Next Article in Journal
Traffic Accident Detection Method Using Trajectory Tracking and Influence Maps
Next Article in Special Issue
Fractional Stochastic Search Algorithms: Modelling Complex Systems via AI
Previous Article in Journal
Comprehensive Analysis of Multi-Objective Optimization Algorithms for Sustainable Hybrid Electric Vehicle Charging Systems
Previous Article in Special Issue
Existence of Self-Excited and Hidden Attractors in the Modified Autonomous Van Der Pol-Duffing Systems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Subclasses of p-Valent Functions Associated with Linear q-Differential Borel Operator

by
Adriana Cătaş
1,*,†,
Emilia-Rodica Borşa
1,† and
Sheza M. El-Deeb
2,3,†
1
Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
2
Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
3
Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 52571, Saudi Arabia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2023, 11(7), 1742; https://doi.org/10.3390/math11071742
Submission received: 15 February 2023 / Revised: 22 March 2023 / Accepted: 31 March 2023 / Published: 5 April 2023
(This article belongs to the Special Issue Fractional Calculus and Mathematical Applications)

Abstract

:
The aim of the present paper is to introduce and study some new subclasses of p-valent functions by making use of a linear q-differential Borel operator.We also deduce some properties, such as inclusion relationships of the newly introduced classes and the integral operator J μ , p .

1. Introduction

Let A p denote the class of functions of the form:
F ( ς ) = ς p + j = p + 1 a j ς j ( p N = { 1 , 2 , . . . } ) ,
which are analytic in the open unit disc Δ = ς C : ς < 1 .
Let P p , k α be the class of functions h ( ς ) analytic in Δ satisfying the properties h ( 0 ) = p and
0 2 π h ( ς ) α p α d θ k π ,
where ς = r e i θ , k 2 and 0 α < p . This class was introduced by (Aouf [1] with λ = 0 ).
We note that
(i)
P 1 , k α = P k α k 2 , 0 α < 1 (see Padmanabhan and Parvatham [2]);
(ii)
P 1 , k 0 = P k k 2 (see Pinchuk [3] and Robertson [4]);
(iii)
P p , 2 α = P p , α 0 α < p , p N , where P p , α is the class of functions with a positive real part greater than α (see [1]);
(iv)
P p , 2 0 = P p p N , where P p is the class of functions with a positive real part (see [1]).
From (2), we have h ( ς ) P p , k α if and only if there exists h 1 , h 2 P p α such that
G ( ς ) = k 4 + 1 2 h 1 ( ς ) k 4 1 2 h 2 ( ς ) ς Δ .
For two functions F ( ς ) given by (1) and H ( ς ) given by
H ( ς ) = ς p + j = p + 1 b j ς j
the Hadamard product (or convolution) is defined by
( F H ) ( ς ) = ς p + j = p + 1 a j b j ς j = ( H F ) ( ς ) .
Define here a Borel distribution with parameter λ , which is a discrete random variable denoted by χ . This variable takes the values 1 , 2 , 3 , . . . with the probabilities e λ 1 ! , 2 λ e 2 λ 2 ! , 9 λ 2 e 3 λ 3 ! , . . . , respectively.
Wanas and Khuttar [5] recently introduced the Borel distribution (BD) whose probability mass function is (see [6,7])
P ( χ = ρ ) = ρ λ ρ 1 e λ ρ ρ ! , ρ = 1 , 2 , 3 , . . .
Wanas and Khuttar studied a series M ( λ ; ς ) whose coefficients are probabilities of the Borel distribution (BD)
M p ( λ ; ς ) = ς p + j = p + 1 λ j p j p 1 e λ j p j p ! ς j , 0 < λ 1 , = ς p + j = p + 1 ϕ j , p ( λ ) ς k , 0 < λ 1 ,
where
ϕ j , p ( λ ) = λ j p j p 1 e λ j p j p !
We propose a linear operator D ( p , λ ; ς ) F : A p A p as follows
D ( p , λ ; ς ) F ( ς ) = M p ( λ ; ς ) F ( ς ) = ς p + j = p + 1 λ j p j p 1 e λ j p j p ! a j ς j , 0 < λ 1 .
In a recent paper, Srivastava [8] studied various types of operators regarding q-calculus. We recall further some important definitions and notations. The q-shifted factorial is defined for λ , q C and n N 0 = N { 0 } as follows
( μ ; q ) j =     1 j = 0 , 1 μ 1 μ q . . . 1 μ q j 1     j N .
By using the q-gamma function Γ q ( ς ) , we get
q μ ; q j = 1 q j Γ q μ + j Γ q μ , j N 0 ,
where (see [9])
Γ q ( ς ) = 1 q 1 ς q ; q q ς ; q , q < 1 .
Furthermore, we note that
μ ; q = j = 0 1 μ q j , q < 1 ,
and, the q-gamma function Γ q ( ς ) is known
Γ q ( ς + 1 ) = j q Γ q ( ς ) ,
where j q denotes the basic q-number defined as follows
[ j ] q : = 1 q j 1 q , j C , 1 + i = 1 j 1 q i , j N .
Using the definition from (7), we have the next two products:
(i)
For a non negative integer j, the q-shifted factorial is defined by
[ j ] q ! : = 1 , if j = 0 , n = 1 j [ n ] q , if j N .
(ii)
For a positive number r, the q-generalized Pochhammer symbol is given by
r q , j : = 1 , if j = 0 , n = r r + j 1 [ n ] q , if j N .
In terms of the classical (Euler’s) gamma function Γ ς , we have
Γ q ς Γ ς as q 1 .
Furthermore, we notice that
lim q 1 q μ ; q j 1 q j = μ j .

