Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli
Abstract
1. Introduction and Definitions
2. Preliminary Lemmas
3. Main Results
4. The Hankel Determinant
5. The Zalcman Functional
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sokół, J. Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 2009, 49, 349–353. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat 1996, 19, 101–105. [Google Scholar]
- Ahuja, O.P.; Silverman, H. Convolutions of prestarlike functions. Int. J. Math. Math. Sci. 1983, 6, 59–68. [Google Scholar] [CrossRef]
- Robertson, M.I. On the theory of univalent functions. Ann. Math. 1936, 374–408. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Gaetan Morin Editeur Ltee.St.: Boucherville, QC, Canada, 1982; p. 48. [Google Scholar]
- Carlson, B.C.; Shaffer, S.B. Starlike and prestarlike hypergrometric functions. SIAM J. Math. Anal. 2002, 15, 737–745. [Google Scholar] [CrossRef]
- Henrici, P. Applied and Computational Complex Analysis; Wiley: New York, NY, USA, 1974; Volume 1. [Google Scholar]
- Householder, A.S. The Numerical Treatment of a Single Nonlinear Equation; McGraw Hill: New York, NY, USA, 1970. [Google Scholar]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
- Fekete, M.; Szegö, G. Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. (In German) [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.C.; Sugawa, T.A. General approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [Google Scholar] [CrossRef]
- Soh, S.C.; Mohamad, D. Second Hankel determinant for a class of close-to-convex functions with Fekete-Szego parameter. Int. J. Math. Anal. 2014, 12, 561–570. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete–Szegö type functionals for starlike and convex functions. Turk. J. Math. 2018, 42, 537–547. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Mohapatra, R.; Panigrahi, T. Second Hankel determinant for a class of analytic functions defined by Komatu integral operator. Rend. Mat. Appl. 2020, 41, 51–58. [Google Scholar]
- Motamednezhad, A.; Bulboaca, T.; Adegani, E.A.; Dibagar, N. Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination. Turk. J. Math. 2018, 42, 2798–2808. [Google Scholar] [CrossRef]
- Murugusundarmoorthy, G.; Magesh, N. Coefficient inequality for certain classes of analytic functions associated with Hankel determinant. Bull. Math. Anal. Appl. 2009, 1, 85–89. [Google Scholar]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities Appl. 2013, 2013, 281. [Google Scholar] [CrossRef]
- Li, Z.; Ren, F.; Yang, L.; Zhang, S. (Eds.) Conference Proceedings and Lecture Notes in Analysis; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Ma, W. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press Inc.: Somerville, MA, USA, 1992. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in . Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1983; Volume 259. [Google Scholar]
- Breaz, D.; Cătaș, A.; Cotîrlă, L. On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function. An. Ştiinţifice Ale Univ. Ovidius Constanţa. Ser. Mat. 2022, 30, 75–89. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Sharp estimates of generalized Zalcman functional of early coeffcients for Ma-Minda type functions. Filomat 2018, 32, 6267–6280. [Google Scholar] [CrossRef]
- Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328–339. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T.; Reade, M.O. All a-convex functions are univalent and starlike. Proc. Am. Math. Soc. 1973, 37, 553–554. [Google Scholar] [CrossRef]
- Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhan, H.; Çağlar, M.; Cotîrlă, L.-I. Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli. Mathematics 2023, 11, 1147. https://doi.org/10.3390/math11051147
Orhan H, Çağlar M, Cotîrlă L-I. Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli. Mathematics. 2023; 11(5):1147. https://doi.org/10.3390/math11051147
Chicago/Turabian StyleOrhan, Halit, Murat Çağlar, and Luminiţa-Ioana Cotîrlă. 2023. "Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli" Mathematics 11, no. 5: 1147. https://doi.org/10.3390/math11051147
APA StyleOrhan, H., Çağlar, M., & Cotîrlă, L.-I. (2023). Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli. Mathematics, 11(5), 1147. https://doi.org/10.3390/math11051147