−1)
(tm−1)

...

< µσ(tm)µσ(tm−1)
· · · µσ(t1)

eλσ(tm)(t−tm)eλσ(tm−1)
(tm−tm−1) · · · eλσ(t0)

(t1−t0)Vσ(t0)
(t0)

= eλσ(tm)(t−tm)
(

µσ(tm)e
λσ(tm−1)

(tm−tm−1)
)
· · ·
(

µσ(t1)
eλσ(t0)

(t1−t0)
)

Vσ(t0)
(t0)

= eλσ(tm)(t−tm)

(
m−1

∏
k=0

µσ(tk+1)
eλσ(tk)

(tk+1−tk)

)
Vσ(t0)

(t0)

≤ eλσ(tm)τσ(tm),max

(
m−1

∏
k=0

µσ(tk+1)
eλσ(tk)

τσ(tk),max

)
Vσ(t0)

(t0).

According to condition (11), it is immediate that

µie
λjτj,max < 1, ∀i, j ∈ N, i 6= j. (19)

Hence, we get
Vσ(tm)(t) < eλσ(tm)τσ(tm),max Vσ(0)(0).

Moreover, let τmax = maxi∈N {τi,max} and λ = maxi∈N {λi}, then

Vσ(tm)(t) < eλτmax Vσ(0)(0). (20)
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From (13), we have the following estimation:

Vσ(0)(0) = (1−d)xT(0)νσ(0)(0)+
∫ 0

−ω(0)
xT(s)D̃Tνσ(0)(0)ds+

∫ 0

−ω̂

∫ 0

w
xT(s)D̃Tνσ(0)(s)dsdw

≤ (1−d)‖xT(0)‖2‖νσ(0)(0)‖2+
∫ 0

−ω̂
ds sup
−ω̂≤s≤0

‖xT(s)‖2‖D̃T‖2‖νσ(0)(0)‖2

+
∫ 0

−ω̂

∫ 0

w
‖νσ(0)(s)‖2dsdw sup

−ω̂≤s≤0
‖xT(s)‖2‖D̃T‖2

≤ (1−d)‖xT(0)‖2 ∑
b∈L0

‖νσ(0),b‖2 + ω̂ sup
−ω̂≤s≤0

‖xT(s)‖2‖D̃T‖2 ∑
b∈L0

‖νσ(0),b‖2

+ 2 ∑
b∈L0

‖νσ(0),b‖2

∫ 0

−ω̂

∫ 0

w
dsdw sup

−ω̂≤s≤0
‖xT(s)‖2‖D̃T‖2

≤
[
(1−d) + ω̂ (1 + ω̂) ‖D̃T‖2

]
∑

b∈L0

‖νσ(0),b‖2‖ψ‖ω̂, (21)

and

Vi(t) ≥ (1− d)xT(t)νi(t) ≥ (1− d)ξ‖x(t)‖1 ≥ (1− d)ξ‖x(t)‖2, (22)

where ξ = min(a,b)∈N×L0

{
β(νa,b)

}
. From (20)–(22), we obtain

‖x(t)‖2 ≤ Θ‖ψ‖ω̂eλτmax , ∀t ≥ 0, (23)

where Θ =
(
(1−d)+ω̂(1+ω̂)‖D̃T‖2

(1−d)ξ

)
∑b∈L0

‖νσ(0),b‖2. Then, for ε > 0, we choose

‖ψ‖ω̂ < δ(ε) =
ε

Θeλτmax
.

Therefore,
‖x(t)‖2 < ε, ∀t ≥ 0.

This implies that system (1) is uniformly stable.
Next, we will show that limt→∞ x(t) = 0. From (18), we get

Vi(tm) < µie
λj(tm−tm−1)Vj(tm−1) < µie

λjτj,max Vj(tm−1), ∀i, j ∈ N, i 6= j.

Let ρ = maxi,j∈N, i 6=j

{
µie

λjτj,max
}

and from (19), we have

Vi(tm) < ρVj(tm−1), 0 < ρ < 1,

which implies that the sequence Vσ(tm)(tm), m ∈ N0 is strictly decreasing and satisfies

0 < Vσ(tm)(tm) < ρVσ(tm−1)
(tm−1) < · · · < ρmVσ(0)(0).