2. Preliminaries

In order to establish our new results, we have to recall the construct of a q-derivative operator. Considering 0 < q < 1 , the q-derivative operator [10] (see also other specific and generalized results [11,12,13,14,15]) for D ( p , λ ; ς ) F is defined by
D q D ( p , λ ; ς ) F ( ς ) : = D ( p , λ ; ς ) F ( ς ) D ( p , λ ; ς ) F ( q ς ) ς ( 1 q ) = p q ς p 1 + j = p + 1 [ j ] q λ j p j p 1 e λ j p j p ! a j ς j 1 ,
where [ j ] q is defined in (7)
For α > 1 and 0 < q < 1 , we obtain the linear operator D p , λ μ , q F : A p A p by
D p , λ μ , q F ( ς ) N p , μ + 1 q ( ς ) = ς p q D q D ( p , λ ; ς ) F ( ς ) , ς Δ ,
where the function N p , α + 1 q is given by
N p , μ + 1 q ( ς ) : = ς p + j = p + 1 [ μ + 1 ] q , j p [ j 1 ] q ! ς j , ς Δ .
A simple computation shows that
D p , λ μ , q F ( ς ) : = ς p + j = p + 1 [ j ] q ! λ j p j p 1 e λ j p p q [ μ + 1 ] q , j p j p ! a j ς j = z p + j = p + 1 ϕ j a j ς j ( 0 < λ 1 , μ > p , 0 < q < 1 , ς Δ ) .
where
ϕ j = [ j ] q ! λ j p j p 1 e λ j p p q [ μ + 1 ] q , j p j p ! .
For δ 0 , with the aid of the operator D p , λ μ , q one can defined the linear q-differential Borel operator A p A p as follows:
G p , q , λ , δ μ , 0 F ( ς ) : = D p , λ μ , q F ( ς ) G p , q , λ , δ μ , 1 F ( ς ) : = 1 δ G p , q , λ , δ μ , 0 F ( ς ) + δ ς p G p , q , λ , δ μ , 0 F ( ς ) = ς p + j = p + 1 [ j ] q ! λ j p j p 1 e λ j p p q [ μ + 1 ] q , j p j p ! 1 + δ j p 1 a j ς j G p , q , λ , δ μ , 2 F ( ς ) : = 1 δ G p , q , λ , δ μ , 1 F ( ς ) + δ ς p G p , q , λ , δ μ , 1 F ( ς ) = ς p + j = p + 1 [ j ] q ! λ j p j p 1 e λ j p p q [ μ + 1 ] q , j p j p ! 1 + δ j p 1 2 a j ς j . . . G p , q , λ , δ μ , m F ( ς ) : = ς p + j = p + 1 [ j ] q ! λ j p j p 1 e λ j p p q [ μ + 1 ] q , j p j p ! 1 + δ j p 1 m a j ς j , m N 0 = N 0 , δ 0 , 0 < λ 1 , μ > p , 0 < q < 1 .
From the relation (10), we can easily deduce that the next relations held for all F A p :
( i ) ς G p , q , λ , δ μ , m F ( ς ) = μ G p , q , λ , δ μ 1 , m F ( ς ) μ p G p , q , λ , δ μ , m F ( ς ) ,
and
( ii ) δ ς G p , q , λ , δ μ , m F ( ς ) = p G p , q , λ , δ μ , m + 1 F ( ς ) p 1 δ G p , q , λ , δ μ , m F ( ς )
Remark 1. 
By particularizing the parameters p and m , we derive the following operators based on Borel distribution:
(1)
Letting p = 1 , we obtain that G 1 , q , λ , δ μ , m = : I q , λ , δ μ , m , where the operator I q , λ , δ μ , m is defined as follows:
I q , λ , δ μ , m F ( ς ) : = ς + j = 2 [ j ] q ! λ j 1 j 2 e λ j 1 [ μ + 1 ] q , j 1 j 1 ! 1 + δ j 1 m a j ς j ;
(2)
Letting p = 1 and m = 0 , we deduce that G 1 , q , λ , δ μ , 0 = : B λ μ , q , where the operator B λ μ , q , introduced by El-Deeb and Murugusundaramoorthy [16];
(3)
