Next Article in Journal
Comparative Study of Electrically Excited Conventional and Homopolar Synchronous Motors for the Traction Drive of a Mining Dump Truck Operating in a Wide Speed Range in Field-Weakening Region
Next Article in Special Issue
Algorithm for Optimization of Inverse Problem Modeling in Fuzzy Cognitive Maps
Previous Article in Journal
Counter Mode of the Shannon Block Cipher Based on MPF Defined over a Non-Commuting Group
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Two Outer Independent Roman Domination Related Parameters in Torus Graphs

1
College of Science, Dalian Maritime University, Dalian 116026, China
2
School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(18), 3361; https://doi.org/10.3390/math10183361
Submission received: 17 August 2022 / Revised: 11 September 2022 / Accepted: 13 September 2022 / Published: 16 September 2022
(This article belongs to the Special Issue Advanced Graph Theory and Combinatorics)

Abstract

:
In a graph G = ( V , E ) , where every vertex is assigned 0, 1 or 2, f is an assignment such that every vertex assigned 0 has at least one neighbor assigned 2 and all vertices labeled by 0 are independent, then f is called an outer independent Roman dominating function (OIRDF). The domination is strengthened if every vertex is assigned 0, 1, 2 or 3, f is such an assignment that each vertex assigned 0 has at least two neighbors assigned 2 or one neighbor assigned 3, each vertex assigned 1 has at least one neighbor assigned 2 or 3, and all vertices labeled by 0 are independent, then f is called an outer independent double Roman dominating function (OIDRDF). The weight of an (OIDRDF) OIRDF f is the sum of f ( v ) for all v V . The outer independent (double) Roman domination number ( γ o i d R ( G ) ) γ o i R ( G ) is the minimum weight taken over all (OIDRDFs) OIRDFs of G. In this article, we investigate these two parameters γ o i R ( G ) and γ o i d R ( G ) of regular graphs and present lower bounds on them. We improve the lower bound on γ o i R ( G ) for a regular graph presented by Ahangar et al. (2017). Furthermore, we present upper bounds on γ o i R ( G ) and γ o i d R ( G ) for torus graphs. Furthermore, we determine the exact values of γ o i R ( C 3 C n ) and γ o i R ( C m C n ) for m 0 ( mod 4 ) and n 0 ( mod 4 ) , and the exact value of γ o i d R ( C 3 C n ) . By our result, γ o i d R ( C m C n ) 5 m n / 4 which verifies the open question is correct for C m C n that was presented by Ahangar et al. (2020).

1. Introduction

In graph theory, problems on vertex domination and independence are attractive research topics. There have been many achievements on this topic, and still some open problems remain that have not been completely solved in this area. In this work, we focus on two parameters which are the combinations of (double) Roman domination and vertex independence in graphs, and they are the outer independent Roman domination number and the outer independent double Roman domination number.
In this paper, G = ( V , E ) is a finite simple connected graph with vertex set V and edge set E. | V | is the order of G. For a vertex v V , N ( v ) is the open neighborhood of v, i.e., N ( v ) = { w | w is joined to v } and deg G ( v ) is the degree of v. If both the maximum and minimum degrees are k, then G is k-regular.
Roman domination is a very famous domination on a graph introduced by Cockayne et al. [1]. In a graph G = ( V , E ) , every vertex is considered as a city that needs legion protection and every city can be assigned zero, one, or two legions, f is an assignment such that each vertex without legions must be adjacent to at least one vertex with two legions. Then, the assignment f is called a Roman dominating function (RDF) of G. The weight of an RDF f is w ( f ) = v V f ( v ) . The Roman domination number is the minimum weight taken over all RDFs of G, denoted as γ R ( G ) . Since Roman domination was proposed, many papers on Roman domination have been published and there are several variations such as weak Roman domination [2], Roman {2}-domination [3], perfect Roman domination [4], signed Roman domination [5], Roman {3}-domination (double Italian domination) [6], triple Roman domination [7], and double Roman domination [8].
Double Roman domination is a strengthened Roman domination, which can provide double the defense for less than twice the cost. In double Roman domination, every vertex can have no more than three legions, f is an assignment such that each vertex without legion must be adjacent to at least one vertex with three legions or two vertices with two legions, and each vertex with one legion must have at least one neighbor with two or three legions. Then, the assignment f is called a double Roman dominating function (DRDF) of G. The weight of a DRDF f is w ( f ) = v V ( G ) f ( v ) . The double Roman domination number is the minimum weight of DRDFs on G, denoted as γ d R ( G ) .
Ahangar et al. combined Roman domination and double Roman domination with vertex independence and introduced the outer independent Roman domination [9] and the outer independent double Roman domination [10]. A function f is an outer independent (double) Roman dominating function on G, abbreviated as (OIDRDF) OIRDF, if f is a (DRDF) RDF and the set of vertexes assigned 0 under f is independent. The outer independent (double) Roman domination number is the minimum weight of (OIDRDFs) OIRDFs on G, denoted as ( γ o i d R ( G ) ) γ o i R ( G ) . For an (OIDRDF) OIRDF f on G, if w ( f ) = ( γ o i d R ( G ) ) γ o i R ( G ) , then f is called a ( γ o i d R ( G ) ) γ o i R ( G ) -function.
After the two papers [9,10] were published, the topic attracted many researchers. Poureidi et al. [11] proposed an algorithm to compute γ o i R ( G ) in O ( | V | ) time. Martínez et al. [12] obtained some bounds on γ o i R ( G ) in terms of other parameters. Nazari-Moghaddam et al. [13] provided a constructive characterization of trees T with γ o i R ( T ) = γ R ( T ) . Mojdeh et al. [14] characterized a connected graph G with small γ o i d R ( G ) , gave lower and upper bounds on this parameter in terms of domination number γ , independence number α , and vertex cover number β , proved the decision problem associated with γ o i d R ( G ) was NP-complete, and proved 2 β ( T ) + 1 γ o i d R ( T ) 3 β ( T ) for a tree T. Some variations related to these two parameters have been presented and studied [15,16,17,18,19].
The purpose of this paper was to study two parameters, γ o i R ( G ) and γ o i d R ( G ) , of regular graphs. We improve the lower bound on γ o i R ( G ) presented by Ahangar et al. [9] and present a lower bound on γ o i d R ( G ) . For torus graphs (the Cartesian product of cycles) G = C m C n , we obtain upper bounds of γ o i R ( G ) and γ o i d R ( G ) by constructing some OIRDFs and OIDRDFs. We determine the exact values of γ o i R ( C 3 C n ) , γ o i R ( C m C n ) for m 0 ( mod 4 ) and n 0 ( mod 4 ) and γ o i d R ( C 3 C n ) . Ahangar et al. [10] provided an open question: Is it true that, for any graph G of order n 4 , γ o i d R ( G ) 5 n / 4 ? For the Cartesian product of cycles C m C n , we find γ o i d R ( C m C n ) 7 m n + 3 m + 3 n 8 < 5 m n / 4 , which partially answers the open question.