Hence, we get limm→∞ Vσ(tm)(tm) = 0. Since νσ(tm)(tm) = νσ(tm),0 and by assumption that there exists
a set of positive vectors νi,q, i ∈ N, q ∈ L0, we obtain

νσ(tm)(tm) � 0.

Furthermore, from the positivity of system (1), we get

lim
m→∞

x(tm) = 0.
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For the proof in the final part that limt→∞ x(t) = 0, it is similar to that of Theorem 1 in [18].
Thus, it is omitted here. Consequently, system (1) is GUAS with respect to switching signal
σ(t) ∈ Ω[τi,min ,τi,max ]

.

Remark 4. As in [18,28,38], the time-scheduled MCLKF in Theorem 1 was applied to study the stability
of their considered systems with all unstable subsystems. The use of time-scheduled MCLKF allows one to
enlarge the bounded rate of convergence, λi, described by V̇i(t) < λiVi(t), λi > 0, ∀i ∈ N, when unstable
subsystems work. However, the increment of the time-scheduled MCLKF can be compensated by switching
behavior expressed by Vi(tm) ≤ µiVj(t−m), 0 < µi < 1, ∀i, j ∈ N, i 6= j, and the advantage of the MDDT
approach applied in this paper. In other words, Vi(t), ∀i ∈ N are nonincreasing at the switching instants.
Therefore, stabilization can be achieved and demonstrated in numerical examples.

Remark 5. As in [18,38], the number of discretized positive vectors νi,q, i ∈ N, q ∈ L0 is L + 1 which has
to be given in advance. It is commonly known that different choices of L can lead to different analysis results.
Namely, if larger L is chosen, then the denser the division of interval [tm, tm + τi,min) must be.

From Theorem 1, we can acquire new delay-dependent sufficient conditions to guarantee global
uniform asymptotic stability of system (1) without interval uncertainties (2) and (3). To obtain the
result, we first define important symbols used in Corollary 1 as follows:

D = (dkl) ∈ Rn×n, dkl = max
i∈N

{
D(kl)

i

}
, (24)

where D(kl)
i represents the kth row and lth column entry of system matrices Di, i ∈ N. Next,

the new delay-dependent sufficient conditions guaranteeing global uniform asymptotic stability
of system (1) without interval uncertainties (2) and (3) satisfying Assumptions 2–4 will be stated in the
following corollary.

Corollary 1. Consider system (1) without interval uncertainties (2) and (3) satisfying Assumptions 2–4. Let Ai
be the Metzler matrices and Di � 0, ∀i ∈ N. Given constants λi > 0, 0 < µi < 1, τi,min > 0, i ∈ N,
and L ∈ N. If there exist a set of positive vectors νi,q, i ∈ N, q ∈ L0 and constants τi,max ≥ τi,min, i ∈ N, such
that for any i, j ∈ N, i 6= j, and for any q = 0, 1, ..., L− 1, the following inequalities hold

Φi,q +

[
AT

i +

(
1 + ω̂

1− d

)
DT − λi In

]
νi,q ≺ 0,

Φi,q +

[
AT

i +

(
1 + ω̂

1− d

)
DT − λi In

]
νi,q+1 ≺ 0,

DT (Φi,q − νi,q
)
≺ 0,

DT (Φi,q − νi,q+1
)
≺ 0,[

AT
i +

(
1 + ω̂

1− d

)
DT − λi In

]
νi,L ≺ 0,

νi,0 − µiνj,L � 0,

ln µi + λjτj,max < 0,

where

Φi,q =

(
νi,q+1 − νi,q

)
L

τi,min
,

and D is defined as in (24). Then, system (1) without interval uncertainties (2) and (3) is GUAS under any
switching signal σ(t) ∈ Ω[τi,min ,τi,max ]

.



Mathematics 2020, 8, 2118 11 of 18

Proof. Since Ai is the Metzler matrices and Di � 0, ∀i ∈ N, system (1) without interval uncertainties
(2) and (3) is positive by employing Lemma 1. Under the same notations and vector function (12) in
Theorem 1, we can prove this corollary by using the time-scheduled MCLKF:

Vi(t) = (1− d)xT(t)νi(t) +
∫ t

t−ω(t)
xT(s)DTνi(t)ds +

∫ 0

−ω̂

∫ t

t+w
xT(s)DTνi(s)dsdw. (25)

The rest of the proof is similar to that of Theorem 1. Therefore, it is omitted.