Letting q 1 and p = 1 , we deduce that lim q 1 G 1 , q , λ , δ μ , m : = R λ , δ μ , m , where the operator R λ , δ μ , m is defined as follows
R λ , δ μ , m F ( ς ) : = ς + j = 2 j λ j 1 j 2 e λ j 1 ( μ + 1 ) j 1 1 + δ j 1 m a j ς j ;
(4)
Putting q 1 , p = 1 and m = 0 , we obtain that lim q 1 G 1 , q , λ , δ μ , 0 : = M λ μ , where the operator M λ μ , studied byEl-Deeb and Murugusundaramoorthy [16].
Now we introduce the following classes S p k α , C p k α and K p k β , α of the class A p for 0 α , β < p , p N and k 2 as follows:
S p k α = F : F A p and ς F ( ς ) F ( ς ) P p , k α , ς Δ ,
C p k α = F : F A p and 1 + ς F ( ς ) F ( ς ) P p , k α , ς Δ ,
and
K p k β , α = F : F A p , g S p 2 α and ς F ( ς ) g ( ς ) P p , k β , ς Δ .
Obviously, we know that
F ( ς ) C p k α ς F ( ς ) p S p k α .
Remark 2. 
By particularizing the parameter k , we obtain the following classes:
(i)
S p 2 α = S p ( α ) 0 α < p , p N , where S p ( α ) is the well-known class of p valently starlike functions of order α and was studied by Patil and Thakare [17];
(ii)
C p 2 α = C p α 0 α < p , p N , where C p α is the well-known class of p valently convex functions of order α and was studied by Owa [18];
(iii)
K p 2 β , α = K p ( β , α ) 0 α < p , p N , where K p ( β , α ) is the class of all p valently close-to-convex functions of order β and type α and was introduced by Aouf [19].
Next, by making use of the operator defined by (10), we obtain the following subclasses S p , q , λ , δ μ , m , k α , C p , q , λ , δ μ , m , k α and K p , q , λ , δ μ , m , k β , α of the class A p as follows:
S p , q , λ , δ μ , m , k α = F : F A p and G p , q , λ , δ μ , m F ( ς ) S p k α , ς Δ ,
C p , q , λ , δ μ , m , k α = F : F A p and G p , q , λ , δ μ , m F ( ς ) C p k α , ς Δ ,
and
K p , q , λ , δ μ , m , k β , α = F : F A p and G p , q , λ , δ μ , m F ( ς ) K p k β , α , ς Δ .
We can easily see that
F ( ς ) C p , q , λ , δ μ , m , k α ς F ( ς ) p S p , q , λ , δ μ , m , k α
In order to establish our main results, we will require the following lemmas.
Lemma 1 
([20,21]). Let Φ ( r , s ) be complex valued function, Φ : D C , D C × C ( C is the complex plane) and let r = r 1 + i r 2 , s = s 1 + i s 2 . Suppose that Φ ( r , s ) satisfies the following conditions:
(i)
Φ ( r , s ) is continuous in a domain D ;
(ii)
( 1 , 0 ) D and Φ ( 1 , 0 ) > 0 ;
(iii)
Φ ( i r 2 , s 1 ) 0 for all ( i r 2 , s 1 ) D and such that s 1 1 2 ( 1 + r 2 2 ) .
Let h ( ς ) = 1 + m = 1 c m ς m , be regular in Δ such that ( h ( ς ) , ς h ( ς ) ) D for all ς Δ . If
Φ ( h ( ς ) , ς h ( ς ) ) > 0 ( ς Δ ) ,
then
h ( ς ) > 0 ( ς Δ ) .
Lemma 2 
([22]). Let Φ be convex and F be starlike in Δ. Then, for Υ analytic in Δ with Υ ( 0 ) = 1 , Φ Υ F Φ F is contained in the convex hull of Υ ( Δ ) .

