In-Situ Contact Surface Characterization in a MEMS Ohmic Switch under Low Current Switching
Abstract
:1. Introduction
2. Materials and Methods
2.1. In-Situ Contact Evolution (ICE) Apparatus for MEMS Contact Testing
2.2. Contact Manufacture
2.3. Test Circuit
2.4. Contact Force Determination
2.5. Switching Test Procedure
2.6. Surface Measurement Analysis
3. Results
3.1. Contact Force and Demanded Actuator Displacement vs. Contact Resistance
3.2. Cold Switched Contact Sequence
3.3. 20 mA 4 V Direct Current (DC) Hot Switched Contact Sequence
4. Discussion
4.1. Cold Switched Contact Sequence
4.2. Hot Switched Contact Sequence 20 mA
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rebeiz, G.M. RF MEMS: Theory, Design, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Iannacci, J. RF-MEMS: An enabling technology for modern wireless systems bearing a market potential still not fully displayed. Microsyst. Technol. 2015, 21, 2039–2052. [Google Scholar] [CrossRef]
- Toler, B.F.; Coutu, R.A.; McBride, J.W. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches. J. Micromech. Microeng. 2013, 23, 103001. [Google Scholar] [CrossRef]
- Laurvick, T.V.; Coutu, R.A. Improving gold/gold microcontact performance and reliability under low-frequency ac through circuit loading. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 345–353. [Google Scholar] [CrossRef]
- Yunus, E.M.; McBride, J.W.; Spearing, S.M. The relationship between contact resistance and contact force on au-coated carbon nanotube surfaces under low force conditions. IEEE Trans. Compon. Packag. Technol. 2009, 32, 650–657. [Google Scholar] [CrossRef]
- Holm, R. Electric Contacts: Theory and Application; Springer Science & Business Media: Berlin, Germany, 1958. [Google Scholar]
- Hyman, D.; Mehregany, M. Contact physics of gold microcontacts for mems switches. In Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts, Arlington, VA, USA, 26–28 October 1998; IEEE: New York, NY, USA, 1998; pp. 133–140. [Google Scholar]
- Gouldstone, A.; Koh, H.-J.; Zeng, K.-Y.; Giannakopoulos, A.; Suresh, S. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 2000, 48, 2277–2295. [Google Scholar] [CrossRef]
- Jensen, B.D.; Huang, K.; Chow, L.L.W.; Kurabayashi, K. Low-force contact heating and softening using micromechanical switches in diffusive-ballistic electron-transport transition. Appl. Phys. Lett. 2005, 86, 023507. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Lau, Y.; Timsit, R.S. On the spreading resistance of thin-film contacts. IEEE Trans. Electron. Dev. 2012, 59, 1936–1940. [Google Scholar] [CrossRef]
- Coutu, R.A.; McBride, J.W.; Starman, L.A. Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics. In Proceedings of the 55th IEEE Holm Conference on Electrical Contacts, Vancouver, BC, Canada, 14–16 September 2009; IEEE: New York, NY, USA, 2009. [Google Scholar]
- Malucci, R.D. The impact on current density and constriction resistance from bridge structures in real contacts. In Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; IEEE: New York, NY, USA; pp. 59–62. [Google Scholar]
- Fukuyama, Y.; Sakamoto, N.; Kaneko, N.-H.; Kondo, T.; Toyoizumi, J.; Yudate, T. The effect of the distribution of α-spots in the peripheral part of an apparent contact point on constriction resistance. In Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; IEEE: New York, NY, USA; pp. 302–305. [Google Scholar]
- Liu, H.; McBride, J.W. The influence of multiscale surface roughness on contact mechanics using finite element modeling: Applied to a au-coated cnt composite electrical contact surface. In Proceedings of the 2017 IEEE Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; IEEE: New York, NY, USA; pp. 229–235. [Google Scholar]
- Lewis, A.P.; McBride, J.W.; Jiang, L. Evolution of voltage transients during the switching of a mems relay with au/mwcnt contacts. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 1747–1754. [Google Scholar] [CrossRef]
- Mcbride, J.; Yunas, E.; Spearing, S. Gold coated carbon nanotube surfaces as low force electrical contacts for mems devices: Part 1. In Proceedings of the 59th IEEE Holm Conference on Electrical Contacts, Newport, RI, USA, 14–16 September 2009. [Google Scholar]
- Ren, W. Unstable electrical contact behaviour at nanoscale for mems switch. In Proceedings of the 28th International Conference on Electric Contacts, Edinburgh, UK, 6–9 June 2016; pp. 213–218. [Google Scholar]
- Stilson, C.; Coutu, R. Contact resistance evolution of highly cycled, lightly loaded micro-contacts. In Proceedings of the SPIE MOEMS-MEMS 2014, San Francisco, CA, USA, 1–6 February 2014; International Society for Optics and Photonics: San Francisco, CA, USA. [Google Scholar]
- Doduco. Databook of Electrical Contacts; Duduco GmbH: Pforzheim, Germany, 2012. [Google Scholar]
- Koren, P.; Nahemow, M.; Slade, P. The molten metal bridge stage of opening electrical contacts. IEEE Trans. Parts Hybrids Packag. 1975, 11, 4–10. [Google Scholar] [CrossRef]
- McBride, J. The wear processes of gold coated multi-walled carbon nanotube surfaces used as electrical contacts for micro-electro-mechanical switching. Nanosci. Nanotechnol. Lett. 2010, 2, 357–361. [Google Scholar] [CrossRef]
- Bull, T.; Mcbride, J. The influence of circuit parameters on molten metal bridge energy in a mems relay testing platform. In Proceedings of the 2016 Twenty Eighth International Conference on Electrical Contacts, Edinburgh, UK, 6–9 June 2016. [Google Scholar]
- Leach, R.E. Optical Measurement of Surface Topography; Springer: Berlin, Germany, 2011. [Google Scholar]
- Nouira, H.; El-Hayek, N.; Yuan, X.; Anwer, N.; Salgado, J. Metrological Characterization of Optical Confocal Sensors Measurements (20 and 350 Travel Ranges); Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2014; p. 012015. [Google Scholar]
- Taicaan Technologies Xyris 4000. Available online: http://www.taicaan.com/xyris-4000/ (accessed on 29 March 2018).
- McBride, J.; Jiang, L.; Chianrabutra, C. Fine transfer in electrical switching contacts using gold coated carbon-nanotubes. In Proceedings of the 26th International Conference on Electrical Contacts (ICEC 2012), Beijing, China, 14–17 May 2012; IET: Beijing, China; pp. 353–358. [Google Scholar]
- Mcbride, J.W. A review of volumetric erosion studies in low voltage electrical contacts. IEICE Trans. Electron. 2003, 86, 908–914. [Google Scholar]
- Slade, P.G. Electrical Contacts: Principles and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Jensen, B.D.; Huang, K.W.; Chow, L.L.W.; Kurabayashi, K. Adhesion effects on contact opening dynamics in micromachined switches. J. Appl. Phys. 2005, 97, 103535. [Google Scholar] [CrossRef]
- Lewis, A.; Down, M.; Chianrabutra, C.; Jiang, L.; Spearing, S.; McBride, J. The effect on switching lifetime of chromium adhesion layers in gold-coated electrical contacts under cold and hot switching conditions. In Proceedings of the 2013 IEEE 59th Holm Conference on Electrical Contacts (HOLM), Newport, RI, USA, 22–25 September 2013; IEEE: New York, NY, USA, 2013; pp. 1–7. [Google Scholar]
- Cognard, J. Adhesion to gold: A review. Gold Bull. 1984, 17, 131–139. [Google Scholar] [CrossRef]
- Spearing, S.M. Materials issues in microelectromechanical systems (MEMS). Acta Mater. 2000, 48, 179–196. [Google Scholar] [CrossRef]
- Sawada, S.; Tsukiji, S.; Shimada, S.; Tamai, T.; Hattori, Y. Current density analysis of thin film effect in contact area on led wafer. In Proceedings of the 58th Holm Conference on Electrical Contacts, Portland, OR, USA, 23–26 September 2012; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Lisec, T.; Stoppel, F.; Kaden, D.; Heinrich, F.; Neumann, A.; Wagner, B. MEMS switch with prolonged lifetime under hot switching conditions based on gold as contact material. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: New York, NY, USA; pp. 2043–2046. [Google Scholar]
Measurement Principle | Vertical (Z) Resolution | Vertical Range | XY Range | XY On-Axis Repeatability | Sensor Light Source | Sensor Spatial (XY) Resolution |
---|---|---|---|---|---|---|
Point Autofocus | 10 nm | 0.6 mm | 25 mm × 25 mm | ±50 nm | 655 nm (Red Laser) | <1 µm |
Noise Floor (Optically Flat Standard) Sa | Step Height Accuracy (2660 µm Standard) Mean | Step Height Repeatability (2660 µm Standard) Standard Deviation |
---|---|---|
24.2 nm | 2660 µm | 32 nm |
Test Condition | Circuit Voltage (V) | Circuit Current (mA) | Contact Force (µN) | Number of Switching Cycles |
---|---|---|---|---|
Cold Switched | 0 1 | 0 1 | 100 | 10 |
Hot Switched 20 mA | 4.1 | 20 | 500 | 20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bull, T.G.; McBride, J.W. In-Situ Contact Surface Characterization in a MEMS Ohmic Switch under Low Current Switching. Technologies 2018, 6, 47. https://doi.org/10.3390/technologies6020047
Bull TG, McBride JW. In-Situ Contact Surface Characterization in a MEMS Ohmic Switch under Low Current Switching. Technologies. 2018; 6(2):47. https://doi.org/10.3390/technologies6020047
Chicago/Turabian StyleBull, Thomas G., and John W. McBride. 2018. "In-Situ Contact Surface Characterization in a MEMS Ohmic Switch under Low Current Switching" Technologies 6, no. 2: 47. https://doi.org/10.3390/technologies6020047