Remark 6. Different from the discretized quadratic Lyapunov function used in [38] and the discretized copositive
Lyapunov function used in [18], in this research, the time-scheduled MCLKFs in (13) and (25) are specifically
constructed for the switched positive system with time-varying delay. Moreover, unlike the discretized copositive
Lyapunov-Krasovskii functional used in [28] and the time-scheduled MCLKF used in [31], our time-scheduled
MCLKFs are specially established to derive a set of delay-dependent sufficient conditions under the MDDT
approach for being the global uniform asymptotic stability of the considered system.

4. Numerical Examples

In this section, we present two numerical examples to demonstrate the effectiveness and
applicability of our theoretical results. For the first example, we investigate global uniform asymptotic
stability of linear interval uncertain switched positive system with time-varying delay by modifying
linear interval uncertain switched positive system studied in [18]. In the second example, we study
global uniform asymptotic stability of linear switched positive system with time-varying delay which
is used to control water-quality [6,7,10].

Example 1. Consider the following continuous-time linear switched interval system with time-varying delay
(1) consisting of two subsystems. The bounds of the system matrices are provided as

A1 =

[
−3 0.04
0.03 0.1

]
, A1 =

[
−2.5 0.06
0.06 0.2

]
, D1 =

[
0 0.0001

0.0004 0

]
, D1 =

[
0.0001 0.0001
0.0004 0.0001

]
,

A2 =

[
0.1 0.02
0.01 −2

]
, A2 =

[
0.1 0.05

0.05 −1.5

]
, D2 =

[
0 0.0001

0.0004 0

]
, D2 =

[
0 0.0001

0.0004 0.0001

]
,

and
ω(t) = 0.1− 0.1sin(t).

From the considered time-varying delay above, we choose ω̂ = 0.2 and d = 0.1. By Definition 2, it can be
seen that A1 and A2 are Metzler matrices. Moreover, D1 � 0 and D2 � 0 Thus, the system in this example
is positive.

For the numerical simulations, we set the initial condition as ψ(θ) = [3 6]T , θ ∈ [−ω̂, 0], and the system
matrices

A1 =
A1 + A1

2
=

[
−2.75 0.05
0.045 0.15

]
, D1 =

D1 + D1

2
=

[
0.00005 0.0001
0.0004 0.00005

]
,

A2 =
A2 + A2

2
=

[
0.1 0.035
0.03 −1.75

]
, D2 =

D2 + D2

2
=

[
0 0.0001

0.0004 0.00005

]
.

The state trajectories of two subsystems are presented in Figures 1 and 2, respectively. From these two subsystems,
it is easy to see that both subsystems are unstable. Let L = 1, λ1 = 0.3, µ1 = 0.55, λ2 = 0.2, µ2 =

0.6, τ1,min = 1, τ2,min = 2. From the bounds of the system matrices above, it is obviously that

D̃ =

[
0.0001 0.0001
0.0004 0.0001

]
.
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Solving conditions (5)–(11), we get the following feasible solution τ1,max = 1.5, τ2,max = 2.5,

ν1,0 =

[
9.2202

19.0367

]
, ν1,1 =

[
31.3593
18.9529

]
, ν2,0 =

[
18.2831
11.0758

]
, ν2,1 =

[
18.0983
34.6778

]
.

According to Theorem 1, the system in this example is GUAS under the switching signal σ(t) ∈ Ω[1,1.5][2,2.5].
The designed switching signal σ(t) and the state responses of the system are depicted in Figures 3 and 4,
respectively. It is clear that the considered system can be stabilized by the above switching signal.

Remark 7. For the comparison results between the previous studies and our results, one can see that the results
of Theorem 2 and Example 1 in [18] are a special case of our results. This shows that our results are more
general than that of Theorem 2 and Example 1 in [18]. In addition, the results of Theorem 3.1 in [28] and
Theorem 1 in [31] used dwell time switching and fast average dwell time switching techniques, respectively.
Their considered switched systems do not include the interval uncertainties. Meanwhile, our main results apply
the MDDT switching, in which each subsystem has its own dwell time switching, and the considered switched
system includes the interval uncertainties. Hence, our results are less conservative and more applicable than
those of Theorem 3.1 in [28] and Theorem 1 in [31].

