From Human to Machine: Investigating the Effectiveness of the Conversational AI ChatGPT in Historical Thinking
Abstract
:1. Introduction
1.1. Technology and Conversational AI in Education
1.2. Technology, AI, and History Teaching: Promoting Higher-Order Skills and Historical Thinking
- To evaluate the performance of AI in developing an argumentative historical text based on the dimensions of historical thinking in contrast to preservice teachers.
- To analyse preservice teachers’ perceptions and beliefs about the capability of AI to develop an argumentative historical text similarly to a human.
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Instruments and Measurements
- Which text do you believe deserves a higher score in an exam? Why?
- Which one is able to convey more emotions and feelings? Why?
- Do you think a machine or AI can make a comment such as these ones?
- If I told you that one of these two texts was written by an AI, would you believe it? Which one do you think it would be?
3. Results
3.1. Comparison between an Argumentative Text Developed by a Human and the Conversational AI ChatGPT
3.2. Is Conversational AI Able to Write Argumentative Historical Text Based on Historical Thinking? Preservice Teachers’ Perceptions
4. Discussion and Conclusions
Proposals for Future Research and Improvement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yildirim, G.; Elban, M.; Yildirim, S. Analysis of Use of Virtual Reality Technologies in History Education: A Case Study. Asian J. Educ. Train. 2018, 4, 62–69. [Google Scholar] [CrossRef]
- Chinn, C.A.; Barzilai, S.; Duncan, R.G. Education for a “post-truth” world: New directions for research and practice. Educ. Res. 2021, 50, 51–60. [Google Scholar] [CrossRef]
- Kozyreva, A.; Wineburg, S.; Lewandowsky, S.; Hertwig, R. Critical ignoring as a core competence for digital citizens. Curr. Dir. Psychol. Sci. 2023, 32, 81–88. [Google Scholar] [CrossRef]
- Cooper, H. Why are there no history text books in english primary schools? Ensayos. Rev. Fac. Educ. Albacete 2014, 29, 27–42. [Google Scholar]
- Gómez-Carrasco, C.J.; Miralles-Martínez, P. ¿Pensar históricamente o memorizar el pasado? La evaluación de los contenidos históricos en la educación obligatoria en España. [Thinking Historically or Memorizing the Past? Assessing Historical Content in Compulsory Education in Spain]. Rev. Estud. Soc. 2014, 52, 52–68. [Google Scholar] [CrossRef]
- Dale, R. GPT-3. What’s it good for? Nat. Lang. Eng. 2021, 27, 113–118. [Google Scholar] [CrossRef]
- Lund, B.D.; Wang, T. Chatting about ChatGPT: How may AI and GPT impact academia and libraries? Libr. Hi Tech News 2023, 40, 26–29. [Google Scholar] [CrossRef]
- Kidd, C.; Birhane, A. How AI can distort human beliefs. Science 2023, 380, 1222–1223. [Google Scholar] [CrossRef]
- Cunningham-Nelson, S.; Boles, W.; Trouton, L.; Margerison, E. A review of chatbots in education: Practical steps forward. In Proceedings of the 30th Annual Conference for the Australasian Association for Engineering Education (AAEE 2019): Educators Becoming Agents of Change: Innovate, Integrate. Motivate, Brisbane, Australia, 8–11 December 2019; Engineers Australia: Brisbane, Australia, 2019; pp. 299–306. [Google Scholar]
- Sinha, S.; Basak, S.; Dey, Y.; Mondal, A. An educational chatbot for answering queries. In Emerging Technology in Modelling and Graphics; Mandal, J.K., Bhattacharya, D., Eds.; Springer: Singapore, 2020; pp. 55–60. [Google Scholar] [CrossRef]
- Raja, R.; Nagasubramani, P.C. Impact of modern technology in education. J. Appl. Adv. Res. 2018, 3, 33–35. [Google Scholar] [CrossRef] [Green Version]
- Scherer, R.; Siddiq, F.; Tondeur, J. The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Comput. Educ. 2019, 128, 13–35. [Google Scholar] [CrossRef]
- Redecker, C. European Framework for the Digital Competence of Educators: DigCompEdu; Publications Office of the European Union: Luxemburg, 2017. [Google Scholar] [CrossRef]
- Pelletier, K.; McCormack, M.; Reeves, J.; Robert, J.; Arbino, N.; Al-Freih, M.; Dickson-Deane, C.; Guevara, C.; Koster, L.; Sánchez-Mendiola, M.; et al. 2022 EDUCAUSE Horizont Report. Teaching and Learning Edition; EDUCAUSE Publications: Boulder, CO, USA, 2022. [Google Scholar]
- Ennals, R. History Teaching and Artificial Intelligence. Teach. Hist. 1982, 33, 3–5. [Google Scholar]