2. The Outer Independent Roman Domination Number of Regular Graphs

2.1. The Lower Bound on γ o i R of Regular Graphs

For any regular graph G = ( V , E ) , f is an outer independent Roman dominating function of G. Let V i = { v V | f ( v ) = i , i = 0 , 1 , 2 } , then ( V 0 , V 1 , V 2 ) is a partition of V induced by f. There is a one-to-one correspondence between ( V 0 , V 1 , V 2 ) and f, thus we also write f = ( V 0 , V 1 , V 2 ) . Let E i j = { ( u v ) E | u V i , v V j , 0 i , j 2 } , obviously E i j = E j i , then ( E 01 , E 02 , E 11 , E 12 , E 22 ) is a partition of E.
Lemma 1.
For any k-regular graph G = ( V , E ) , let f = ( V 0 , V 1 , V 2 ) be an outer independent Roman dominating function of G and E i j = { ( u v ) E | u V i , v V j , 0 i , j 2 } , then
(a) 
k | V 0 | = | E 01 | + | E 02 | .
(b) 
k | V 1 | = | E 10 | + | E 11 | + | E 12 | .
(c) 
k | V 2 | = | E 20 | + | E 21 | + | E 22 | .
(d) 
( k 1 ) | E 02 | | E 01 | .
Proof. 
Since G = ( V , E ) is a k-regular graph, V = V 0 V 1 V 2 and V 0 is an independent set, then ( a ) , ( b ) , and ( c ) hold.
For ( d ) , since every v V 0 has at least one neighbor which is in V 2 and all other neighbors are in V 1 , then ( k 1 ) | E 02 | | E 01 | . □
Theorem 1.
For a k-regular graph G of order n, γ o i R ( G ) ( k + 1 ) n 2 k .
Proof. 
Let f = ( V 0 , V 1 , V 2 ) be an arbitrary γ o i R ( G ) -function and E i j = { ( u v ) E ( G ) | u V i , v V j , 0 i , j 2 } . By Lemma 1 ( b ) and ( c ) ,
| E 10 | = k | V 1 | | E 11 | | E 12 | , | E 20 | = k | V 2 | | E 12 | | E 22 | .
Since | V 0 | = | V | | V 1 | | V 2 | , E i j = E j i , then by Lemma 1 ( a ) ,
k ( | V | | V 1 | | V 2 | ) = | E 10 | + | E 20 | k ( | V | | V 1 | | V 2 | ) = k | V 1 | | E 11 | | E 12 | + k | V 2 | | E 12 | | E 22 | 2 k | V 1 | + 2 k | V 2 | = k | V | + | E 11 | + 2 | E 12 | + | E 22 | 2 ( k + 1 ) ( | V 1 | + | V 2 | ) = k | V | + 2 | V 1 | + 2 | V 2 | + | E 11 | + 2 | E 12 | + | E 22 | 2 ( k + 1 ) ( | V 1 | + | V 2 | ) = ( k + 1 ) | V | | V 0 | + | V 1 | + | V 2 | + | E 11 | + 2 | E 12 | + | E 22 |
By Lemma 1 ( a ) ( c ) , k ( | V 1 | + | V 2 | | V 0 | ) = | E 11 | + 2 | E 12 | + | E 22 | , then
2 ( k + 1 ) ( | V 1 | + | V 2 | ) = ( k + 1 ) | V | + ( k + 1 ) ( | E 11 | + 2 | E 12 | + | E 22 | ) k .
By Lemma 1 ( d ) , ( k 1 ) | E 20 | | E 10 | , then
( k 1 ) ( k | V 2 | | E 12 | | E 22 | ) k | V 1 | | E 11 | | E 12 | ( k 1 ) k | V 2 | k | V 1 | ( k 1 ) ( | E 12 | + | E 22 | ) | E 11 | | E 12 |
Then,
2 ( k 1 ) | V 2 | 2 | V 1 | 2 ( k 2 ) | E 12 | + 2 ( k 1 ) | E 22 | 2 | E 11 | k
Add both sides of Equation (1) and Inequality (2),
2 k | V 1 | + 4 k | V 2 | ( k + 1 ) | V | + ( k 1 ) | E 11 | + 2 ( 2 k 1 ) | E 12 | + ( 3 k 1 ) | E 22 | k
Since k 1 , then the last term on the right side is non-negative. Therefore,
2 k ( | V 1 | + 2 | V 2 | ) ( k + 1 ) | V | .
Thus,
w ( f ) = | V 1 | + 2 | V 2 | ( k + 1 ) | V | 2 k .
Since γ o i R is an integer, we have γ o i R ( G ) ( k + 1 ) n 2 k . □
Ahangar et al. ([9]) presented γ o i R ( G ) n 2 + 1 for a regular graph G of order n. We improve this lower bound to ( k + 1 ) n 2 k . In fact, for an arbitrary k-regular graph G, k 1 , then we have 1 2 < k + 1 2 k 1 . Furthermore, since | V ( G ) | = n k + 1 , then ( k + 1 ) n 2 k = n 2 + n 2 k n 2 + k + 1 2 k = n 2 + 1 = n 2 + 1 .