3. Inclusion Properties Involving the Operator G p , q , λ , δ μ , m

Further, we assume throughout this paper that k 2 , p N , m N 0 , δ 0 , 0 < λ 1 , 0 < q < 1 , ς Δ and the power are the principal values.
Theorem 1. 
For 0 ζ α < p and μ > p , then
S p , q , λ , δ μ 1 , m , k α S p , q , λ , δ μ , m , k ζ ,
where ζ is given by
ζ = 2 p 2 α p μ 2 μ 2 p 2 α + 1 2 + 8 p 2 α p μ + 2 μ 2 p 2 α + 1 .
Proof. 
Assume that F S p , q , λ , δ μ 1 , m , k α and let
ς G p , q , λ , δ μ , m F ( ς ) G p , q , λ , δ μ , m F ( ς ) = M ( ς ) = ( p ζ ) h ( ς ) + ζ .
where
h ( ς ) = k 4 + 1 2 h 1 ( ς ) k 4 1 2 h 2 ( ς )
and h i ( z ) i = 1 , 2 are analytic in Δ with h i ( 0 ) = 1 , i = 1 , 2 . Using (11) and (19), we have
μ G p , q , λ , δ μ 1 , m F ( ς ) G p , q , λ , δ μ , m F ( ς ) = ( p ζ ) h ( ς ) + ζ μ + p .
By computing the logarithmical derivative of (21) with respect to ς , we have
ς G p , q , λ , δ μ 1 , m F ( ς ) G p , q , λ , δ μ 1 , m F ( ς ) α = ζ α + ( p ζ ) h ( ς ) + ( p ζ ) ς h ( ς ) ( p ζ ) h ( ς ) + ζ μ + p .
Now we show that M ( ς ) P p , k α or h i ( ς ) P , i = 1 , 2 . From (20) and (22), we have
ς G p , q , λ , δ μ 1 , m F ( ς ) G p , q , λ , δ μ 1 , m F ( ς ) α = k 4 + 1 2 ζ α + ( p ζ ) h 1 ( ς ) + ( p ζ ) ς h 1 ( ς ) ( p ζ ) h 1 ( ς ) + ζ μ + p
k 4 1 2 ζ α + ( p ζ ) h 2 ( ς ) + ( p ζ ) ς h 2 ( ς ) ( p ζ ) h 2 ( ς ) + ζ μ + p
and this implies that
ζ α + ( p ζ ) h i ( ς ) + ( p ζ ) ς h i ( ς ) ( p ζ ) h i ( ς ) + ζ μ + p > 0 ς Δ ; i = 1 , 2 .
We form the function Φ ( r , s ) by choosing r = h i ( ς ) and s = ς h i ( ς ) . Thus
Φ ( r , s ) = ζ α + ( p ζ ) r + ( p ζ ) s ( p ζ ) r + ζ μ + p .
Then, we have
(i)
Φ ( r , s ) is continuous function in D = C \ ζ μ + p ζ p × C ;
(ii)
( 1 , 0 ) D and Φ ( 1 , 0 ) = p α > 0 ;
(iii)
Φ ( i r 2 , s 1 ) = ζ α + ( p ζ ) i r 2 + ( p ζ ) s 1 ( p ζ ) i r 2 + ζ μ + p = ζ α + ( p ζ ) ζ μ + p s 1 ( p ζ ) 2 r 2 2 + ζ μ + p 2 ζ α ( p ζ ) ζ μ + p ( 1 + r 2 2 ) 2 ( p ζ ) 2 r 2 2 + ζ μ + p 2 = R + E r 2 2 2 C ,
for all ( i r 2 , s 1 ) D such that s 1 1 2 ( 1 + r 2 2 ) ,
where
R = 2 ζ α ζ μ + p 2 ( p ζ ) ζ μ + p ,
E = 2 ζ α ( p ζ ) 2 ( p ζ ) ζ μ + p ,
C = ( p ζ ) 2 r 2 2 + ζ μ + p 2 .
We note that Φ ( i r 2 , s 1 ) < 0 , if and only if R 0 , E < 0 and C > 0 . From R 0 , we obtain ζ as given by (18), and from 0 ζ < α < p , we have E < 0 . By applying Lemma 1, h i ( ς ) P i = 1 , 2 and consequently M ( ς ) P p , k γ for ς Δ . This completes the proof of Theorem 1. □
Theorem 2. 
For 0 ζ α < p and μ > p , then
C p , q , λ , δ μ 1 , m , k α C p , q , λ , δ μ , m , k ζ ,
where ζ is given by (18).
Proof. 
Let
F C p , q , λ , δ μ 1 , m , k α G p , q , λ , δ μ 1 , m F ( ς ) C p k α ς G p , q , λ , δ μ 1 , m F ( ς ) p S p k α G p , q , λ , δ μ 1 , m ς F ( ς ) p S p k α ς F ( ς ) p S p , q , λ , δ μ 1 , m , k α S p , q , λ , δ μ , m , k ζ G p , q , λ , δ μ , m ς F ( ς ) p S p k ζ G p , q , λ , δ μ , m F ( ς ) C p k ζ F C p , q , λ , δ μ , m , k ζ .
