Global Convergence of Algorithms Based on Unions of Non-Expansive Maps
Abstract
:1. Introduction
2. Global Convergence of Iterates
3. An Auxiliary Result
4. Proof of Theorem 1
5. Proof of Theorem 2
6. Krasnosel’ski-Mann Iterations
7. Proof of Theorem 3
8. Proof of Theorem 4
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäuser; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Kopecka, E.; Reich, S. A note on alternating projections in Hilbert space. J. Fixed Point Theory Appl. 2012, 12, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis, Developments in Mathematics; Springer: New York, NY, USA, 2014. [Google Scholar]
- Qin, X.; Cho, S.Y.; Yao, J.-C. Weak and strong convergence of splitting algorithms in Banach spaces. Optimization 2020, 69, 243–267. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Abbas, M.I.; Ragusa, M.A. Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag–Leffler functions. Appl. Anal. 2020, 101, 3231–3245. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417–437. [Google Scholar] [CrossRef] [Green Version]
- Harbau, M.H.; Ali, B. Hybrid subgradient method for pseudomonotone equilibrium problem and fixed points of relatively nonexpansive mappings in Banach spaces. Filomat 2022, 6, 3515–3525. [Google Scholar] [CrossRef]
- Shukla, R.; Panicker, R. Approximating fixed points of enriched nonexpansive mappings in geodesic spaces. J. Funct. Spaces 2022, 2022, 6161839. [Google Scholar] [CrossRef]
- Takahashi, W.; Xu, H.K.; Yao, J.-C. Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 2015, 23, 205–221. [Google Scholar] [CrossRef]
- Tam, M.K. Algorithms based on unions of nonexpansive maps. Optim. Lett. 2018, 12, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Dao, M.N.; Tam, M.K. Union averaged operators with applications to proximal algorithms for min-convex functions. J. Optim. Theory Appl. 2019, 181, 61–94. [Google Scholar] [CrossRef] [Green Version]
- Elsner, L.; Koltracht, I.; Neumann, M. Convergence of sequential and asynchronous nonlinear paracontractions. Numer. Math. 1992, 62, 305–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Global Convergence of Algorithms Based on Unions of Non-Expansive Maps. Mathematics 2023, 11, 3213. https://doi.org/10.3390/math11143213
Zaslavski AJ. Global Convergence of Algorithms Based on Unions of Non-Expansive Maps. Mathematics. 2023; 11(14):3213. https://doi.org/10.3390/math11143213
Chicago/Turabian StyleZaslavski, Alexander J. 2023. "Global Convergence of Algorithms Based on Unions of Non-Expansive Maps" Mathematics 11, no. 14: 3213. https://doi.org/10.3390/math11143213
APA StyleZaslavski, A. J. (2023). Global Convergence of Algorithms Based on Unions of Non-Expansive Maps. Mathematics, 11(14), 3213. https://doi.org/10.3390/math11143213