2.2. Outer Independent Roman Domination in Torus Graphs

In this subsection, we investigate the outer independent Roman domination number of C m C n (torus graph). We determine the exact values of γ o i R ( C m C n ) for m 0 ( mod 4 ) and n 0 ( mod 4 ) and the exact value of γ o i R ( C 3 C n ) . Furthermore, we present bounds on the outer independent Roman domination number of other torus graphs.
We denote the vertex set of C m C n as V = { v i , j | 0 i m 1 , 0 j n 1 } ; Figure 1a shows the graph of C 4 C 6 where vertices v i , 0 are joined to v i , 5 and v 0 , j are joined to v 3 , j . Figure 1b shows an OIRDF on C 4 C 6 .
To save space, thoughout this paper we use an m-by-n matrix to show the OIRDF on C m C n in which entry m i , j is f ( v i , j ) and the following is an OIRDF f on C 4 C 6 ,
f ( C 4 C 6 ) = 010202 101010 020102 101010 .
Theorem 2.
For m 0 ( mod 4 ) and n 0 ( mod 4 ) , γ o i R ( C m C n ) = 5 m n 8 .
Proof. 
Let G = C m C n , then G is 4-regular, k = 4 , | V | = m n , by Theorem 1, γ o i R ( C m C n ) 5 m n 8 . To prove 5 m n 8 is the upper bound, we define an OIRDF g on C 4 C 4 ,
g ( C 4 C 4 ) = 0101 1020 0101 2010 .
Then, defining an OIRDF f on C m C n , f ( v i , j ) = g ( v i mod 4 , j mod 4 ) . Thus, γ o i R ( C m C n ) w ( f ) = m 4 × n 4 × 10 = 5 m n 8 . □
Fact. γ o i R ( C 3 C 3 ) = 8 .
Theorem 3.
For any integer n 4 , γ o i R ( C 3 C n ) = 7 n 3 .
Proof. 
We define an OIRDF f on C 3 C n as follows.
n 0 ( mod   6 ) , n 1 ( mod   6 ) , f = 010102 010102 102010 102010 111111 111111 , f = 010102 010102 2 102010 102010 1 111111 111111 0 , n 2 ( mod   6 ) , n 3 ( mod   6 ) , f = 010102 010102 02 102010 102010 10 111111 111111 11 , f = 020101 020101 101 101020 101020 111 111111 111111 020 , n 4 ( mod   6 ) , n 5 ( mod   6 ) , f = 010102 010102 0102 102010 102010 1020 111111 111111 1111 , f = 010102 010102 01012 102010 102010 10201 111111 111111 11110 .
Then,
w ( f ) = 14 × n 6 = 7 n 3 = 7 n 3 , n 0 ( mod   6 ) , 14 × n 1 6 + 3 = 7 n + 2 3 = 7 n 3 , n 1 ( mod   6 ) , 14 × n 2 6 + 5 = 7 n + 1 3 = 7 n 3 , n 2 ( mod   6 ) , 14 × n 3 6 + 7 = 7 n 3 = 7 n 3 , n 3 ( mod   6 ) , 14 × n 4 6 + 10 = 7 n + 2 3 = 7 n 3 , n 4 ( mod   6 ) , 14 × n 5 6 + 12 = 7 n + 1 3 = 7 n 3 , n 5 ( mod   6 ) .
So, γ o i R ( C 3 C n ) 7 n 3 .
Then, we prove γ o i R ( C 3 C n ) 7 n 3 . Let f be an arbitrary γ o i R ( C 3 C n ) -function and w ( f i ) = f ( v 0 , i ) + f ( v 1 , i ) + f ( v 2 , i ) ( 0 i n 1 ) . Since every vertex v V ( C 3 C n ) with f ( v ) = 0 has no neighbor assigned 0 under f, then w ( f i ) 2 for 0 i n 1 .
We claim w ( f i 1 ) + w ( f i ) + w ( f i + 1 ) 7 for 0 i n 1 , where subscripts are taken modulo n. In fact, if w ( f i ) = 2 , without loss of generality, let f ( v 0 , i ) = 0 , f ( v 1 , i ) = f ( v 2 , i ) = 1 , then f ( v 0 , i 1 ) + f ( v 0 , i + 1 ) 3 , f ( v 1 , i 1 ) + f ( v 2 , i 1 ) 1 , and f ( v 1 , i + 1 ) + f ( v 2 , i + 1 ) 1 . It follows that w ( f i 1 ) + w ( f i ) + w ( f i + 1 ) 7 . If w ( f i ) 3 , by w ( f i 1 ) 2 and w ( f i + 1 ) 2 , it follows w ( f i 1 ) + w ( f i ) + w ( f i + 1 ) 7 .
Thus, 3 w ( f ) = 3 0 i n 1 w ( f i ) = 0 i n 1 ( w ( f i 1 ) + w ( f i ) + w ( f i + 1 ) ) 7 n .
Hence, γ o i R ( C 3 C n ) = w ( f ) 7 n 3 . □
For every connected graph G of order n, γ o i R ( G ) n (see Ahangar et al. [9]). For torus graphs, we obtain a smaller upper bound presented by the following theorem.
Theorem 4.
For any integers m , n 4 , m 0 ( mod 4 ) or n 0 ( mod 4 ) ,
5 m n 8 γ o i R ( C m C n ) 5 m n + 5 m + 5 n 8 .
Proof. 
By Theorem 1, γ o i R ( C m C n ) 5 m n 8 . Then, we define some recursive OIRDFs and obtain γ o i R ( C m C n ) 5 m n + 5 m + 5 n 8 .
Case 1. m 0 ( mod   4 ) . For n 0 ( mod   4 ) , we define an OIRDF f on C m C n by repeating the first four rows in the OIRDF f ( C 4 C n ) as m increases by 4 and f ( C 4 C n ) is defined as follows.
