Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method
Abstract
1. Introduction
2. The Working Methodology of EDAM
3. Construction of Soliton Solutions for KGEs
3.1. Example 1
3.2. Example 2
4. Discussion and Graphs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whitham, G.B. Linear and Nonlinear Waves; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Baloch, S.A.; Abbas, M.; Abdullah, F.A.; Rizvi, S.T.; Althobaiti, A.; Seadawy, A.R. Multiple Soliton Solutions of Generalized Reaction Duffing Model Arising in Various Mechanical Systems. Int. J. Theor. Phys. 2024, 63, 1–15. [Google Scholar] [CrossRef]
- Kragh, H. Equation with the many fathers. The Klein-Gordon equation in 1926. Am. J. Phys. 1984, 52, 1024–1033. [Google Scholar] [CrossRef]
- Ablowitz, M.J. Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons; Cambridge University Press: Cambridge, UK, 2011; Volume 47. [Google Scholar]
- Galehouse, D.C. Geometrical derivation of the Klein-Gordon equation. Int. J. Theor. Phys. 1981, 20, 457–479. [Google Scholar] [CrossRef]
- Schechter, M. The Klein-Gordon equation and scattering theory. Ann. Phys. 1976, 101, 601–609. [Google Scholar] [CrossRef]
- Weder, R.A. Scattering theory for the Klein-Gordon equation. J. Funct. Anal. 1978, 27, 100–117. [Google Scholar] [CrossRef]
- Lundberg, L.E. Spectral and scattering theory for the Klein-Gordon equation. Commun. Math. Phys. 1973, 31, 243–257. [Google Scholar] [CrossRef]
- Tsukanov, V.D. Motion of a Klein-Gordon kink in an external field. Theor. Math. Phys. 1990, 84, 930–933. [Google Scholar] [CrossRef]
- Tariq, K.U.; Bekir, A.; Nisar, S.; Alp, M. Construction of new wave structures and stability analysis for the nonlinear Klein-Gordon equation. Phys. Scr. 2024, 99, 055220. [Google Scholar] [CrossRef]
- Onyenegecha, C.P.; Opara, A.I.; Njoku, I.J.; Udensi, S.C.; Ukewuihe, U.M.; Okereke, C.J.; Omame, A. Analytical solutions of D-dimensional Klein Gordon equation with modified Mobius squared potential. Results Phys. 2021, 25, 104144. [Google Scholar] [CrossRef]
- Belayeh, W.G.; Mussa, Y.O.; Gizaw, A.K. Approximate Analytic Solutions of Two-Dimensional Nonlinear Klein Gordon Equation by Using the Reduced Differential Transform Method. Math. Probl. Eng. 2020, 2020, 5753974. [Google Scholar] [CrossRef]
- Ahmadov, A.I.; Nagiyev, S.M.; Ikot, A.N.; Tarverdiyeva, V.A. Analytical solutions for the Klein Gordon equation with combined exponential type and ring-shaped potentials. Sci. Rep. 2024, 14, 5527. [Google Scholar] [CrossRef] [PubMed]
- Abdeljabbar, A.; Roshid, H.O.; Aldurayhim, A. Bright, dark, and rogue wave soliton solutions of the quadratic nonlinear Klein Gordon equation. Symmetry 2022, 14, 1223. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhang, H.Q. The extended first kind elliptic sub-equation method and its application to the generalized reaction Duffing model. Phys. Lett. 2005, 344, 229–237. [Google Scholar] [CrossRef]
- Akter, J.; Akbar, M.A. Exact solutions to the Benney-Luke equation and the Phi-4 equations by using modified simple equation method. Results Phys. 2015, 5, 125–130. [Google Scholar] [CrossRef]
- Ebaid, A. Exact solutions for the generalized Klein-Gordon equation via a transformation and Exp-function method and comparison with Adomians method. J. Comput. Appl. Math. 2009, 223, 278–290. [Google Scholar] [CrossRef]
- Kudryavtsev, A.E. Solitonlike Solutions for a Higgs Scalar Field; Institute of Theoretical and Experimental Physics: Moscow, Russia, 1975. [Google Scholar]
- Strauss, W.; Vazquez, L. Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 1978, 28, 271–278. [Google Scholar] [CrossRef]
- Jiménez, S.; Vzquez, L. Analysis of four numerical schemes for a nonlinear Klein-Gordon equation. Appl. Math. Comput. 1990, 35, 61–94. [Google Scholar] [CrossRef]
- Dehghan, M.; Shokri, A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 2009, 230, 400–410. [Google Scholar] [CrossRef]
- Sarboland, M.; Aminataei, A. Numerical solution of the nonlinear Klein-Gordon equation using multiquadric quasi-interpolation scheme. Univers. J. Appl. Math. 2015, 3, 40–49. [Google Scholar] [CrossRef]
- Alsisi, A. Analytical and numerical solutions to the Klein Gordon model with cubic nonlinearity. Alex. Eng. J. 2024, 99, 31–37. [Google Scholar] [CrossRef]
- Nirmala, A.N.; Kumbinarasaiah, S. Numerical solution of nonlinear Hunter-Saxton equation, Benjamin-Bona Mahony equation, and Klein-Gordon equation using Hosoya polynomial method. Results Control. Optim. 2024, 14, 100388. [Google Scholar] [CrossRef]
- Denton, P.B. Techniques for solving static Klein-Gordon equation with self-interaction λϕ4 and arbitrary spherical source terms. Phys. Lett. B 2024, 855, 138860. [Google Scholar] [CrossRef]
- Bao, W.; Lu, Y.; Zhang, Z. Convergence Rates in the Nonrelativistic Limit of the Cubic Klein Gordon Equation. Siam J. Math. Anal. 2024, 56, 6822–6860. [Google Scholar] [CrossRef]
