Abstract
We propose a low-complexity hybrid beamforming method for massive Multiple-Input Multiple-Output (MIMO) systems that is robust to Channel State Information (CSI) estimation errors. These errors stem from hardware impairments, pilot contamination, limited training, and fast fading, causing spectral-efficiency loss. However, existing hybrid beamforming solutions typically either assume near-perfect CSI or rely on greedy/black-box designs without an explicit mechanism to regularize the error-distorted singular modes, leaving a gap in unified, low-complexity, and theoretically grounded robustness. We unfold the Alternating Direction Method of Multipliers (ADMM) into a trainable Deep Learning (DL) network, termed DL-ADMM, to jointly optimize Radio-Frequency (RF) and baseband precoders and combiners. In DL-ADMM, the ADMM update mappings are learned (layer-wise parameters and projections) to amortize the joint RF/baseband optimization, whereas Regularized Singular Value Decomposition (RSVD) acts as an analytical regularizer that reshapes the observed channel’s singular values to suppress noise amplification under imperfect CSI. RSVD is integrated to stabilize singular modes and curb noise amplification, yielding a unified and scalable design. For , the proposed DL-ADMM-Reg achieves approximately 8–11 bits/s/Hz higher spectral efficiency than Orthogonal Matching Pursuit (OMP) at Signal-to-Noise Ratio (SNR) –40 dB, while remaining within <1 bit/s/Hz of the digital-optimal benchmark across both and settings. Simulations confirm higher spectral efficiency and robustness than OMP and Adaptive Phase Shifters (APSs).