n 1 ( mod   4 ) , n 2 ( mod   4 ) , f ( C 4 C n ) = 0101 0101 01011 1020 1020 10201 0101 0101 01011 2010 2010 20110 , f ( C 4 C n ) = 0102 0102 02 1010 1010 10 0201 0201 02 1010 1010 10 , n 3 ( mod   4 ) , f ( C 4 C n ) = 0102 0102 012 1010 1010 101 0201 0201 021 1010 1010 101 .
The weight of f is
w ( f ) = m 4 × n 5 4 × 10 + m 4 × 14 = 5 m n + 3 m 8 , n 1 ( mod   4 ) , m 4 × n 2 4 × 10 + m 4 × 6 = 5 m n + 2 m 8 , n 2 ( mod   4 ) , m 4 × n 3 4 × 10 + m 4 × 10 = 5 m n + 5 m 8 , n 3 ( mod   4 ) .
Case 2. m 1 ( mod   4 ) . For n 0 , 1 , 2 , 3 ( mod   4 ) , m 13 , an OIRDF f on C m C n is defined by repeating the first four rows in the OIRDF f ( C 9 C n ) as m increases by 4 and f ( C 9 C n ) is defined as follows. An OIRDF f ( C 5 C n ) is defined by deleting the first four rows of f ( C 9 C n ) .
n 0 ( mod   4 ) , n 1 ( mod   4 ) , f ( C 9 C n ) = 0102 0102 1010 1010 0201 0201 1010 1010 0102 0102 1010 1010 0201 0201 1011 1011 1110 1110 , f ( C 9 C n ) = 1020 1020 10201 0101 0101 01011 2010 2010 20110 0101 0101 01011 1020 1020 10201 0101 0101 01011 2010 2010 20110 0111 0111 01102 1101 1101 11010 , n 2 ( mod   4 ) , n 3 ( mod   4 ) , f ( C 9 C n ) = 0102 0102 02 1010 1010 10 0201 0201 02 1010 1010 10 0102 0102 02 1010 1010 10 0201 0201 02 1011 1011 10 1110 1110 11 , f ( C 9 C n ) = 0102 0102 012 1010 1010 110 0201 0201 101 1010 1010 120 0102 0102 012 1010 1010 110 0201 0201 101 1011 1011 020 1110 1110 101 .
Then the weight of f is
w ( f ) = m 5 4 · n 4 · 10 + n 4 · 14 = 5 m n + 3 n 8 , n 0 ( mod   4 ) , ( m 5 ) ( n 5 ) 16 · 10 + m 5 4 · 14 + n 5 4 · 14 + 18 = 5 m n + 3 m + 3 n 11 8 , n 1 ( mod   4 ) , ( m 5 ) ( n 2 ) 16 · 10 + m 5 4 · 6 + n 2 4 · 14 + 8 = 5 m n + 2 m + 3 n 2 8 , n 2 ( mod   4 ) , ( m 5 ) ( n 3 ) 16 · 10 + m 5 4 · 10 + n 3 4 · 14 + 11 = 5 m n + 5 m + 3 n 21 8 , n 3 ( mod   4 ) .
Case 3. m 2 ( mod   4 ) . For n 0 , 1 , 2 , 3 ( mod   4 ) , an OIRDF f ( C m C n ) is defined by repeating the first four rows of the OIRDF f ( C 6 C n ) as m increases by 4.
n 0 ( mod   4 ) , n 1 ( mod   4 ) , f ( C 6 C n ) = 0102 0102 1010 1010 0201 0201 1010 1010 0102 0102 1020 1020 , f ( C 6 C n ) = 0101 0101 0101 1 1020 1020 1020 1 0101 0101 0101 1 2010 2010 2011 0 0101 0101 0101 1 2020 2020 2020 1 , n 2 ( mod   4 ) , n 3 ( mod   4 ) , f ( C 6 C n ) = 0102 0102 0102 02 1010 1010 1010 10 0201 0201 0201 01 1010 1010 1010 20 0202 0202 0201 01 1010 1010 1010 10 , f ( C 6 C n ) = 0102 0102 0102 012 1010 1010 1010 110 0201 0201 0201 011 1010 1010 1010 201 0202 0202 0201 011 1010 1010 1010 110 .
The weight of f is
w ( f ) = m 2 4 · n 4 · 10 + n 4 · 6 = 5 m n + 2 n 8 , n 0 ( mod 4 ) , ( m 2 ) ( n 5 ) 16 · 10 + m 2 4 · 14 + n 5 4 · 6 + 8 = 5 m n + 3 m + 2 n 2 8 , n 1 ( mod 4 ) , ( m 2 ) ( n 2 ) 16 · 10 + m 2 4 · 6 + n 6 4 · 6 + 7 = 5 m n + 2 m + 2 n 20 8 , n 2 ( mod 4 ) , ( m 2 ) ( n 3 ) 16 · 10 + m 2 4 · 10 + n 7 4 · 6 + 9 = 5 m n + 5 m + 2 n 22 8 , n 3 ( mod 4 ) .
Case 4. m 3 ( mod 4 ) . For n 0 , 1 , 2 , 3 ( mod 4 ) , an OIRDF f ( C m C n ) is defined by repeating the first four rows of the OIRDF f ( C 7 C n ) as m increases by 4 and f ( C 7 C n ) is defined as follows.
n 0 ( mod 4 ) , n 1 ( mod 4 ) , f ( C 7 C n ) = 0102 0102 1010 1010 0201 0201 1010 1010 0102 0102 1020 1020 1111 1111 , f ( C 7 C n ) = 0101 0101 01011 1020 1020 10201 0101 0101 01011 2010 2010 20110 0111 0111 01101 1102 1102 11020 2010 2010 20101 , n 2 ( mod 4 ) , n 3 ( mod 4 ) , f ( C 7 C n ) = 0102 0102 0102 02 1010 1010 1010 10 0201 0201 0201 01 1010 1010 1010 20 0202 0202 0201 01 1010 1010 1011 11 1111 1111 1110 10 , f ( C 7 C n ) = 0102 0102 102 1010 1010 110 0201 0201 102 1010 1010 110 0202 0202 011 1010 1010 101 1111 1111 020 .
The weight of f is
w ( f ) = m 3 4 · n 4 · 10 + n 4 · 10 = 5 m n + 5 n 8 , n 0 ( mod 4 ) , ( m 3 ) ( n 5 ) 16 · 10 + m 3 4 · 14 + n 5 4 · 10 + 11 = 5 m n + 3 m + 5 n 21 8 , n 1 ( mod 4 ) , ( m 3 ) ( n 2 ) 16 · 10 + m 3 4 · 6 + n 6 4 · 10 + 13 = 5 m n + 2 m + 5 n 22 8 , n 2 ( mod 4 ) , ( m 3 ) ( n 3 ) 16 · 10 + m 3 4 · 10 + n 3 4 · 10 + 6 = 5 m n + 5 m + 5 n 27 8 , n 3 ( mod 4 ) .
Hence, γ o i R ( C m C n ) 5 m n + 5 m + 5 n 8 . □