This completes the proof of Theorem 2. □
Theorem 3. 
For 0 β α < p and μ > p , then
K p , q , λ , δ μ 1 , m , k β , α K p , q , λ , δ μ , m , k β , α .
Proof. 
Let F K p , q , λ , δ μ 1 , m , k β , α . Then, there exists G ( ς ) S p 2 α S p α such that
ς G p , q , λ , δ μ 1 , m F ( ς ) G ( ς ) P p , k β .
Then
G ( ς ) = G p , q , λ , δ μ 1 , m g ( ς ) S p , q , λ , δ μ 1 , m , 2 α .
We set
ς G p , q , λ , δ μ , m F ( ς ) G p , q , λ , δ μ , m g ( ς ) = R ( ς ) = p β h ( ς ) + β ,
where h ( ς ) is given by (20). By using (11) in (23), we get
ς G p , q , λ , δ μ 1 , m F ( ς ) G p , q , λ , δ μ 1 , m g ( ς ) = ς G p , q , λ , δ μ , m ς F ( ς ) + μ p G p , q , λ , δ μ , m ς F ( ς ) ς G p , q , λ , δ μ , m g ( ς ) + μ p G p , q , λ , δ μ , m g ( ς ) .
Furthermore, G ( ς ) S p , q , λ , δ μ 1 , m , 2 α and by using Theorem 1, with k = 2 , we have G ( ς ) S p , q , λ , δ μ , m , 2 α . Therefore, we can write
ς G p , q , λ , δ μ , m g ( ς ) G p , q , λ , δ μ , m g ( ς ) = R 0 ( ς ) = p α q ( ς ) + α q P k ,
where q ( ς ) = 1 + c 1 ς + c 2 ς 2 + . . . is analytic and q ( 0 ) = 1 in Δ . By differentiating (24) with respect to ς , we have
ς G p , q , λ , δ μ , m ς F ( ς ) = ς G p , q , λ , δ μ , m g ( ς ) R ( ς ) + ς R ( ς ) G p , q , λ , δ μ , m g ( ς )
then
ς G p , q , λ , δ μ , m ς f ( ς ) G p , q , λ , δ μ , m g ( ς ) = ς R ( ς ) + R 0 ( ς ) R ( ς ) .
From (25) and (27), we obtain
ς G p , q , λ , δ μ 1 , m F ( ς ) G p , q , λ , δ μ 1 , m g ( ς ) = ς R ( ς ) + R 0 ( ς ) R ( ς ) + μ p R ( ς ) R 0 ( ς ) + μ p
so that
ς G p , q , λ , δ μ 1 , m f ( ς ) G p , q , λ , δ μ 1 , m g ( ς ) = R ( ς ) + ς R ( ς ) R 0 ( ς ) + μ p .
Let
R ( ς ) = k 4 + 1 2 p β h 1 ( ς ) + β k 4 1 2 p β h 2 ( ς ) + β
and
R 0 ( ς ) + μ p = p α q ( ς ) + α + μ p .
We intend to show that R P p , k β or h i P for i = 1 , 2 . Then, we can say that R 0 ( ς ) + μ p > 0 . From (24) and (28), we have
ς G p , q , λ , δ μ 1 , m F ( ς ) G p , q , λ , δ μ 1 , m g ( ς ) β = k 4 + 1 2 p β h 1 ( ς ) + p β ς h 1 ( ς ) p α q ( ς ) + α + μ p
k 4 1 2 p β h 2 ( ς ) + p β ς h 2 ( ς ) p α q ( ς ) + α + μ p
and this implies that
p β h i ( ς ) + p β ς h i ( ς ) p α q ( ς ) + α + μ p > 0 ς Δ , i = 1 , 2 .
We form the function Φ ( r , s ) by choosing r = h i ( ς ) and s = ς h i ( ς ) . Thus,
Φ ( r , s ) = ( p β ) r + ( p β ) s p α q ( ς ) + α + μ p .
Then
(i)
Φ ( r , s ) is continuous in D = C × C ;
(ii)
( 1 , 0 ) D and Φ ( 1 , 0 ) = p β > 0 ;
(iii)
Φ ( i r 2 , s 1 ) = ( p β ) i u 2 + ( p β ) v 1 ( p α ) q 1 + i q 2 + α + μ p = ( p β ) ( p α ) q 1 + α + μ p s 1 ( p α ) q 1 + α + μ p 2 + ( p α ) 2 q 2 2 ( p β ) ( p α ) q 1 + α + μ p ( 1 + r 2 2 ) 2 ( p α ) q 1 + α + μ p 2 + ( p α ) 2 q 2 2 < 0 ,
for all ( i r 2 , s 1 ) D such that s 1 1 2 ( 1 + r 2 2 ) .
Byapplying Lemma 1, we have h i ( ς ) > 0 for i = 1 , 2 and consequently R ( ς ) P p , k β for ς Δ . This completes the proof of Theorem 3. □