0 2 4 6 8 10 12 14 16 18 20
Time 

0

20

40

60

80

100

120

140

x
(t

)

x
1
(t)

x
2
(t)

Figure 1. The state trajectory of the first subsystem in Example 1.

For the next example, we consider the switched system used in a water-quality model adopted from [6,7,10].
This model is used to preserve the water-quality in multireach fresh water streams of the River Nile. The state
vector in this model stands for water-quality constituents such as algae, ammonia nitrogen, dissolved oxygen,
and biochemical oxygen demand. The time-varying delay in this model reflects the mixing effect of biochemical
constituents in the reach at time t. However, in this study, we do not have information about the complexity
or noise affecting the water-quality constituents. Therefore, the model can be described as a switched positive
time-varying delay system, which is consistent with the system (1) without interval uncertainties (2) and
(3). The main purpose of studying in this model is to restore water-quality constituents to standard levels by
designing the MDDT switching law based on Corollary 1.
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Figure 2. The state trajectory of the second subsystem in Example 1.
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Figure 3. The switching signal for the switched positive delay system in Example 1.

Example 2. Consider the water-quality model represented by system (1) consisting of two subsystems without
interval uncertainties (2) and (3). The system matrices are given as

A1 =

[
−2.5 0.6
0.12 0.01

]
, D1 =

[
0 0

0.001 0.01

]
,

A2 =

[
0.03 0.05

0.035 −1.8

]
, D2 =

[
0 0

0.002 0.01

]
,

and
ω(t) = 0.1− 0.1sin(t).

From the time-varying delay above, we choose ω̂ = 0.2 and d = 0.1. By Definition 2 and Lemma 1, we can
conclude that the system is positive.
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To simulate this model, we set the initial condition as ψ(θ) = [5 10]T , θ ∈ [−ω̂, 0]. The state trajectories
of the two subsystems under this initial condition are plotted in Figures 5 and 6, respectively. Obviously, these
subsystems are unstable. Thus, our theoretical results can apply to investigate the stability of this model.
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Figure 4. The state trajectory of the switched positive delay system in Example 1.
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Figure 5. The state trajectory of the first subsystem in Example 2.

Let L = 1, λ1 = 0.4, µ1 = 0.546, λ2 = 0.3, µ2 = 0.6, τ1,min = 1, τ2,min = 2. From the system
matrices above, it is obviously that

D =

[
0 0

0.002 0.01

]
.

Solving all conditions in Corollary 1, we obtain the following feasible solution τ1,max = 1.1, τ2,max = 2.01,

ν1,0 =

[
13.5502
74.9581

]
, ν1,1 =

[
38.6680
79.9190

]
, ν2,0 =

[
23.1349
46.9510

]
, ν2,1 =

[
25.8204

139.1444

]
.

According to Corollary 1, the considered system in this example is GUAS under the switching signal
σ(t) ∈ Ω[1,1.1][2,2.01]. The designed switching signal σ(t) and the state responses of the system are depicted in
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Figures 7 and 8, respectively. It can be seen from Figure 8 that the switched positive time-varying delay system
containing two unstable subsystems can be stabilized under the above switching signal. This shows that our
theoretical results can be applied to the simple water-quality model without uncertainty.
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Figure 6. The state trajectory of the second subsystem in Example 2.
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Figure 7. The switching signal for the switched positive delay system in Example 2.
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Figure 8. The state trajectory of the switched positive delay system in Example 2.

5. Conclusions

The concept of the stabilization for a class of linear switched positive time-varying delay systems
with all unstable subsystems and interval uncertainties has been studied in this research. Under the
assumptions, the time-scheduled MCLKF method combined with the MDDT switching law has been
utilized to derive sufficient conditions for guaranteeing the global uniform asymptotic stability of
continuous-time linear switched positive time-varying delay systems with all unstable subsystems
and interval uncertainties. Based on the above approach, the stability conditions of the considered
systems without the interval uncertainties have also been obtained. All conditions are given in terms
of the solvability to a set of linear vector inequalities. Two numerical examples have been presented to
validate the theoretical results. The comparison between our results and the existing results has shown
that our results are more general and less conservative than that of previous studies. Finally, it is worth
noting that no research applies the MDDT technique to formulate stability conditions to guarantee
GUAS of some switched neutral or discrete-time systems with time-varying delay and all unstable
subsystems. Thus, in future research, it will be interesting to develop some stability conditions of these
systems using a similar approach discussed in the current research.
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