- Yazdani, M.; Lawler, R.W. Artificial intelligence and education: An overview. Instr. Sci. 1986, 14, 197–206. [Google Scholar] [CrossRef]
- Roth, G.; McEwing, R. Artificial Intelligence and Vocational Education: An Impending Confluence. Educ. Horiz. 1986, 65, 45–47. [Google Scholar]
- Winston, P.H. Artificial Intelligence, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1984. [Google Scholar]
- Rouhiainen, L. Inteligencia Artificial. 101 Cosas Que Debes Saber Hoy Sobre Nuestro Futuro, 1st ed.; Alienta Editorial: Barcelona, Spain, 2018. [Google Scholar]
- King, M.R. The future of AI in medicine: A perspective from a chatbot. Ann. Biomed. Eng. 2022, 51, 291–295. [Google Scholar] [CrossRef]
- Pavlik, J.V. Collaborating with ChatGPT: Considering the Implications of Generative Artificial Intelligence for Journalism and Media Education. J. Mass Commun. Educ. 2023, 78, 84–93. [Google Scholar] [CrossRef]
- Budzianowski, P.; Vulić, I. Hello, It’s GPT-2-How Can I Help You? Towards the Use of Pretrained Language Models for Task-Oriented Dialogue Systems. In Proceedings of the 3rd Workshop on Neural Generation and Translation, Hong Kong, China, 4 November 2019; Birch, A., Finch, A., Hayashi, H., Konstas, I., Luong, T., Neubig, G., Oda, Y., Sudoh, K., Eds.; Association for Computational Linguistics: Hong Kong, China, 2019; pp. 15–22. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018. preprint. Available online: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=0CAIQw7AJahcKEwjwzb2hicCAAxUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fopenai-assets%2Fresearch-covers%2Flanguage-unsupervised%2Flanguage_understanding_paper.pdf&psig=AOvVaw3b9TGDzA8vqLvSx7Uj3L3N&ust=1691137695453108&opi=89978449 (accessed on 16 April 2023).
- OpenAI. Introducing ChatGPT 2022. Available online: https://openai.com/blog/chatgpt (accessed on 3 June 2023).
- Murphy, R.F. Artificial Intelligence Applications to Support K–12 Teachers and Teaching: A Review of Promising Applications, Opportunities, and Challenges; RAND Corporation: Santa Monica, CA, USA, 2019. [Google Scholar] [CrossRef]
- Okonkwo, C.W.; Ade-Ibijola, A. Chatbots applications in education: A systematic review. Comput. Educ. Artif. Intell. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Xie, H.H.; Hwang, G.; Wong, T. Editorial Note: From Conventional AI to Modern AI in Education: Re-examining AI and Analytic Techniques for Teaching and Learning. Educ. Technol. Soc 2021, 24, 85–88. [Google Scholar]
- Lin, M.P.C.; Chang, D. Enhancing post-secondary writers’ writing skills with a chatbot. Educ. Technol. Soc. 2020, 23, 78–92. [Google Scholar]
- Murad, D.F.; Irsan, M.; Akhirianto, P.M.; Fernando, E.; Murad, S.A.; Wijaya, M.H. Learning support system using chatbot in “kejar c package” homeschooling program. In Proceedings of the 2019 International Conference on Information and Communications Technology (ICOIACT), Yogyakarta, Indonesia, 24–25 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 32–37. [Google Scholar] [CrossRef]
- Troussas, C.; Krouska, A.; Virvou, M. Integrating an adjusted conversational agent into a mobile-assisted language learning application. In Proceedings of the 2017 IEEE 29th international conference on tools with artificial intelligence (ICTAI), Boston, MA, USA, 6–9 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1153–1157. [Google Scholar] [CrossRef]
- Okonkwo, C.W.; Ade-Ibijola, A. Python-bot: A chatbot for teaching python programming. Eng. Lett. 2020, 29, 25–34. [Google Scholar]
- Thomas, H. Critical literature review on chatbots in education. Int. J. Trend Sci. Res. Dev. 2020, 4, 786–788. [Google Scholar]
- Durall, E.; Kapros, E. Co-design for a competency self-assessment chatbot and survey in science education. In Proceedings of the International Conference on Human-Computer Interaction, Learning and Collaboration Technologies. Human and Technology Ecosystems, Copenhagen, Denmark, 19–24 July 2020; Zaphiris, P., Ioannou, A., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, X.; Wang, Z.; Jiang, M.; Nie, J.; Ding, Y.; Yue, J.; Wu, Y. How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection. arXiv 2023, arXiv:2301.07597. [Google Scholar]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; de Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef]
- Mitrović, S.; Andreoletti, D.; y Ayoub, O. ChatGPT or Human? Detect and explain. Explaining Decisions of Machine Learning Model for Detecting Short ChatGPT-generated Text. arXiv 2023, arXiv:2301.13852. [Google Scholar]