4. Inclusion Properties Involving the Integral Operator J δ , p

The generalized Bernardi operator is defined by (see [23])
J δ , p ( F ) ( ς ) = δ + p ς δ 0 ς t δ 1 F ( t ) d t δ > p ,
which satisfies the following relationship:
ς J δ , p ( F ) ( ς ) = δ + p F ( ς ) δ J δ , p ( F ) ( ς ) .
Theorem 4. 
If 0 α < p , k 2 and F S p , q , λ , δ μ , m , k α , then J δ , p ( F ) S p , q , λ , δ μ , m , k α δ 0 .
Proof. 
Let
ς G p , q , λ , δ μ , m J δ , p ( F ) ( ς ) G p , q , λ , δ μ , m J δ , p ( F ) ( ς ) = R ( ς ) = ( p α ) h ( ς ) + α ,
where h ( ς ) , given by (20). Using (31), we have
ς G p , q , λ , δ μ , m J δ , p ( F ) ( ς ) = δ + p G p , q , λ , δ μ , m F ( ς ) δ G p , q , λ , δ μ , m J δ , p ( F ) ( ς ) .
From (32) and (33), we have
δ + p G p , q , λ , δ μ , m F ( ς ) G p , q , λ , δ μ , m J δ , p ( F ) ( ς ) = ( p α ) h ( ς ) + α + δ .
By computing the logarithmical derivative of (34) with respect to ς and multiplying by ς , we have
ς G p , q , λ , δ μ , m F ( ς ) G p , q , λ , δ μ , m F ( ς ) α = ( p α ) h ( ς ) + ( p α ) ς h ( ς ) ( p α ) h ( ς ) + α + δ .
Now, we show that R ( ς ) P p , k α or h i P for i = 1 , 2 . From (20) and (35), we have
ς G p , q , λ , δ μ , m F ( ς ) G p , q , λ , δ μ , m F ( ς ) α = k 4 + 1 2 ( p α ) h 1 ( ς ) + ( p α ) ς h 1 ( ς ) ( p α ) h 1 ( ς ) + α + δ
k 4 1 2 ( p α ) h 2 ( ς ) + ( p α ) ς h 2 ( ς ) ( p α ) h 2 ( ς ) + α + δ
and this implies that
( p α ) h i ( ς ) + ( p α ) ς h i ( ς ) ( p α ) h i ( ς ) + α + δ > 0 ς Δ ; i = 1 , 2 .
We form the function Φ ( r , s ) by choosing r = h i ( ς ) and s = ς h i ( ς ) . Thus
Φ ( r , s ) = ( p α ) r + ( p α ) s ( p α ) r + α + δ .
Clearly, conditions (i), (ii) and (iii) of Lemma 1 are satisfied. Byapplying Lemma 1, we have h i ( ς ) > 0 for i = 1 , 2 and consequently J δ , p ( F ) S p , q , λ , δ μ , m , k α for ς Δ . This completes the proof of Theorem 1. □
Theorem 5. 
If 0 α < p , k 2 and F C p , q , λ , δ μ , m , k α , then J δ , p ( F ) C p , q , λ , δ μ , m , k α δ 0 .
Proof. 
Let
F C p , q , λ , δ μ , m , k α ς F ( ς ) p S p , q , λ , δ μ , m , k α .
By applying Theorem 4, we have
J δ , p ς F ( ς ) p S p , q , λ , δ μ , m , k α ς J δ , p ( F ) ( ς ) p S p , q , λ , δ μ , m , k α J δ , p ( F ) ( ς ) C p , q , λ , δ μ , m , k α ,
which evidently proves Theorem 5. □

