Optimal GQPC Codes over the Finite Field Fq
Abstract
1. Introduction
- Establish the decomposition theorem for the right GQPC codes of index l.
- Discuss a method to obtain a normalized generating set for the -generator right GQPC codes of index l.
2. Background
- C is principally generated by a least degree monic polynomial such that .
- C has a basis set and the corresponding generating matrix for C is
- , the dimension of C is .
3. Right Generalized Quasi-Polycyclic (GQPC) Codes
Code Decomposition
4. Normalized Generating Set for a GQPC Code
- Step (i): Construct . Suppose thatare pairwise coprime over . Then from the map defined in the proof of Theorem 2, . Since is an RPC code of length , we have . Now, using the Euclidean algorithm over , there exist such thatIf , then take . Otherwise, considerHence, .
- Step (ii): Let for . ThenNow, consider and as in step (i), assume that are pairwise coprime in R. Then using the same procedure as in step (i), we can get
- Step (iii): Let for . ThenEmploying the same approach as in step (i), we haveThen by step (i) and , we can construct
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishna, A.; Sarwate, D.V. Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inform. Theory 1990, 36, 880–884. [Google Scholar] [CrossRef]
- Lopez-Permouth, S.R.; Parra-Avila, B.R.; Szabo, S. Dual generalizations of the concept of cyclicity of codes. Adv. Math. Commun. 2009, 3, 227–234. [Google Scholar] [CrossRef]
- Bajalan, M.; Martínez-Moro, E. Polycyclic codes over serial rings and their annihilator CSS construction. Cryptogr. Commun. 2025, 17, 283–306. [Google Scholar] [CrossRef]
- Matsouka, M. θ-polycyclic codes and θ-sequential codes over finite fields. Int. J. Algebra 2011, 5, 65–70. [Google Scholar]
- Ou-Azzou, H.; Najmeddine, M. On the algebraic structure of polycyclic codes. Filomat 2021, 35, 3407–3421. [Google Scholar] [CrossRef]
- Qi, W. On the polycyclic codes over 𝔽q + u𝔽q. Adv. Math. Commun. 2024, 18, 661–673. [Google Scholar] [CrossRef]
- Shi, M.; Li, X.; Sepasdar, Z.; Solé, P. Polycyclic codes as invariant subspaces. Finite Fields Appl. 2020, 68, 101760. [Google Scholar] [CrossRef]
- Tiwari, A.; Sarma, R. Polycyclic codes over 𝔽q algebra and their annihilator dual. Comp. Appl. Math. 2025, 44, 27. [Google Scholar] [CrossRef]
- Li, S.; Xiong, M.; Ge, G. Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inform. Theory 2016, 62, 1703–1710. [Google Scholar] [CrossRef]
- Patel, S.; Islam, H.; Prakash, O. (f,σ,δ)-Skew polycyclic codes and their applications to quantum codes. Int. J. Theor. Phys. 2022, 61, 47. [Google Scholar] [CrossRef]
- Patel, S.; Singh, A.; Prakash, O. Structure of 𝔽q-linear (Θ,ΔΘ)-cyclic codes. Comp. Appl. Math. 2024, 43, 18. [Google Scholar]
- Prakash, O.; Patel, S.; Islam, H. Quantum codes from skew cyclic codes over mixed alphabet. Comp. Appl. Math. 2025, 44, 21. [Google Scholar] [CrossRef]
- Aydin, N.; Siap, I.; Ray-Chaudhari, D.K. The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 2001, 24, 313–326. [Google Scholar] [CrossRef]
- Galindo, C.; Hernando, F.; Matsumoto, R. Quasi-cyclic constructions of quantum codes. Finite Fields Appl. 2018, 52, 261–280. [Google Scholar] [CrossRef]
- Hassan, O.A.; Brahim, I.; El Mahdi, M. A class of 1-generator right quasi-polycyclic codes. In Proceedings of the 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022. [Google Scholar]
- Bag, T.; Panario, D. Quasi-polycyclic and skew quasi-polycyclic codes over Fq. Finite Fields Appl. 2025, 101, 102536. [Google Scholar] [CrossRef]
- Wu, R.; Shi, M.; Solé, P. On the structure of 1-generator quasi-polycyclic codes over the finite chain rings. J. Appl. Math. Comput. 2022, 68, 3491–3503. [Google Scholar] [CrossRef]