- Gao, C.A.; Howard, F.M.; Markov, N.S.; Dyer, E.C.; Ramesh, S.; Luo, Y.; Pearson, A.T. Comparing scientific abstracts generated by ChatGPT to original abstracts with detectors and blinded human reviewers. NPJ Digit. Med. 2023, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Olivares, S.; Cózar-Gutiérrez, R.; López-Fernández, C.; González-Calero, J.A. Training future primary teachers in historical thinking through error-based learning and learning analytics. Humanit. Soc. Sci. Commun. 2023, 10, 44. [Google Scholar] [CrossRef]
- Gómez Carrasco, C.J.; Rodríguez-Medina, J.; Chaparro Sainz, Á.; Alonso García, S. Digital resources and teaching approaches in preservice training of History teachers. Educación XX1 2022, 25, 143–170. [Google Scholar] [CrossRef]
- Gómez-Carrasco, C.J.; Miralles-Martínez, P. Los Espejos de Clío. Usos y Abusos de la Historia en el Ámbito Escolar; Sílex: Madrid, Spain, 2017. [Google Scholar]
- Seixas, P.; Morton, T. The Big Six Historical Thinking Concepts; Nelson: Toronto, ON, Canada, 2013. [Google Scholar]
- Levstik, L.; Barton, K. Doing History. Investigating with Children in Elementary and Middle Schools; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Bauman, Z. Modernidad Líquida, 1st ed.; Fondo de Cultura Económica: Buenos Aires, Argentina, 2003. [Google Scholar]
- Moreno-Vera, J.R. Epilogue: “We wanna learn like common people whatever common people did”. In Re-Imagining the Teaching of European History. Promoting Civic Education and Historical Consciousness; Gómez-Carrasco, C.J., Ed.; Routledge: New York, NY, USA, 2023; pp. 219–223. [Google Scholar]
- Kesternich, I.; Siflinger, B.; Smith, J.P.; Winter, J.K. The effects of World War II on economic and health outcomes across Europe. Rev. Econ. Stat. 2014, 96, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Sáiz, J.; Gómez, C.J. Investigar el pensamiento histórico y narrativo en la formación del profesorado: Fundamentos teóricos y metodológicos. [Researching historical and narrative thinking in teacher education: Theoretical and methodological basis]. Revocation Elect. Int. For. Prof. 2016, 19, 175–190. [Google Scholar] [CrossRef]
- Bisquerra, R. Metodología de la Investigación Educativa; La Muralla: Madrid, Spain, 2004. [Google Scholar]
- Cotton, D.R.E.; Cotton, P.A.; Shipway, R. Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innov. Educ. Teach. Int. 2023, 1–12. [Google Scholar] [CrossRef]
Argumentative Text | ||||||
---|---|---|---|---|---|---|
Student Text | AI Text | |||||
Dimensions | Mean | SD | Mean | SD | Z | p |
Cause and consequence | 1.98 | 0.816 | 2.29 | 0.736 | −3.31 | 0.001 |
Continuity and change | 1.86 | 0.525 | 2.30 | 0.669 | −4.72 | <0.001 |
Substantive historical content | 1.72 | 0.733 | 2.28 | 0.617 | −5.36 | <0.001 |
Historical significance | 2.17 | 0.706 | 2.34 | 0.635 | −1.92 | 0.055 |
Historical awareness | 2.05 | 0.746 | 2.39 | 0.744 | −3.48 | <0.001 |
Presence of substantive metaconcepts | 1.39 | 0.645 | 1.89 | 0.685 | −5.16 | <0.001 |
Complexity of narratives | 1.92 | 0.860 | 2.22 | 0.79 | −3.01 | <0.001 |
Total score | 1.87 | 0.39 | 2.25 | 0.43 | −6.22 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirado-Olivares, S.; Navío-Inglés, M.; O’Connor-Jiménez, P.; Cózar-Gutiérrez, R. From Human to Machine: Investigating the Effectiveness of the Conversational AI ChatGPT in Historical Thinking. Educ. Sci. 2023, 13, 803. https://doi.org/10.3390/educsci13080803
Tirado-Olivares S, Navío-Inglés M, O’Connor-Jiménez P, Cózar-Gutiérrez R. From Human to Machine: Investigating the Effectiveness of the Conversational AI ChatGPT in Historical Thinking. Education Sciences. 2023; 13(8):803. https://doi.org/10.3390/educsci13080803
Chicago/Turabian StyleTirado-Olivares, Sergio, Maria Navío-Inglés, Paula O’Connor-Jiménez, and Ramón Cózar-Gutiérrez. 2023. "From Human to Machine: Investigating the Effectiveness of the Conversational AI ChatGPT in Historical Thinking" Education Sciences 13, no. 8: 803. https://doi.org/10.3390/educsci13080803
APA StyleTirado-Olivares, S., Navío-Inglés, M., O’Connor-Jiménez, P., & Cózar-Gutiérrez, R. (2023). From Human to Machine: Investigating the Effectiveness of the Conversational AI ChatGPT in Historical Thinking. Education Sciences, 13(8), 803. https://doi.org/10.3390/educsci13080803