5. Inclusion Properties by Convolution

Theorem 6. 
Let Φ be a convex function and F S p , q , λ , δ μ , m , 2 p γ , then G S p , q , λ , δ μ , m , 2 p γ , where G = F Φ and 0 γ < 1 .
Proof. 
To show that G = F Φ S p , q , λ , δ μ , m , 2 p γ 0 γ < 1 , it sufficient to show that ς G p , q , λ , δ μ , m G p G p , q , λ , δ μ , m G contained in the convex hull of Υ Δ . Now
ς G p , q , λ , δ μ , m G p G p , q , λ , δ μ , m G = Φ Υ G p , q , λ , δ μ , m F Φ G p , q , λ , δ μ , m F ,
where Υ = ς G p , q , λ , δ μ , m F p G p , q , λ , δ μ , m F is analytic in Δ and Υ ( 0 ) = 1 . From Lemma 2, we can see that ς G p , q , λ , δ μ , m G p G p , q , λ , δ μ , m G is contained in the convex hull of Υ Δ , since ς G p , q , λ , δ μ , m G p G p , q , λ , δ μ , m G is analytic in Δ and
Υ Δ Ω = w : ς G p , q , λ , δ μ , m w ( ς ) p G p , q , λ , δ μ , m w ( ς ) P ( γ ) ,
then ς G p , q , λ , δ μ , m G p G p , q , λ , δ μ , m G lies in Ω , this implies that G = F Φ S p , q , λ , δ μ , m , 2 p γ . □
Theorem 7. 
Let Φ be a convex function and F C p , q , λ , δ μ , m , 2 p γ , then G C p , q , λ , δ μ , m , 2 p γ , where G = F Φ and 0 γ < 1 .
Proof. 
Let F C p , q , λ , δ μ , m , 2 p γ , then, by using (13), we have
ς F ( ς ) p S p , q , λ , δ μ , m , 2 p γ
and hence by using Theorem 6, we get
ς F ( ς ) p Φ ( ς ) S p , q , λ , δ μ , m , 2 p γ ς F Φ ( ς ) p S p , q , λ , δ μ , m , 2 p γ .
Now applying (13) again, we obtain G = F Φ C p , q , λ , δ μ , m , 2 p γ , which evidently proves Theorem 7. □
Remark 3. 
Particularizing the parameters q and m in the results of this paper, we derive various results for different operators.

6. Conclusions

In the present survey, we propose new subclasses of p-valent functions by making use of the linear q-differential Borel operator. The applications of this interesting operator are discussed. Inclusion properties and certain integral preserving relations were aimed to be our main concern.

Author Contributions

Conceptualization, A.C. and S.M.E.-D.; methodology, S.M.E.-D.; validation, A.C., E.-R.B. and S.M.E.-D.; formal analysis, E.-R.B.; investigation, A.C., E.-R.B. and S.M.E.-D.; writing—original draft, S.M.E.-D.; writing—review & editing, A.C. and S.M.E.-D.; visualization, E.-R.B.; supervision, S.M.E.-D.; project administration, S.M.E.-D. All authors have read and agreed to the published version of the manuscript.