- Ali, I.; Ahmad, I. Applications of the nonlinear Klein/Sinh-Gordon equations in modern physics: A numerical study. Math. Model. Control. 2024, 4, 361–373. [Google Scholar] [CrossRef]
- Sadiya, U.; Inc, M.; Arefin, M.A.; Uddin, M.H. Consistent travelling waves solutions to the ar time fractional Klein-Gordon and Sine-Gordon equations through extended tanh-function approach. J. Taibah Univ. Sci. 2022, 16, 594–607. [Google Scholar] [CrossRef]
- Abdel-Salam, E.A.B.; Yousif, E.A. Solution of nonlinear space-time fractional differential equations using the fractional Riccati expansion method. Math. Probl. Eng. 2013, 2013, 846283. [Google Scholar] [CrossRef]
- Aldandani, M.; Altherwi, A.A.; Abushaega, M.M. Propagation patterns of dromion and other solitons in nonlinear Phi-Four (f 4) equation. Aims Math. 2024, 9, 19786–19811. [Google Scholar] [CrossRef]
- Yasmin, H.; Aljahdaly, N.H.; Saeed, A.M.; Shah, R. Investigating symmetric soliton solutions for the fractional coupled konno-onno system using improved versions of a novel analytical technique. Mathematics 2023, 11, 2686. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, J.; Ali, R.; Awwad, F.A.; Ismail, E.A. Exploring families of solitary wave solutions for the fractional coupled Higgs system using modified extended direct algebraic method. Fractal Fract. 2023, 7, 653. [Google Scholar] [CrossRef]
- Rizvi, S.T.; Ghafoor, S.; Seadawy, A.R.; Arnous, A.H.; AL, H. Exploration of solitons and analytical solutions by sub-ODE and variational integrators to Klein-Gordon model. Aims Math. 2024, 9, 21144–21176. [Google Scholar] [CrossRef]
- Díaz Palencia, J.L.; Roa González, J.; Sánchez Sánchez, A. Study of Solutions for a Degenerate Reaction Equation with a High Order Operator and Advection. Mathematics 2022, 10, 1729. [Google Scholar] [CrossRef]
- Ullah, I.; Shah, K.; Barak, S.; Abdeljawad, T. Pioneering the Plethora of Soliton for the (3+1)-Dimensional Fractional Heisenberg Ferromagnetic Spin Chain Equation. Phys. Scr. 2024, 99, 095229. [Google Scholar] [CrossRef]
- Ali, R.; Barak, S.; Altalbe, A. Analytical study of soliton dynamics in the realm of fractional extended shallow water wave equations. Phys. Scr. 2024, 99, 065235. [Google Scholar] [CrossRef]
- Ullah, I.; Shah, K.; Abdeljawad, T.; Alam, M.M.; Hendy, A.S.; Barak, S. Dynamics Behaviours of Kink Solitons in Conformable Kolmogorov-Petrovskii-Piskunov Equation. Qual. Theory Dyn. Syst. 2024, 23 (Suppl. 1), 268. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3507–3529. [Google Scholar] [CrossRef]
- Navickas, Z.; Ragulskis, M. Comments on A new algorithm for automatic computation of solitary wave solutions to nonlinear partial differential equations based on the Exp-function method. Appl. Math. Comput. 2014, 243, 419–425. [Google Scholar] [CrossRef]
- Antonova, A.O.; Kudryashov, N.A. Generalization of the simplest equation method for nonlinear non-autonomous differential equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 4037–4041. [Google Scholar] [CrossRef]
- Xiao, Y.; Barak, S.; Hleili, M.; Shah, K. Exploring the dynamical behaviour of optical solitons in integrable kairat-II and kairat-X equations. Phys. Scr. 2024, 99, 095261. [Google Scholar] [CrossRef]
- Ma, W.X.; Fuchssteiner, B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. -Non-Linear Mech. 1996, 31, 329–338. [Google Scholar] [CrossRef]
- Ma, W.X.; Lee, J.H. A transformed rational function method and exact solutions to the 3+ 1 dimensional Jimbo-Miwa equation. Chaos Solitons Fractals 2009, 42, 1356–1363. [Google Scholar] [CrossRef]
- Navickas, Z.; Marcinkevicius, R.; Telksniene, I.; Telksnys, T.; Ragulskis, M. Structural stability of the hepatitis C model with the proliferation of infected and uninfected hepatocytes. Math. Comput. Model. Dyn. Syst. 2024, 30, 51–72. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, S.; Almatroud, O.A.; Alshammari, M.; Zureigat, H.; Al-Sawalha, M.M. Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method. Mathematics 2024, 12, 3433. https://doi.org/10.3390/math12213433
Alshammari S, Almatroud OA, Alshammari M, Zureigat H, Al-Sawalha MM. Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method. Mathematics. 2024; 12(21):3433. https://doi.org/10.3390/math12213433
Chicago/Turabian StyleAlshammari, Saleh, Othman Abdullah Almatroud, Mohammad Alshammari, Hamzeh Zureigat, and M. Mossa Al-Sawalha. 2024. "Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method" Mathematics 12, no. 21: 3433. https://doi.org/10.3390/math12213433
APA StyleAlshammari, S., Almatroud, O. A., Alshammari, M., Zureigat, H., & Al-Sawalha, M. M. (2024). Exploring Kink Solitons in the Context of Klein–Gordon Equations via the Extended Direct Algebraic Method. Mathematics, 12(21), 3433. https://doi.org/10.3390/math12213433