- Alahmadi, A.; Solé, P.; Taki Eldin, R. Lower Bound on the Minimum Distance of Single-Generator Quasi-Twisted Codes. Mathematics 2023, 11, 2539. [Google Scholar] [CrossRef]
- Aydin, N.; Halilović, A. A generalization of quasi-twisted codes: Multi-twisted codes. Finite Fields Appl. 2017, 45, 96–106. [Google Scholar] [CrossRef]
- Bae, B.; Kang, P.L.; Li, C. On normalized generating sets for GQC codes over ℤ2. Finite Fields Appl. 2017, 45, 285–300. [Google Scholar] [CrossRef]
- Debnath, I.; Prakash, O. Hulls of separable double cyclic codes over ℤp2. Comp. Appl. Math. 2025, 44, 41. [Google Scholar] [CrossRef]
- Deng, T.; Yang, J. Some Results for Double Cyclic Codes over Fq + vFq + v2Fq. Entropy 2024, 26, 803. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, M.; Yari, S. Generalized quasi-cyclic codes: Structural properties and code construction. Appl. Algebra Engrg. Comm. Comput. 2009, 20, 159–173. [Google Scholar] [CrossRef]
- Gao, J.; Fu, F.W.; Shen, L.; Ren, W. Some results on generalized quasi-cyclic codes over 𝔽q + u𝔽q. IEICE Trans. Fundam. Electron. Commun. Comupt. Sci. 2014, E97-A, 1005–1011. [Google Scholar] [CrossRef]
- Seneviratne, P.; Abualrub, T. New linear codes derived from skew generalized quasi-cyclic codes of any length. Discrete Math. 2022, 345, 113018. [Google Scholar] [CrossRef]
- Suxena, K.; Prakash, O.; Debnath, I. Skew generalized quasi-cyclic codes over non-chain ring Fq + vFq. Bol. Soc. Paran. Mat. 2025, 43, 1–21. [Google Scholar]
- Ou-Azzou, H.; Najmeddine, M.; Aydin, N.; Mahdi Mouloua, E. On the algberaic structure of (M,σ,δ)-skew codes. J. Algebra 2024, 637, 156–192. [Google Scholar] [CrossRef]
- Kabbouch, O.; Mouloua, E.M.; Najmeddine, M.; Aydin, N.; Tran, L.B.; Nguyen, T.T. On the algebraic structure of (σ,)-polycyclic codes. J. Appl. Math. Comput. 2025, 71, 6037–6060. [Google Scholar] [CrossRef]
- Cannon, J.; Bosma, W.; Fieker, C.; Steel, A. (Eds.) Handbook of Magma Functions; Version V2.28; University of Sydney: Sydney, Australia, 2010. [Google Scholar]
- Grassl, M. Bounds on the Minimum Distance of Linear Codes and Quantum Codes. Available online: http://www.codetables.de (accessed on 5 May 2025).
- Lidl, R.L.; Neiderreiter, H. Order of polynomials and primitive polynomials. In Introduction to Finite Fields and Their Applications, Revised ed.; Rota, G.C., Ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 84–87. [Google Scholar]
- MacWilliams, F.J.; Sloane, N.J.A. Chinese Remainder Theorem for Polynomials. In The Theory of Error Correcting Codes; Artin, M., Bass, H., Eds.; North-Holland: Amsterdam, NY, USA, 1977; Volume 16, p. 305. [Google Scholar]
| Polynomials , and | Parameters | Remarks | |
|---|---|---|---|
| , | |||
| , , | |||
| , | |||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Near-optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | |||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Optimal | ||
| , | |||
| , , | |||
| , | Near-optimal | ||
| , | |||
| , , | |||
| , | Optimal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suxena, K.; Prakash, O.; Debnath, I.; Solé, P. Optimal GQPC Codes over the Finite Field Fq. Mathematics 2025, 13, 3655. https://doi.org/10.3390/math13223655
Suxena K, Prakash O, Debnath I, Solé P. Optimal GQPC Codes over the Finite Field Fq. Mathematics. 2025; 13(22):3655. https://doi.org/10.3390/math13223655
Chicago/Turabian StyleSuxena, Kundan, Om Prakash, Indibar Debnath, and Patrick Solé. 2025. "Optimal GQPC Codes over the Finite Field Fq" Mathematics 13, no. 22: 3655. https://doi.org/10.3390/math13223655
APA StyleSuxena, K., Prakash, O., Debnath, I., & Solé, P. (2025). Optimal GQPC Codes over the Finite Field Fq. Mathematics, 13(22), 3655. https://doi.org/10.3390/math13223655