Funding

The research was funded by the University of Oradea, Romania.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Aouf, M.K. A generalization of functions with real part bounded in the mean on the unit disc. Math. Japon. 1988, 33, 175–182. [Google Scholar]
  2. Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Polon. Math. 1975, 31, 311–323. [Google Scholar] [CrossRef] [Green Version]
  3. Pinchuk, B. Functions with bounded boundary rotation. Isr. Math. 1971, 10, 7–16. [Google Scholar] [CrossRef]
  4. Robertson, M.S. Variational formulas for several classes of analytic functions. Math. Z. 1976, 118, 311–319. [Google Scholar] [CrossRef]
  5. Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
  6. El-Deeb, S.M.; Murugusundaramoorthy, G.; Alburaikan, A. Bi-Bazilevic functions based on the Mittag–Leffler-type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2022, 24, 173–183. [Google Scholar] [CrossRef]
  7. Murugusundaramoorthy, G.; El-Deeb, S.M. Second Hankel determinant for a class of analytic functions of the Mittag–Leffler-type Borel distribution related with Legendre polynomials. Twms J. Appl. Eng. Math. 2022, 12, 1247–1258. [Google Scholar]
  8. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
  9. Gasper, G.; Rahman, M. Basic hypergeometric series (with a Foreword by Richard Askey). In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 35. [Google Scholar]
  10. Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  11. Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractal Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
  12. Abu Risha, M.H.; Annaby, M.H.; Ismail, M.E.H.; Mansour, Z.S. Linear q-difference equations. Z. Anal. Anwend. 2007, 26, 481–494. [Google Scholar] [CrossRef] [Green Version]
  13. Cătaş, A. On the Fekete-Szegö problem for certain classes of meromorphic functions using p,q-derivative operator and a p,q-wright type hypergeometric function. Symmetry 2021, 13, 2143. [Google Scholar] [CrossRef]
  14. El-Deeb, S.M.; El-Matary, B.M. Coefficient boundeds of p-valent function connected with q-analogue of Salagean operator. Appl. Math. Inf. Sci. 2020, 14, 1057–1065. [Google Scholar]
  15. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
  16. El-Deeb, S.M.; Murugusundaramoorthy, G. Applications on a subclass of β-uniformly starlike functions connected with q-Borel distribution. Asian-Eur. J. Math. 2022, 15, 1–20. [Google Scholar] [CrossRef]
  17. Patil, D.A.; Thakare, N.K. On convex hulls and extreme points of p-valent starlike and convex classes with applications. Bull. Math. Soc. Sci. Math. R. S. Roum. 1983, 27, 145–160. [Google Scholar]
  18. Owa, S. On certain classes of p-valent functions with negative coefficient. Simon Stevin 1985, 59, 385–402. [Google Scholar]
  19. Aouf, M.K. On a class of p-valent close-to-convex functions, Internat. J. Math. Math. Sci. 1988, 11, 259–266. [Google Scholar] [CrossRef] [Green Version]
  20. Miller, S.S. Differential inequalities and Caratheodory function. Bull. Am. Math. Soc. 1975, 8, 79–81. [Google Scholar] [CrossRef] [Green Version]
  21. Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
  22. Ruscheweyh, S.; Shiel-Small, T. Hadmard product of schlicht functions and Polya-Schoenberg conjecture. Comment. Math. Helv. 1973, 48, 119–135. [Google Scholar] [CrossRef]
  23. Choi, J.H.; Saigo, M.; Srivastava, H.M. Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276, 432–445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cătaş, A.; Borşa, E.-R.; El-Deeb, S.M. Subclasses of p-Valent Functions Associated with Linear q-Differential Borel Operator. Mathematics 2023, 11, 1742. https://doi.org/10.3390/math11071742

AMA Style

Cătaş A, Borşa E-R, El-Deeb SM. Subclasses of p-Valent Functions Associated with Linear q-Differential Borel Operator. Mathematics. 2023; 11(7):1742. https://doi.org/10.3390/math11071742

Chicago/Turabian Style

Cătaş, Adriana, Emilia-Rodica Borşa, and Sheza M. El-Deeb. 2023. "Subclasses of p-Valent Functions Associated with Linear q-Differential Borel Operator" Mathematics 11, no. 7: 1742. https://doi.org/10.3390/math11071742

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop