Data-Driven Interactive Lens Control System Based on Dielectric Elastomer
Abstract
1. Introduction
2. Soft Lens Design and Eye Interactive Control
2.1. Soft Lens Design
2.2. Eye Movement Interactive Control
3. Data Analysis and Result Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Z.Z.; Kuang, F.L.; Zhang, N.H.; Li, L. Adaptive liquid lens with tunable aperture. IEEE Photonics Technol. Lett. 2021, 33, 1297–1300. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, J.G.; Gao, Y.; Cao, L.L.; Liu, X.J.; Zhu, Z.C. Soft lenses with large focal length tuning range based on stacked PVC gel actuators. Smart Mater. Struct. 2024, 33, 095002. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, S.; Tian, Z.; Zhu, Z.J.; Li, Y.J.; Chen, X.Y.; Wang, Z.L.; Yu, Z.Z.; Yang, D. Self-Powered and Self-Healable Extraocular-Muscle-Like Actuator Based on Dielectric Elastomer Actuator and Triboelectric Nanogenerator. Adv. Mater. 2024, 36, 2309893. [Google Scholar] [CrossRef]
- Li, G.R.; Chen, X.P.; Zhou, F.H.; Liang, Y.M.; Xiao, Y.H.; Cao, X.; Zhang, Z.; Zhang, M.Q.; Wu, B.S.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef]
- Sirbu, I.D.; Moretti, G.; Bortolotti, G.; Bolignari, M.; Diré, S.; Fambri, L.; Vertechy, R.; Fontana, M. Electrostatic bellow muscle actuators and energy harvesters that stack up. Sci. Robot. 2021, 6, eaaz5796. [Google Scholar] [CrossRef]
- Xie, X.; Zheng, S.; Tan, J.; Cheng, J.Z.; Cai, J.C.; Xu, Z.S.; Shiju, E. An Integrated Charge Excitation Alternative Current Dielectric Elastomer Generator for Joint Motion Energy Harvesting. Adv. Mater. Technol. 2024, 9, 2301172. [Google Scholar] [CrossRef]
- Deaconescu, A.; Deaconescu, T. Compliant Parallel Asymmetrical Gripper System. Technologies 2025, 13, 86. [Google Scholar] [CrossRef]
- Wang, J.; Xu, S.; Dai, Y.; Gao, S. An Eye Tracking and Brain–Computer Interface-Based Human–Environment Interactive System for Amyotrophic Lateral Sclerosis Patients. IEEE Sens. J. 2023, 23, 24095–24106. [Google Scholar] [CrossRef]
- Li, J.R.; Wang, Y.; Liu, L.W.; Xu, S.; Liu, Y.J.; Leng, J.S.; Cai, S.Q. A biomimetic soft lens controlled by electrooculographic signal. Adv. Funct. Mater. 2019, 29, 1903762. [Google Scholar] [CrossRef]
- Kaur, A. Wheelchair control for disabled patients using EMG/EOG based human machine interface: A review. J. Med. Eng. Technol. 2021, 45, 61–74. [Google Scholar] [CrossRef]
- Ileri, R.; Latifolu, F.; Demirci, E. A novel approach for detection of dyslexia using convolutional neural network with EOG signals. Med. Biol. Eng. Comput. 2022, 60, 3041–3055. [Google Scholar] [CrossRef]
- He, Q.S.; Yin, G.X.; Vokoun, D.; Shen, Q.; Lu, J.; Liu, X.; Xu, X.; Yu, M.; Dai, Z. Review on improvement, modeling, and application of ionic polymer metal composite artificial muscle. J. Bionic Eng. 2022, 19, 279–298. [Google Scholar] [CrossRef]
- O’Neill, M.R.; Sessions, D.; Arora, N.; Chen, V.W.; Juhl, A.; Huff, G.H.; Rudykh, S.; Shepherd, R.F.; Buskohl, P.R. Dielectric Elastomer Architectures with Strain–Tunable Permittivity. Adv. Mater. Technol. 2022, 7, 2200296. [Google Scholar] [CrossRef]
- Tomori, H.; Hiyoshi, K.; Kimura, S.; Ishiguri, N.; Iwata, T. A Self-Deformation Robot Design Incorporating Bending-Type Pneumatic Artificial Muscles. Technologies 2019, 7, 51. [Google Scholar] [CrossRef]
- Li, T.F.; Li, G.R.; Liang, Y.M.; Cheng, T.Y.; Dai, J.; Yang, X.; Liu, B.Y.; Zeng, Z.D.; Huang, Z.L.; Luo, Y.W.; et al. Fast-moving soft electronic fish. Sci. Adv. 2017, 3, e1602045. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wen, H.; Zhang, H.; Huang, P.L.; Liu, L.; Hu, H.Y. Recent advances in biodegradable electronics- from fundament to the next-generation multi-functional, medical and environmental device. Sustain. Mater. Technol. 2023, 35, e00530. [Google Scholar] [CrossRef]
- Nam, S.; Yun, S.; Yoon, J.W.; Park, S.; Park, S.K.; Mun, S.; Park, B.; Kyung, K.U. A robust soft lens for tunable camera application using dielectric elastomer actuators. Soft Robot. 2018, 5, 777–782. [Google Scholar] [CrossRef]
- Suo, Z.G. Theory of dielectric elastomers. Acta Mech. Solida Sin. 2010, 23, 549–578. [Google Scholar] [CrossRef]
- Carpi, F.; Frediani, G.; Turco, S.; Rossi, D.D. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 2011, 21, 4152–4158. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Li, P.; Gupta, U.; Ouyang, J.; Zhu, J. Tunable soft lens of large focal length change. Soft Robot. 2022, 9, 705–712. [Google Scholar] [CrossRef]
- Lau, G.K.; La, T.G.; Shiau, L.L.; Tan, A.W.Y. Challenges of using dielectric elastomer actuators to tune liquid lens. Proc. SPIE-Int. Soc. Opt. Eng. 2014, 9056, 90561J. [Google Scholar]
- Zhong, H.; Xue, Q.; Li, J.M.; He, Y.; Xie, Y.; Yang, C. Stretchable transparent polyelectrolyte elastomers for all-Solid tunable lenses of excellent stability based on electro–mechano–optical coupling. Adv. Mater. Technol. 2022, 8, 2200947. [Google Scholar] [CrossRef]
- Yin, X.C.; Zhou, P.Y.; Wen, S.; Zhang, J.T. Origami improved dielectric elastomer actuation for tunable lens. IEEE Trans. Instrum. Meas. 2022, 71, 7502709. [Google Scholar] [CrossRef]
- Yu, Y.; Huo, H.; Liu, J. Facial expression recognition based on multi-channel fusion and lightweight neural network. Soft Comput.—Fusion Found. Methodol. Appl. 2023, 27, 18549–18563. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, Z.J.; Zhang, Z.S.; Zhu, J.X. Miniature and tunable high voltage-driven soft electroactive biconvex lenses for optical visual identification. J. Micromech. Microeng. 2022, 32, 064004. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, Y.J.; Wang, Y.N.; Liu, J.; Xie, Y.X. A computational model of bio-inspired tunable lenses. Mech. Based Des. Struct. Mach. 2018, 46, 800–808. [Google Scholar] [CrossRef]
- Pieroni, M.; Lagomarsini, C.; De Rossi, D.; Carpi, F. Electrically tunable soft solid lens inspired by reptile and bird accommodation. Bioinspir. Biomim. 2016, 11, 065003. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, B.; Xi, M.; Zhan, Y.; Zhang, B.; Zhu, Y. Flexible electronics in humanoid five senses for the era of artificial intelligence of things (AIoT). Mater. Today 2025, 88, 1066–1086. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, Z.J.; Zhang, Z.S. Focus-tunable imaging analyses of the liquid lens based on dielectric elastomer actuator. Bull. Mater. Sci. 2021, 44, 148. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.X.; Wen, H.Y.; Xia, Z.J.; Zhang, Z.S. Biomimetic human eyes in adaptive lenses with conductive gels. J. Mech. Behav. Biomed. Mater. 2023, 139, 105689. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Hong, J.; Zhu, J.; Duan, S.; Xia, M.; Chen, J.; Sun, B.; Xi, M.; Gao, F.; Xiao, Y.; et al. Humanoid electronic-skin technology for the era of artificial intelligence of things (AIoT). Matter 2025, 50, 428–438. [Google Scholar]








| Command (Hex) | Function |
|---|---|
| 10 | Query device connection status |
| 20 | Query EOG sensor data |
| 3 * | Close specified relays (The values of * are 1, 2, 4, and 8, representing relays A, B, C, and D, respectively) |
| 4 * | Disconnect specified relays (* Take 1, 2, 4, 8, representing relays A, B, C, and D, respectively) |
| Field | Length (Byte) | Annotation |
|---|---|---|
| Frame header | 1 | 0 x EB |
| The executed instructions | 1 | 0 x 10 0 x 20 0 x 3 * 0 x 4 * |
| Execution state | 1 | 0 x 80 |
| Up and down channel data | 2 | ADC value |
| Left and right channel data | 2 | ADC value |
| Timestamp | 4 | Millisecond |
| Check code | 1 | Perform CRC8 check on the first 11 bytes |
| Action | Actual Moment/s | Identify Result/s | Absolute Error/s | Actual Moment/s | Identify Result/s | Absolute Error/s |
|---|---|---|---|---|---|---|
| Look left | 10.87 | 10.00 | 0.87 | 107.91 | 106.60 | 1.31 |
| Stare ahead | 18.62 | 18.29 | 0.33 | 115.33 | 114.89 | 0.44 |
| Look right | 35.89 | 34.80 | 1.09 | 132.33 | 131.34 | 0.99 |
| Stare ahead | 42.55 | 42.33 | 0.22 | 139.03 | 138.71 | 0.32 |
| Look up | 61.75 | 60.32 | 0.43 | 159.21 | 158.77 | 0.44 |
| Stare ahead | 66.75 | 67.63 | 0.88 | 166.21 | 166.21 | 0.00 |
| Look down | 83.56 | 81.93 | 1.63 | 189.81 | 188.17 | 1.64 |
| Stare ahead | 88.79 | 88.90 | 0.11 | 194.18 | 194.94 | 0.76 |
| Voltage (kV) | 0 | 2.1 | 3.4 | 4.6 | 5.7 | 6.5 | 7.5 | 7.8 |
| Focal length (mm) | 112.5 | 107.4 | 101.9 | 94.3 | 85.1 | 73.6 | 56.8 | 49.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Xia, Z.; Zhang, Z.; Zhu, J. Data-Driven Interactive Lens Control System Based on Dielectric Elastomer. Technologies 2026, 14, 68. https://doi.org/10.3390/technologies14010068
Zhang H, Xia Z, Zhang Z, Zhu J. Data-Driven Interactive Lens Control System Based on Dielectric Elastomer. Technologies. 2026; 14(1):68. https://doi.org/10.3390/technologies14010068
Chicago/Turabian StyleZhang, Hui, Zhijie Xia, Zhisheng Zhang, and Jianxiong Zhu. 2026. "Data-Driven Interactive Lens Control System Based on Dielectric Elastomer" Technologies 14, no. 1: 68. https://doi.org/10.3390/technologies14010068
APA StyleZhang, H., Xia, Z., Zhang, Z., & Zhu, J. (2026). Data-Driven Interactive Lens Control System Based on Dielectric Elastomer. Technologies, 14(1), 68. https://doi.org/10.3390/technologies14010068

