A Note on Some Generalized Hypergeometric Reduction Formulas
Abstract
:1. Introduction
2. Preliminaries
3. Formulas for n-th Order Derivatives
4. Reduction Formulas
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambrigde, UK, 2010. [Google Scholar]
- Berglund, P.; Candelas, P.; De La Ossa, X.; Font, A.; Hübsch, T.; Jančić, D.; Quevedo, F. Periods for Calabi-Yau and Landau-Ginzburg vacua. Nucl. Phys. B 1994, 419, 352–403. [Google Scholar] [CrossRef] [Green Version]
- Luke, Y.L. Special Functions and Their Approximations; Academic Press: New York, NY, USA, 1969; Volume 1. [Google Scholar]
- Prudnikov, A.P.; Brychkov, I.A.; Marichev, O.I. Integrals and Series: More Special Functions; Gordon & Breach Science Publishers: New York, NY, USA, 1990; Volume 3. [Google Scholar]
- Krupnikov, E.D.; Kölbig, K.S. Some special cases of the generalized hypergeometric function q+1Fq. J. Comput. Appl. Math. 1997, 78, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Karlsson, P.W. Hypergeometric functions with integral parameter differences. J. Math. Phys. 1971, 12, 270–271. [Google Scholar] [CrossRef] [Green Version]
- González-Santander, J.L. A Note on Some Reduction Formulas for the Generalized Hypergeometric function 2F2 and Kampé de Fériet function. Results Math. 2017, 71, 949–954. [Google Scholar] [CrossRef]
- Lewanowicz, S. Generalized Watson’s summation formula for 3F2(1). J. Comput. Appl. Math. 1997, 86, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Vyas, Y.; Fatawat, K. Extensions of the classical theorems for very well-poised hypergeometric functions. Rev. Real Acad. Cienc. 2017, 113, 367–397. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Rathie, A.K. Some results for terminating 2F1(2) series. J. Inequal. Appl. 2013, 1, 1–12. [Google Scholar]
- Kim, Y.S.; Rathie, A.K.; Paris, R.B. Evaluations of some terminating hypergeometric 2F1(2) series with applications. Turk. J. Math. 2018, 42, 2563–2575. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K.; Malani, S. Kummer’s theorem and its contiguous identities. Taiwan. J. Math. 2007, 11, 1521–1527. [Google Scholar] [CrossRef]
- Lebedev, N.N. Special Functions and Their Applications; Prentice Hall: Hoboken, NJ, USA, 1965. [Google Scholar]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions: Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambrigde, UK, 1999. [Google Scholar]
- González-Santander, J.L.; Sánchez Lasheras, F. Sums involving the digamma function connected to the incomplete beta function and the Bessel functions. Mathematics 2023, 11, 1937. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Santander, J.L.; Sánchez Lasheras, F. A Note on Some Generalized Hypergeometric Reduction Formulas. Mathematics 2023, 11, 3483. https://doi.org/10.3390/math11163483
González-Santander JL, Sánchez Lasheras F. A Note on Some Generalized Hypergeometric Reduction Formulas. Mathematics. 2023; 11(16):3483. https://doi.org/10.3390/math11163483
Chicago/Turabian StyleGonzález-Santander, Juan Luis, and Fernando Sánchez Lasheras. 2023. "A Note on Some Generalized Hypergeometric Reduction Formulas" Mathematics 11, no. 16: 3483. https://doi.org/10.3390/math11163483
APA StyleGonzález-Santander, J. L., & Sánchez Lasheras, F. (2023). A Note on Some Generalized Hypergeometric Reduction Formulas. Mathematics, 11(16), 3483. https://doi.org/10.3390/math11163483