3. The Outer Independent Double Roman Domination Number of Regular Graphs

3.1. The Lower Bound on γ o i d R of Regular Graphs

For any regular graph G = ( V , E ) , f is an outer independent double Roman dominating function (OIDRDF) of G. Let V i = { v V | f ( v ) = i , i = 0 , 1 , 2 , 3 } , then ( V 0 , V 1 , V 2 , V 3 ) is a partition of V induced by f. We also write f = ( V 0 , V 1 , V 2 , V 3 ) .
Since every vertex v V 0 must have at least two neighbors assigned 2 or one neighbor assigned 3 under f, then we write V 0 = V 02 V 03 , where V 02 = { v V 0 : | N ( v ) V 3 | = 0 | N ( v ) V 2 | 2 } and V 03 = { v V 0 : | N ( v ) V 3 | 1 } . Since every vertex v V 1 must have at least one neighbor in V 2 V 3 , then we write V 1 = V 12 V 13 , where V 12 = { v V 1 : | N ( v ) V 3 | = 0 | N ( v ) V 2 | 1 } and V 13 = { v V 1 : | N ( v ) V 3 | 1 } . Then, we write f = ( V 0 , V 1 , V 2 , V 3 ) = ( V 02 V 03 , V 12 V 13 , V 2 , V 3 ) . Let E a , b = { ( u v ) E ( G ) : u V a , v V b } where V a , V b { V 0 , V 1 , V 2 , V 3 , V 02 , V 03 , V 12 , V 13 } and e a , b = | E a , b | . Obviously, e a , b = e b , a and e 1 , 2 + e 1 , 3 | V 1 | .
Lemma 2.
Let f = ( V 0 , V 1 , V 2 , V 3 ) = ( V 02 V 03 , V 12 V 13 , V 2 , V 3 ) be an arbitrary OIDRDF of a k-regular graph G and e a , b be the cardinality of E a , b = { ( u v ) E ( G ) : u V a , v V b where V a , V b { V 0 , V 1 , V 2 , V 3 , V 02 , V 03 , V 12 , V 13 } } , then we have
(a) 
k | V 0 | = e 1 , 02 + e 1 , 03 + e 2 , 02 + e 2 , 03 + e 3 , 03 ,
k | V 1 | = e 1 , 02 + e 1 , 03 + e 1 , 1 + e 1 , 2 + e 1 , 3 ,
k | V 2 | = e 2 , 02 + e 2 , 03 + e 2 , 1 + e 2 , 2 + e 2 , 3 ,
k | V 3 | = e 3 , 03 + e 3 , 1 + e 3 , 2 + e 3 , 3 .
(b) 
e 1 , 02 k 2 2 e 2 , 02 and e 1 , 03 ( k 1 ) e 3 , 03 .
Proof. 
( a ) Since k | V 0 | = e 0 , 1 + e 0 , 2 + e 0 , 3 , e 0 , 1 = e 02 , 1 + e 03 , 1 , e 0 , 2 = e 02 , 2 + e 03 , 2 and e 0 , 3 = e 03 , 3 , then
k | V 0 | = e 02 , 1 + e 03 , 1 + e 02 , 2 + e 03 , 2 + e 03 , 3 = e 1 , 02 + e 1 , 03 + e 2 , 02 + e 2 , 03 + e 3 , 03 .
k | V 1 | = e 1 , 0 + e 1 , 1 + e 1 , 2 + e 1 , 3 = e 1 , 02 + e 1 , 03 + e 1 , 1 + e 1 , 2 + e 1 , 3 .
k | V 2 | = e 2 , 0 + e 2 , 1 + e 2 , 2 + e 2 , 3 = e 2 , 02 + e 2 , 03 + e 2 , 1 + e 2 , 2 + e 2 , 3 .
k | V 3 | = e 3 , 0 + e 3 , 1 + e 3 , 2 + e 3 , 3 = e 3 , 03 + e 3 , 1 + e 3 , 2 + e 3 , 3 .
( b ) Since every vertex v V 02 has at least two neighbors in V 2 and other neighbors in V 1 , then e 1 , 02 k 2 2 e 2 , 02 . Every vertex v V 03 has at least one neighbor in V 3 and other neighbors in V 1 V 2 , then e 1 , 03 e 1 , 03 + e 2 , 03 ( k 1 ) e 3 , 03 . □
Theorem 5.
Let G be a k-regular graph with order of n and k 2 , then
γ o i d R ( G ) ( k 2 + 4 k 8 ) n 2 k 2 4 .
Proof. 
Let f = ( V 0 , V 1 , V 2 , V 3 ) = ( V 02 V 03 , V 12 V 13 , V 2 , V 3 ) be a γ o i d R -function of G and e a , b be the cardinality of E a , b , i.e., e a , b = | E a , b | where E a , b = { ( u v ) E ( G ) : u V a , v V b } , V a , V b { V 0 , V 1 , V 2 , V 3 , V 02 , V 03 , V 12 , V 13 } . By Lemma 2 ( a ) ,
k | V 0 | = e 1 , 02 + e 1 , 03 + e 2 , 02 + e 2 , 03 + e 3 , 03 , e 1 , 02 + e 1 , 03 = k | V 1 | e 1 , 1 e 1 , 2 e 1 , 3 , e 2 , 02 + e 2 , 03 = k | V 2 | e 2 , 1 e 2 , 2 e 2 , 3 , e 3 , 03 = k | V 3 | e 3 , 1 e 3 , 2 e 3 , 3 .
Since | V 0 | = | V ( G ) | | V 1 | | V 2 | | V 3 | , then
k ( | V ( G ) | | V 1 | | V 2 | | V 3 | ) = k | V 1 | e 1 , 1 e 1 , 2 e 1 , 3 + k | V 2 | e 2 , 1 e 2 , 2 e 2 , 3 + k | V 3 | e 3 , 1 e 3 , 2 e 3 , 3 = k ( | V 1 | + | V 2 | + | V 3 | ) a = 1 3 b = 1 3 e a , b 2 k ( | V 1 | + | V 2 | + | V 3 | ) = k | V ( G ) | + a = 1 3 b = 1 3 e a , b .
