Abstract
In this work, we develop a disturbance suppression-oriented fuzzy sliding mode secured sampled-data controller for third-order parabolic partial differential equations that ought to cope with nonlinearities, hybrid cyber attacks, and modeled disturbances. This endeavor is mainly driven by formulating an observer model with a T–S fuzzy mode of execution that retrieves the latent state variables of the perceived system. Progressing onward, the disturbance observers are formulated to estimate the modeled disturbances emerging from the exogenous systems. In due course, the information received from the system and disturbance estimators, coupled with the sliding surface, is compiled to fabricate the developed controller. Furthermore, in the realm of security, hybrid cyber attacks are scrutinized through the use of stochastic variables that abide by the Bernoulli distributed white sequence, which combat their unpredictability. Proceeding further in this framework, a set of linear matrix inequality conditions is established that relies on the Lyapunov stability theory. Precisely, the refined looped Lyapunov–Krasovskii functional paradigm, which reflects in the sampling period that is intricately split into non-uniform intervals by leveraging a fractional-order parameter, is deployed. In line with this pursuit, a strictly dissipative framework is crafted with the intent to curb norm-bounded disturbances. A simulation-backed numerical example is unveiled in the closing segment to underscore the potency and efficacy of the developed control design technique.