Two Approximation Formulas for Gamma Function with Monotonic Remainders
Abstract
1. Introduction
2. Main Results
3. Numerical Comparisons of Some Gamma Function Approximation Formulas
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.A.; Roy, R. Special Functions, Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Topics in special functions II. Conform. Geom. Dyn. 2007, 11, 250–270. [Google Scholar] [CrossRef]
- Mahmoud, M.; Almuashi, H.; Moustafa, H. An asymptotic expansion for the generalized gamma function. Symmetry 2022, 14, 1412. [Google Scholar] [CrossRef]
- Qi, F.; Agarwal, R.P. Several functions Originating from Fisher–Rao geometry of Dirichlet distributions and involving Polygamma functions. Mathematics 2024, 12, 44. [Google Scholar] [CrossRef]
- Wang, M.K.; Chu, Y.M.; Song, Y.Q. Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 2016, 276, 44–60. [Google Scholar] [CrossRef]
- Wang, M.K.; Chu, Y.M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. Ser. B Engl. Ed. 2017, 37, 607–622. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists: A Comprehensive Guide, 7th ed.; Academic Press: Waltham, MA, USA, 2012. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Artin, E. The Gamma Function; Athena Series; Holt, Rinehart and Winston: New York, NY, USA, 1964. [Google Scholar]
- Beesack, P.R. Improvement of Stirling’s formula by elementary methods. Univ. Beograd Publ. Elektrotenhn Fak. Ser. Mat. Fiz. 1969, 274–301, 17–21. [Google Scholar]
- Mahmoud, M.; Alghamdi, M.A.; Agarwal, R.P. New upper bounds of n! J. Inequal. Appl. 2012, 2012, 27. [Google Scholar] [CrossRef]
- Karatsuba, E.A. On the asymptotic representation of the Euler Gamma function by Ramanujan. J. Comput. Appl. Math. 2001, 135, 225–240. [Google Scholar] [CrossRef]
- Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebook: Part IV; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar]
- Chen, C.-P. Padé approximant related to Ramanujan’s formula for the Gamma function. Results Math. 2018, 73, 107. [Google Scholar] [CrossRef]
- Burnside, W. Arapidly convergent series for logN! Messenger Math. 1917, 46, 157–159. [Google Scholar]
- Batir, N. Inequalities for the gamma function. Arch. Math. 2008, 91, 554–563. [Google Scholar] [CrossRef]
- Mortici, C. On the gamma function approximation by Burnside. Appl. Math. E-Notes. 2011, 11, 274–277. [Google Scholar]
- Gosper, R.W. Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 1978, 75, 40–42. [Google Scholar] [CrossRef]
- Batir, N. Very accurate approximations for the factorial function. J. Math. Inequal. 2010, 3, 335–344. [Google Scholar] [CrossRef]
- Mortici, C. Sharp inequalities related to Gosper’s formula. C. R. Acad. Sci. Paris 2010, 48, 137–140. [Google Scholar] [CrossRef]
- Programmable Calcualtors. Available online: http://www.rskey.org/CMS/the-library/11 (accessed on 20 April 2020).
- Alzer, H. Sharp upper and lower bounds for the Gamma function. Proc. Royal Soc. Edinburgh 2009, 139A, 709–718. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. Windschitl type approximation formulas for the Gamma function. J. Inequal. Appl. 2018, 2018, 272. [Google Scholar] [CrossRef]
- Nemes, G. New asymptotic expansion for the Gamma function. Arch. Math. 2010, 95, 161–169. [Google Scholar] [CrossRef]
- Nemes, G. More accurate approximations for the gamma function. Thai J. Math. 2011, 9, 21–28. [Google Scholar]
- Mortici, C. A continued fraction approximation of the gamma function. J. Math. Anal. Appl. 2013, 402, 405–410. [Google Scholar] [CrossRef]
- Chen, C.-P. A more accurate approximation for the gamma function. J. Number Theory 2016, 164, 417–428. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. An accurate approximation formula for Gamma function. J. Inequal. Appl. 2018, 2018, 56. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.; Almuashi, H. On Some Asymptotic Expansions for the Gamma Function. Symmetry 2022, 14, 2459. [Google Scholar] [CrossRef]
- Mahmoud, M.; Alsulami, S.M.; Almarashi, S. On some bounds for the Gamma function. Symmetry 2023, 15, 937. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Nation Bureau of Standards, Applied Mathematical Series; Dover Publications: New York, NY, USA, 1972; Volume 55. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Almuashi, H. Two Approximation Formulas for Gamma Function with Monotonic Remainders. Mathematics 2024, 12, 655. https://doi.org/10.3390/math12050655
Mahmoud M, Almuashi H. Two Approximation Formulas for Gamma Function with Monotonic Remainders. Mathematics. 2024; 12(5):655. https://doi.org/10.3390/math12050655
Chicago/Turabian StyleMahmoud, Mansour, and Hanan Almuashi. 2024. "Two Approximation Formulas for Gamma Function with Monotonic Remainders" Mathematics 12, no. 5: 655. https://doi.org/10.3390/math12050655
APA StyleMahmoud, M., & Almuashi, H. (2024). Two Approximation Formulas for Gamma Function with Monotonic Remainders. Mathematics, 12(5), 655. https://doi.org/10.3390/math12050655