White-Noise-Driven KdV-Type Boussinesq System
Abstract
:1. Introduction and Preliminaries
2. Linear and Bilinear Estimates
3. Local Well-Posedness
4. Global Well-Posedness of KdV-Type Boussinesq System in
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shurgalina, E.G.; Pelinovsky, E.N. Nonlinear dynamics of a soliton gas: Modified Korteweg–de Vries equation framework. Phys. Lett. A 2016, 380, 2049–2053. [Google Scholar] [CrossRef]
- Wang, M. Nondecreasing analytic radius for the KdV equation with a weakly damping. Nonlinear Anal. 2022, 215, 112653. [Google Scholar] [CrossRef]
- Selberg, S.; da Silva, D.O. Lower bounds on the radius of a spatial analyticity for the KdV equation. Ann. Henri Poincaré 2016, 18, 1009–1023. [Google Scholar] [CrossRef]
- Grimshaw, R.H.J.; Hunt, J.C.R.; Chow, K.W. Changing forms and sudden smooth transitions of tsunami waves. J. Ocean Eng. Mar. Energy 2015, 1, 145–156. [Google Scholar] [CrossRef]
- Anco, S.C.; Ngatat, N.T.; Willoughby, M. Interaction properties of complex modified Korteweg–de Vries (mKdV) solitons. Phys. D Nonlinear Phenom. 2011, 240, 1378–1394. [Google Scholar] [CrossRef]
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Pelinovsky, E.N.; Shurgalina, E.G.; Sergeeva, A.V.; Talipova, T.G.; El, G.A.; Grimshaw, R.H.J. Two-soliton interaction as an elementary act of soliton turbulence in integrable systems. Phys. Lett. A 2013, 377, 272–275. [Google Scholar] [CrossRef]
- Boukarou, A.; Zennir, K.; Guerbati, K.; Georgiev, S.G. Well-posedness and regularity of the fifth order Kadomtsev-Petviashvili I equation in the analytic Bourgain spaces. Ann. Univ. Ferrara Sez. VII Sci. Mat. 2020, 66, 255–272. [Google Scholar] [CrossRef]
- Tadahiro, O.H. Diophantine conditions in well-posedness theory of coupled KdV-type systems: Local theory. Int. Math. Res. Not. 2009, 18, 3516–3556. [Google Scholar]
- Dutykh, D.; Pelinovsky, E. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations. Phys. Lett. A 2014, 378, 3102–3110. [Google Scholar] [CrossRef]
- Otmani, S.; Bouharou, A.; Zennir, K.; Bouhali, K.; Moumen, A.; Bouye, M. On the study the radius of analyticity for Korteweg-de-Vries type systems with a weakly damping. AIMS Math. 2024, 9, 28341–28360. [Google Scholar] [CrossRef]
- Rincon, M.A.; Teixeira, F.S.; Lopez, I.F. Numerical studies of the damped Korteweg–de Vries system. J. Comput. Appl. Math. 2014, 259, 294–311. [Google Scholar] [CrossRef]
- Novikov, S.P. Periodic problem for the Korteweg-de Vries equation. Funct. Anal. Appl. 1974, 8, 54–66. [Google Scholar]
- Lax, P.D. Periodic solutions of the KdV equations. Comm. Pure Appl. Math. 1975, 28, 141–188. [Google Scholar] [CrossRef]
- Coclite, G.M.; di Ruvo, L. Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation. J. Evol. Equ. 2021, 21, 625–651. [Google Scholar] [CrossRef]
- Atmani, A.; Boukarou, A.; Benterki, D.; Zennir, K. Spatial analyticity of solutions for a coupled system of generalized KdV equations. Math. Methods Appl. Sci. 2024, 47, 10351–10372. [Google Scholar] [CrossRef]
- Boukarou, A.; Guerbati, K.; Zennir, K.; Alnegga, M. Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Math. 2021, 6, 10037–10054. [Google Scholar] [CrossRef]
- Faminskii, A.V.; Larkin, N.A. Odd-order quasilinear evolution equations posed on a bounded interval. Bol. Soc. Parana. Mat. 2010, 28, 67–77. [Google Scholar]
- Faminskii, A.V.; Nikolayev, A. On stationary solutions of KdV and mKdV equations. Differ. Equ. Appl. 2016, 164, 63–70. [Google Scholar]
- Krichever, I.M. Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math. Surv. 1977, 32, 183–208. [Google Scholar] [CrossRef]
- Dubrovin, B.A. Theta functions and nonlinear equations. Russ. Math. Surv. 1981, 36, 11–80. [Google Scholar] [CrossRef]
- Dufera, T.; Mebrate, S.; Tesfahun, A. On the persistence of spatial analyticity for the beam equation. J. Math. Anal. Appl. 2022, 509, 126001. [Google Scholar] [CrossRef]
- Pazoto, A.F. Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM Control. Optim. Calc. Var. 2005, 11, 473–486. [Google Scholar] [CrossRef]
- Menzala, G.P.; Vasconcellos, C.F.; Zuazua, E. Stabilization of the Korteweg-de Vries equation with localized damping. Q. Appl. Math. 2002, 60, 111–129. [Google Scholar] [CrossRef]
- Petronilho, G.; Silva, P.L.d. On the radius of spatial analyticity for the modified Kawahara equation on the line. Math. Nachrichten 2019, 292, 2032–2047. [Google Scholar] [CrossRef]
- Carvajal, X.; Panthee, M. Sharp well-posedness for a coupled system of mKdV-type equations. J. Evol. Equ. 2019, 19, 1167–1197. [Google Scholar] [CrossRef]
- Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 1989, 87, 359–369. [Google Scholar] [CrossRef]
- Jia, Y.; Huo, Z. Well-posedness for the fifth-order shallow water equations. J. Differ. Equ. 2009, 246, 2448–2467. [Google Scholar] [CrossRef]
- Jerry, B.L.; Zoran, G.; Henrik, K. A KdV-type Boussinesq system: From the energy level to analytic spaces. Discret. Contin. Dyn. Syst. 2010, 26, 1121–1139. [Google Scholar]
- Da Prato, G.; Zabczyk, J. Stochastic equations in infinite dimensions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Bouard, A.; Debussche, A. On the stochastic Korteweg-de Vries equation. J. Funct. Anal. 1998, 154, 215–251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukarou, A.; Mirgani, S.M.; Zennir, K.; Bouhali, K.; Alodhaibi, S.S. White-Noise-Driven KdV-Type Boussinesq System. Mathematics 2025, 13, 1758. https://doi.org/10.3390/math13111758
Boukarou A, Mirgani SM, Zennir K, Bouhali K, Alodhaibi SS. White-Noise-Driven KdV-Type Boussinesq System. Mathematics. 2025; 13(11):1758. https://doi.org/10.3390/math13111758
Chicago/Turabian StyleBoukarou, Aissa, Safa M. Mirgani, Khaled Zennir, Keltoum Bouhali, and Sultan S. Alodhaibi. 2025. "White-Noise-Driven KdV-Type Boussinesq System" Mathematics 13, no. 11: 1758. https://doi.org/10.3390/math13111758
APA StyleBoukarou, A., Mirgani, S. M., Zennir, K., Bouhali, K., & Alodhaibi, S. S. (2025). White-Noise-Driven KdV-Type Boussinesq System. Mathematics, 13(11), 1758. https://doi.org/10.3390/math13111758