Multiply both sides of the above equation by ( k 2 + 4 k 8 ) / k , we have the following equation.
2 ( k 2 + 4 k 8 ) ( | V 1 | + | V 2 | + | V 3 | ) = ( k 2 + 4 k 8 ) | V ( G ) | + k 2 + 4 k 8 k a = 1 3 b = 1 3 e a , b
By Lemma 2 ( a ) and ( b ) ,
( k 2 ) 2 e 2 , 02 + ( k 1 ) e 3 , 03 e 1 , 02 + e 1 , 03 , e 2 , 02 = k | V 2 | e 2 , 03 e 2 , 1 e 2 , 2 e 2 , 3 , e 3 , 03 = k | V 3 | e 3 , 1 e 3 , 2 e 3 , 3 , e 1 , 02 + e 1 , 03 = k | V 1 | e 1 , 1 e 1 , 2 e 1 , 3 .
Then,
( k 2 ) ( k | V 2 | e 2 , 03 e 2 , 1 e 2 , 2 e 2 , 3 ) + 2 ( k 1 ) ( k | V 3 | e 3 , 1 e 3 , 2 e 3 , 3 ) 2 ( k | V 1 | e 1 , 1 e 1 , 2 e 1 , 3 ) k ( k 2 ) | V 2 | ( k 2 ) ( e 2 , 03 + b = 1 3 e 2 , b ) + 2 k ( k 1 ) | V 3 | 2 ( k 1 ) b = 1 3 e 3 , b 2 k | V 1 | 2 b = 1 3 e 1 , b k ( k 2 ) | V 2 | + 2 k ( k 1 ) | V 3 | 2 k | V 1 | ( k 2 ) ( e 2 , 03 + b = 1 3 e 2 , b ) + 2 ( k 1 ) b = 1 3 e 3 , b 2 b = 1 3 e 1 , b
Multiply both sides of the above inequality by 2 ( k 2 ) / k . Since k 2 , the direction of the inequality is reversed. Then, we have the following inequality.
2 ( k 2 ) 2 | V 2 | + 4 ( k 2 ) ( k 1 ) | V 3 | 4 ( k 2 ) | V 1 | 2 ( k 2 ) k [ ( k 2 ) ( e 2 , 03 + b = 1 3 e 2 , b ) + 2 ( k 1 ) b = 1 3 e 3 , b 2 b = 1 3 e 1 , b ]
Add both sides of Equation (3) and Inequality (4),
2 ( k 2 + 4 k 8 ) ( | V 1 | + | V 2 | + | V 3 | ) + 2 ( k 2 ) 2 | V 2 | + 4 ( k 2 ) ( k 1 ) | V 3 | 4 ( k 2 ) | V 1 | ( k 2 + 4 k 8 ) | V ( G ) | + k 2 + 4 k 8 k a = 1 3 b = 1 3 e a , b + 2 ( k 2 ) k [ ( k 2 ) ( e 2 , 03 + b = 1 3 e 2 , b ) + 2 ( k 1 ) b = 1 3 e 3 , b 2 b = 1 3 e 1 , b ] ( 2 k 2 + 4 k 8 ) | V 1 | + ( 4 k 2 8 ) | V 2 | + ( 6 k 2 4 k 8 ) | V 3 | ( k 2 + 4 k 8 ) | V ( G ) | + k 2 + 4 k 8 k a = 1 3 b = 1 3 e a , b + 1 k [ ( 2 k 2 8 k + 8 ) ( e 2 , 03 + b = 1 3 e 2 , b ) + ( 4 k 2 12 k + 8 ) b = 1 3 e 3 , b ( 4 k 8 ) b = 1 3 e 1 , b ]
The left-hand side of above inequality is
LHS = ( 2 k 2 + 4 k 8 ) | V 1 | + ( 4 k 2 8 ) | V 2 | + ( 6 k 2 4 k 8 ) | V 3 | .
The right-hand side is
RHS = ( k 2 + 4 k 8 ) | V ( G ) | + k 2 + 4 k 8 k ( e 1 , 1 + e 1 , 2 + e 1 , 3 + e 2 , 1 + e 2 , 2 + e 2 , 3 + e 3 , 1 + e 3 , 2 + e 3 , 3 ) + 2 k 2 8 k + 8 k ( e 2 , 03 + e 2 , 1 + e 2 , 2 + e 2 , 3 ) + 4 k 2 12 k + 8 k ( e 3 , 1 + e 3 , 2 + e 3 , 3 ) 4 k 8 k ( e 1 , 1 + e 1 , 2 + e 1 , 3 ) .
Since e a , b = e b , a , then
RHS = ( k 2 + 4 k 8 ) | V ( G ) | + k e 1 , 1 + ( 4 k 4 ) e 1 , 2 + ( 6 k 8 ) e 1 , 3 + 2 k 2 8 k + 8 k e 2 , 03 + ( 3 k 4 ) e 2 , 2 + ( 8 k 12 ) e 2 , 3 + ( 5 k 8 ) e 3 , 3 = ( k 2 + 4 k 8 ) | V ( G ) | + k e 1 , 1 + ( 4 k 4 ) ( e 2 , 1 + e 3 , 1 ) + ( 3 k 4 ) ( e 2 , 2 + e 2 , 3 ) + ( 2 k 4 ) e 3 , 1 + ( 5 k 8 ) ( e 3 , 2 + e 3 , 3 ) + 2 k 2 8 k + 8 k e 2 , 03 .
Since e 1 , 2 + e 1 , 3 | V 1 | , then
LHS RHS ( k 2 + 4 k 8 ) | V ( G ) | + k e 1 , 1 + ( 4 k 4 ) | V 1 | + ( 3 k 4 ) ( e 2 , 2 + e 2 , 3 ) + ( 2 k 4 ) e 3 , 1 + ( 5 k 8 ) ( e 3 , 2 + e 3 , 3 ) + 2 k 2 8 k + 8 k e 2 , 03 . ( 2 k 2 4 ) | V 1 | + ( 4 k 2 8 ) | V 2 | + ( 6 k 2 4 k 8 ) | V 3 | ( k 2 + 4 k 8 ) | V ( G ) | + k e 1 , 1 + ( 3 k 4 ) ( e 2 , 2 + e 2 , 3 ) + ( 2 k 4 ) e 3 , 1 + ( 5 k 8 ) ( e 3 , 2 + e 3 , 3 ) + 2 k 2 8 k + 8 k e 2 , 03 . ( 2 k 2 4 ) | V 1 | + ( 4 k 2 8 ) | V 2 | + ( 6 k 2 12 ) | V 3 | ( k 2 + 4 k 8 ) | V ( G ) | + k e 1 , 1 + ( 3 k 4 ) ( e 2 , 2 + e 2 , 3 ) + ( 2 k 4 ) e 3 , 1 + ( 5 k 8 ) ( e 3 , 2 + e 3 , 3 ) + 2 k 2 8 k + 8 k e 2 , 03 + ( 4 k 4 ) | V 3 | . ( 2 k 2 4 ) ( | V 1 | + 2 | V 2 | + 3 | V 3 | ) ( k 2 + 4 k 8 ) | V ( G ) | . | V 1 | + 2 | V 2 | + 3 | V 3 | ( k 2 + 4 k 8 ) 2 k 2 4 | V ( G ) | .
Since w ( f ) = | V 1 | + 2 | V 2 | + 3 | V 3 | , then w ( f ) ( k 2 + 4 k 8 ) 2 k 2 4 | V ( G ) | . Furthermore, γ o i d R is an integer, then
γ o i d R ( G ) ( k 2 + 4 k 8 ) n 2 k 2 4 .

3.2. Outer Independent Double Roman Domination in Torus Graphs

In this subsection, we investigate the outer independent double Roman domination number of C m C n (torus graph). We determine the exact values of γ o i d R ( C 3 C n ) and present bounds of γ o i d R ( C m C n ) for m 4 .
We denote the vertex set of C m C n as V = { v i , j | 0 i m 1 , 0 j n 1 } , and use an m-by-n matrix to show the OIDRDF on C m C n in which entry m i , j is f ( v i , j ) and the following is an OIDRDF f on C 3 C 4 ,
f ( C 3 C 4 ) = 0202 1020 2111 .
Theorem 6.
For any integer n 3 , γ o i d R ( C 3 C n ) = 3 n .
Proof. 
We define an OIDRDF f on C 3 C 3 by: f ( v 0 , 2 ) = f ( v 1 , 1 ) = f ( v 2 , 0 ) = 2 , f ( v 0 , 1 ) = f ( v 1 , 0 ) = f ( v 2 , 2 ) = 1 and f ( v 0 , 0 ) = f ( v 1 , 2 ) = f ( v 2 , 1 ) = 0 . For n 4 , define an OIDRDF f as follows.
n 0 ( mod 4 ) , n 1 ( mod 4 ) , f = 0202 0202 1020 1020 2111 2111 , f = 0202 0202 02012 1020 1020 10201 2111 2111 21120 , n 2 ( mod 4 ) , n 3 ( mod 4 ) , f = 0202 0202 02 1020 1020 11 2111 2111 20 , f = 0202 0202 0201022 1020 1020 1020201 2111 2111 2112110 .
Then,
w ( f ) = 12 × n 4 = 3 n , n 0 ( mod 4 ) , 12 × n 5 4 + 15 = 3 n , n 1 ( mod 4 ) , 12 × n 2 4 + 6 = 3 n , n 2 ( mod 4 ) , 12 × n 7 4 + 21 = 3 n , n 3 ( mod 4 ) , n 7 .
Thus, γ o i d R ( C 3 C n ) 3 n .
Next we prove γ o i d R ( C 3 C n ) 3 n . Let f be an arbitrary γ o i d R ( C 3 C n ) -function, V i = { v 0 , i , v 1 , i , v 2 , i } and w ( f i ) = f ( v 0 , i ) + f ( v 1 , i ) + f ( v 2 , i ) ( 0 i n 1 ) , then f has the properties:
(1) w ( f i ) 2 . Since every vertex v V ( C 3 C n ) with f ( v ) = 0 has no neighbor assigned 0 under f, then w ( f i ) 2 for 0 i n 1 .
(2) If w ( f i ) = 2 , then w ( f i 1 ) + w ( f i + 1 ) 8 where subscripts are taken modulo n. If w ( f i ) = 2 , by symmetry, let f ( v 0 , i ) = f ( v 1 , i ) = 1 and f ( v 2 , i ) = 0 . Then, by the definition of OIDRDF, f ( v 0 , i 1 ) + f ( v 0 , i + 1 ) 2 , f ( v 1 , i 1 ) + f ( v 1 , i + 1 ) 2 , and f ( v 2 , i 1 ) + f ( v 2 , i + 1 ) 4 , it follows w ( f i 1 ) + w ( f i + 1 ) 8 .
For 0 i n 1 , we put the columns V i into different sets B s ( 0 s t ) .
Initialization: t = 0 and D [ i ] = 0 for i = 0 up to n 1 .
S1. For i from 0 to n 1 with w ( f i ) 5 and D [ i ] = 0 , do:
t = t + 1 , D [ i ] = 1 , B t = { V j } .
If w ( f i + 1 ) = 2 and D [ i + 1 ] = 0 , then D [ i + 1 ] = 1 , B t = B t { V i + 1 } .
If w ( f i 1 ) = 2 and D [ i 1 ] = 0 , then D [ i 1 ] = 1 , B t = B t { V i 1 } .
S2. For i from 0 to n 1 with w ( f i ) = 4 and D [ i ] = 0 , do:
t = t + 1 , D [ i ] = 1 , B t = { V i } .
If w ( f i + 1 ) = 2 , then D [ i + 1 ] = 1 , B t = B t { V i + 1 } .
By (2), if w ( f i ) = 2 , then w ( f i 1 ) 4 or w ( f i + 1 ) 4 . Therefore w ( f i ) = 3 for all
D [ i ] = 0 after S1 and S2.
S3. For i from 0 to n 1 with w ( f i ) = 3 and D [ i ] = 0 , do:
t = t + 1 , D [ i ] = 1 , B t = { V i } .
Notice that V i B t w ( f i ) 3 × | B t | .
Thus, we have
w ( f ) = 0 i n 1 w ( f i ) = 1 s t V i B s w ( f i ) 1 s t 3 | B s | = 3 n .
Hence, γ o i d R ( C 3 C n ) 3 n . □
Ahangar et al. [10] proved γ o i d R ( T ) 5 n / 4 for tree T of order n and provided an open problem: “Is it true that, for any graph G on n 4 vertices, γ o i d R ( G ) 5 n / 4 ?” We say this is true for the Cartesian product of cycles C m C n , since we obtain γ o i d R ( C m C n ) 7 m n + 3 m + 3 n 8 by constructing some OIDRDFs described in the following theorem.
Theorem 7.
For any integers m , n 4 ,
6 m n 7 γ o i d R ( C m C n ) 7 m n + 3 m + 3 n 8 .
Proof. 
By Theorem 5, γ o i d R ( C m C n ) 6 m n 7 . Then, we define some recursive OIDRDFs and obtain γ o i d R ( C m C n ) 7 m n + 3 m + 3 n 8 .
Case 1. m 0 ( mod 4 ) . For n 0 , 1 , 2 , 3 ( mod 4 ) , we define an OIDRDF f ( C m C n ) by repeating the first four rows in f ( C 4 C n ) as m increases by 4.
n 0 ( mod 4 ) , n 1 ( mod 4 ) , f ( C 4 C n ) = 0202 0202 1020 1020 2101 2101 1020 1020 , f ( C 4 C n ) = 0202 0202 02012 1020 1020 10201 2101 2101 21020 1020 1020 10201 , n 2 ( mod 4 ) , n 3 ( mod 4 ) , f ( C 4 C n ) = 0202 0202 02 1020 1020 10 2101 2101 22 1020 1020 10 , f ( C 4 C n ) = 0202 0202 022 1020 1020 101 2101 2101 220 1020 1020 101 .
The weight of f is
w ( f ) = m 4 · n 4 · 14 = 7 m n 8 , n 0 ( mod 4 ) , m 4 · n 5 4 · 14 + m 4 × 18 = 7 m n + m 8 , n 1 ( mod 4 ) , m 4 · n 2 4 · 14 + m 4 × 8 = 7 m n + 2 m 8 , n 2 ( mod 4 ) , m 4 · n 3 4 · 14 + m 4 × 12 = 7 m n + 3 m 8 , n 3 ( mod 4 ) .
Case 2. m 1 ( mod 4 ) . For n 0 , 1 , 2 , 3 ( mod 4 ) and m 13 , an OIDRDF is defined by repeating the first four rows in f ( C 9 C n ) as m increases by 4. For f ( C 5 C n ) is defined by deleting the first four rows in f ( C 9 C n ) .
n 0 ( mod 4 ) , n 1 ( mod 4 ) , f ( C 9 C n ) = 0202 0202 1020 1020 2101 2101 1020 1020 0202 0202 1020 1020 2101 2101 0121 0121 2010 2010 , f ( C 9 C n ) = 0202 0202 02012 1020 1020 10201 2101 2101 21020 1020 1020 10201 0202 0202 02012 1020 1020 10201 2101 2101 21020 0121 0121 01201 2010 2010 20112 , n 2 ( mod 4 ) , n 3 ( mod 4 ) , f ( C 9 C n ) = 0202 0202 02 1020 1020 10 2101 2101 22 1020 1020 10 0202 0202 02 1020 1020 10 2101 2101 22 0121 0121 01 2010 2010 20 , f ( C 9 C n ) = 0202 0202 102 1020 1020 120 2101 2101 201 1020 1020 120 0202 0202 102 1020 1020 120 2101 2101 201 0121 0121 012 2010 2010 210 .
Then, the weight of f is
w ( f ) = m 5 4 · n 4 · 14 + n 4 · 18 = 7 m n + n 8 , n 0 ( mod 4 ) , ( m 5 ) ( n 5 ) 16 · 14 + n 5 4 · 18 + m 5 4 · 18 + 24 = 7 m n + m + n + 7 8 , n 1 ( mod 4 ) , ( m 5 ) ( n 2 ) 16 · 14 + n 2 4 · 18 + m 5 4 · 8 + 10 = 7 m n + 2 m + n 2 8 , n 2 ( mod 4 ) , ( m 5 ) ( n 3 ) 16 · 14 + n 3 4 · 18 + m 5 4 · 12 + 15 = 7 m n + 3 m + n 3 8 , n 3 ( mod 4 ) .
Case 3. m 2 ( mod 4 ) . For n 0 , 1 , 2 , 3 ( mod 4 ) , an OIDRDF f on C m C n is defined by repeating the first four rows of f ( C 6 C n ) as m increases by 4.
n 0 ( mod 4 ) , n 1 ( mod 4 ) , f ( C 6 C n ) = 0202 0202 1020 1020 2101 2101 1020 1020 0202 0202 1012 1012 , f ( C 6 C n ) = 0202 0202 02012 1020 1020 10201 2101 2101 21020 1020 1020 10201 0202 0202 02012 2020 2020 20210 , n 2 ( mod 4 ) , n 3 ( mod 4 ) , f ( C 6 C n ) = 0202 0202 02 1020 1020 10 2101 2101 22 1020 1020 10 0202 0202 02 2020 2020 20 , f ( C 6 C n ) = 0202 0202 102 1020 1020 120 2101 2101 201 1020 1020 120 0202 0202 102 1210 1210 120 .
The weight of f is
w ( f ) = m 2 4 · n 4 · 14 + n 4 · 8 = 7 m n + 2 n 8 , n 0 ( mod 4 ) , ( m 2 ) ( n 5 ) 16 · 14 + n 5 4 · 8 + m 2 4 · 18 + 10 = 7 m n + m + 2 n 2 8 , n 1 ( mod 4 ) , ( m 2 ) ( n 2 ) 16 · 14 + n 2 4 · 8 + m 2 4 · 8 + 4 = 7 m n + 2 m + 2 n 4 8 , n 2 ( mod 4 ) , ( m 2 ) ( n 3 ) 16 · 14 + n 3 4 · 8 + m 2 4 · 12 + 6 = 7 m n + 3 m + 2 n 6 8 , n 3 ( mod 4 ) .
Case 4. m 3 ( mod 4 ) . For n 0 , 1 , 2 , 3 ( mod 4 ) , an OIDRDF f on C m C n is defined by repeating the first four rows of the OIDRDF f ( C 7 C n ) as m increases by 4.
n 0 ( mod 4 ) , n 1 ( mod 4 ) , f ( C 7 C n ) = 0202 0202 1020 1020 2101 2101 1020 1020 0202 0202 1020 1020 2111 2111 , f ( C 7 C n ) = 0202 0202 02012 1020 1020 10201 2101 2101 21020 1020 1020 10201 0202 0202 02012 1020 1020 10201 2111 2111 21120 , n 2 ( mod 4 ) , n 3 ( mod 4 ) , f ( C 7 C n ) = 0202 0202 02 1020 1020 11 2101 2101 20 1020 1020 11 0202 0202 02 1020 1020 11 2111 2111 20 , f ( C 7 C n ) = 0202 0202 0201022 1020 1020 1020201 2101 2101 2101020 1020 1020 1022101 0202 0202 0201022 1020 1020 1020201 2111 2111 2112110 .
The weight of f is
w ( f ) = m 3 4 · n 4 · 14 + n 4 · 12 = 7 m n + 3 n 8 , n 0 ( mod 4 ) , ( m 3 ) ( n 5 ) 16 · 14 + n 5 4 · 12 + m 3 4 · 18 + 15 = 7 m n + m + 3 n 3 8 , n 1 ( mod 4 ) , ( m 3 ) ( n 2 ) 16 · 14 + n 2 4 · 12 + m 3 4 · 8 + 6 = 7 m n + 2 m + 3 n 6 8 , n 2 ( mod 4 ) , ( m 3 ) ( n 7 ) 16 · 14 + n 7 4 · 12 + m 3 4 · 26 + 21 = 7 m n + 3 m + 3 n 9 8 , n 3 ( mod 4 ) .
Hence, γ o i d R ( C m C n ) 7 m n + 3 m + 3 n 8 . □

4. Conclusions

For the outer independent Roman domination number of regular graph G, we improved the lower bound on γ o i R ( G ) presented by Ahangar et al. ([9]), determined the exact values of γ o i R ( C 3 C n ) , γ o i R ( C m C n ) for m 0 ( mod 4 ) and n 0 ( mod 4 ) , and presented bounds on γ o i R ( C m C n ) for m 0 ( mod 4 ) or n 0 ( mod 4 ) . For the outer independent double Roman domination number of regular graph G, we presented a lower bound on γ o i d R ( G ) , determined the exact values of γ o i d R ( C 3 C n ) , and presented bounds on γ o i d R ( C m C n ) for m , n 4 . By our results, γ o i d R ( C m C n ) 7 m n + 3 m + 3 n 8 , which verifies γ o i d R ( G ) 5 | V ( G ) | / 4 is correct for G = C m C n .

Author Contributions

Methodology, H.G.; validation, X.L. and Y.G.; formal analysis, H.G.; investigation, X.L.; writing—original draft preparation, X.L.; writing—review and editing, H.G.; supervision, Y.Y.; project administration, H.G. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by National Natural Science Foundation of China (NSFC), grand number 62071079.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors gratefully acknowledge the helpful comments and suggestions of the reviewers, which improved the presentation.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

  1. Cockayne, E.J.; Dreyer, P.A.; Hedetniemi, S.M.; Hedetniemi, S.T. Roman domination in graphs. Discret. Math. 2004, 278, 11–22. [Google Scholar] [CrossRef]
  2. Henning, M.A.; Hedetniemi, S.T. Defending the Roman empire—A new strategy. Discret. Math. 2003, 266, 239–251. [Google Scholar] [CrossRef]
  3. Chellali, M.; Haynes, T.W.; Hedetniemi, S.T.; McRae, A.A. Roman {2}-domination. Discret Appl. Math. 2016, 204, 22–28. [Google Scholar] [CrossRef]
  4. Henning, M.A.; Klostermeyer, W.F.; MacGillivray, G. Perfect Roman domination in trees. Discret Appl. Math. 2018, 236, 235–245. [Google Scholar] [CrossRef]
  5. Ahangar, H.A.; Henning, M.A.; Löwenstein, C.; Zhao, Y.C.; Samodivkin, V. Signed Roman domination in graphs. J. Comb. Optim. 2014, 27, 241–255. [Google Scholar] [CrossRef]
  6. Mojdeh, D.A.; Volkmann, L. Roman {3}-domination (double Italian domination). Discret Appl. Math. 2020, 283, 555–564. [Google Scholar] [CrossRef]
  7. Ahangar, H.A.; Álvarez, M.P.; Chellali, M.; Sheikholeslami, S.M.; Valenzuela-Tripodoro, J.C. Triple Roman domination in graphs. Appl. Math. Comput. 2021, 391, 125444. [Google Scholar]
  8. Beeler, R.A.; Haynes, T.W.; Hedetniemi, S.T. Double Roman domination. Discret Appl. Math. 2016, 211, 23–29. [Google Scholar] [CrossRef]
  9. Ahangar, H.A.; Chellali, M.; Samodivkin, V. Outer independent Roman dominating functions in graphs. Int. J. Comput. Math. 2017, 94, 2547–2557. [Google Scholar] [CrossRef]
  10. Ahangar, H.A.; Chellali, M.; Sheikholeslami, S.M. Outer independent double Roman domination. Appl. Math. Comput. 2020, 364, 124617. [Google Scholar]
  11. Poureidi, A.; Ghaznavi, M.; Fathali, J. Algorithmic complexity of outer independent Roman domination and outer independent total Roman domination. J. Comb. Optim. 2021, 41, 304–317. [Google Scholar] [CrossRef]
  12. Martínez, A.C.; García, S.C.; García, A.C.; del Rio, A.M.G. On the outer-independent Roman domination in graphs. Symmetry 2020, 12, 1846. [Google Scholar] [CrossRef]
  13. Nazari-Moghaddam, S.; Sheikholeslami, S.M. On trees with equal Roman domination and outer-independent Roman domination number. Commun. Comb. Optim. 2019, 4, 185–199. [Google Scholar]
  14. Mojdeh, D.A.; Samadi, B.; Shao, Z.; Yero, I.G. On the outer independent double Roman domination number. Bull. Iran Math. Soc. 2021, 48, 1789–1803. [Google Scholar] [CrossRef]
  15. Ahangar, H.A.; Pour, F.N.; Chellali, M.; Sheikholeslami, S.M. Outer independent signed double Roman domination. J. Appl. Math. Comput. 2022, 68, 705–720. [Google Scholar] [CrossRef]
  16. Fan, W.J.; Ye, A.S.; Miao, F.; Shao, Z.H.; Samodivkin, V.; Sheikholeslami, S.M. Outer-independent Italian domination in graphs. IEEE Access 2019, 7, 22756–22762. [Google Scholar] [CrossRef]
  17. Li, Z.P.; Shao, Z.H.; Lang, F.N.; Zhang, X.S.; Liu, J.B. Computational complexity of outer-independent total and total Roman domination numbers in trees. IEEE Access 2018, 6, 35544–35550. [Google Scholar] [CrossRef]
  18. Martínez, A.C.; Kuziak, B.; Yero, I.G. Outer-independent total Roman domination in graphs. Discret Appl. Math. 2019, 269, 107–119. [Google Scholar] [CrossRef]
  19. Sharma, A.; Reddy, P.V.S. Algorithmic aspects of outer-independent total Roman domination in graphs. Int. J. Found. Comput. Sci. 2021, 32, 331–339. [Google Scholar] [CrossRef]
Figure 1. The graph of C 4 C 6 (a) and an OIRDF on C 4 C 6 (b).
Figure 1. The graph of C 4 C 6 (a) and an OIRDF on C 4 C 6 (b).
Mathematics 10 03361 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Gao, H.; Liu, X.; Guo, Y.; Yang, Y. On Two Outer Independent Roman Domination Related Parameters in Torus Graphs. Mathematics 2022, 10, 3361. https://doi.org/10.3390/math10183361

AMA Style

Gao H, Liu X, Guo Y, Yang Y. On Two Outer Independent Roman Domination Related Parameters in Torus Graphs. Mathematics. 2022; 10(18):3361. https://doi.org/10.3390/math10183361

Chicago/Turabian Style

Gao, Hong, Xing Liu, Yuanyuan Guo, and Yuansheng Yang. 2022. "On Two Outer Independent Roman Domination Related Parameters in Torus Graphs" Mathematics 10, no. 18: 3361. https://doi.org/10.3390/math10183361

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop