How Synonymic Taste Words Alter Perceived Taste in American Consumers
Abstract
:1. Introduction
1.1. Taste Words
1.2. Associated Taste Words and Foods
1.3. Aim and Scope
2. Experiment 1: Category Fluency Tasks
2.1. Participants
2.2. Procedure
2.3. Stimuli
2.4. Data Analysis
2.5. Results
2.6. Discussion of Experiment 1
3. Experiment 2: Taste Tests
3.1. Procedure
3.2. Participants and Stimuli
3.3. Data Analysis
3.4. Results
3.5. Discussion of Experiment 2
4. General Discussion
4.1. Limitations and Future Directions
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 73 Words & Adjectives to Describe Food. (2023). Food service resources. Available online: https://www.webstaurantstore.com/article/53/how-to-write-a-menu.html (accessed on 24 May 2025).
- Anderson, E. C., & Barrett, L. F. (2016). Affective beliefs influence the experience of eating meat. PLoS ONE, 11, e0160424. [Google Scholar] [CrossRef] [PubMed]
- Ankerstein, C. A., & Pereira, G. M. (2013). Talking about taste: Starved for words. In C. Gerhardt, M. Frobenius, & S. Ley (Eds.), Culinary linguistics: The chef’s special (vol. 10). John Benjamins Publishing Company. [Google Scholar] [CrossRef]
- Arppe, A., & Järvikivi, J. (2007). Every method counts: Combining corpus-based and experimental evidence in the study of synonymy. Corpus Linguistics and Linguistic Theory, 3, 131–159. [Google Scholar] [CrossRef]
- Bagli, M. (2018). Defining taste in English informant categorization. In A. Baicchi, R. Digonnet, & J. L. Sandford (Eds.), Sensory perceptions in language, embodiment and epistemology (vol. 42). Springer International Publishing. [Google Scholar] [CrossRef]
- Bagli, M. (2021). Tastes we live by: The linguistic conceptualisation of taste in English. De Gruyter Mouton. [Google Scholar]
- Banks, B., & Connell, L. (2023). Category production norms for 117 concrete and abstract categories. Behavior Research Methods, 55, 1292–1313. [Google Scholar] [CrossRef] [PubMed]
- Barbeiro, L. F., João, C., & Santos, S. (2011). The pathways to higher education: Lexical availability in adult candidate students and in young first-year students. International Journal of Lifelong Education, 30, 309–329. [Google Scholar] [CrossRef]
- Bieler, L., & Runte, M. (2010). Semantik der Sinne: Die lexikografische Erfassung von Geschmacksadjektiven. Lexicographica, 26, 201–215. [Google Scholar] [CrossRef]
- Boltong, A., Keast, R., & Aranda, S. (2011). Talking about taste: How do oncology clinicians discuss and document taste problems? Cancer Forum, 35, 81–87. [Google Scholar]
- Cheok, A., Cai, J., & Yan, Y. (2023). The influence of perceived spiciness on actual taste experience: An experimental study. Research Square. [Google Scholar]
- Christensen, R. H. B. (2023). Ordinal—Regression models for ordinal data. Available online: https://cran.r-project.org/web/packages/ordinal/index.html (accessed on 20 June 2024).
- Croft, W. (2003). Typology. In M. Aronoff, & J. Rees-Miller (Eds.), The handbook of linguistics. Blackwell Publishing. [Google Scholar] [CrossRef]
- Cruse, D. A. (2017). The lexicon. In M. Aronoff, & J. Rees-Miller (Eds.), The handbook of linguistics. Blackwell Publishing. [Google Scholar] [CrossRef]
- Davies, M. (2020). The corpus of contemporary American English (COCA). Available online: https://www.english-corpora.org/coca/ (accessed on 24 May 2025).
- Dąbrowska, E. (2014). Words that go together: Measuring individual differences in native speakers’ knowledge of collocations. The Mental Lexicon, 9, 401–418. [Google Scholar] [CrossRef]
- Depierre, A. (2009). English and French taste words used metaphorically: 18th congress of ECRO portorož, slovenia, 3–6 Sept 2008 symposium: Talking about taste: Linking the views of the terminologist, the sensory analyst, and the food scientist. Chemosensory Perception, 2, 40–52. [Google Scholar] [CrossRef]
- Diederich, C. (2015). Sensory adjectives in the discourse of food: A frame-semantic approach to language and perception. John Benjamins Publishing Company. [Google Scholar]
- Evans, E. A., Ballen, F. H., & Siddiq, M. (2017). Mango production, global trade, consumption trends, and postharvest processing and nutrition. In M. Siddiq, J. K. Brecht, & J. S. Sidhu (Eds.), Handbook of mango fruit (pp. 1–16). John Wiley & Sons. [Google Scholar] [CrossRef]
- Fernández-Fontecha, A. (2021). The role of learner creativity in L2 semantic fluency: An exploratory study. System, 103, 102658. [Google Scholar] [CrossRef]
- Fiedler, S. (2022). “Mit dem Topping bin ich auch fein”—Anglicisms in a German TV cooking show. Espaces Linguistiques, 4, 1–22. [Google Scholar] [CrossRef]
- Fong, M. C.-M., Hui, N. Y., Fung, E. S.-W., Ma, M. K.-H., Law, T. S.-T., Wang, X., & Wang, W. S. (2020). Which cognitive functions subserve clustering and switching in category fluency? Generalisations from an extended set of semantic categories using linear mixed-effects modelling. Quarterly Journal of Experimental Psychology, 73, 2132–2147. [Google Scholar] [CrossRef] [PubMed]
- Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd ed.). Sage Publications. [Google Scholar]
- Frothy Market. (n.d.). Corporate finance institute. Available online: https://corporatefinanceinstitute.com/resources/career-map/sell-side/capital-markets/frothy-market/ (accessed on 24 May 2025).
- Gerhardt, C. (2018). Catherine Diederich, sensory adjectives in the discourse of food. Language and Cognition, 10(2), 374–377. [Google Scholar] [CrossRef]
- Ghemulet, M., Baskini, M., Messinis, L., Mouza, E., & Proios, H. (2014). Taste perception analysis using a semantic verbal fluency task. Psychology Research and Behavior Management, 7, 261–272. [Google Scholar] [CrossRef]
- Goldberg, J. H. (2001). The impact of weight-loss intervention on eating behavior [Ph.D. dissertation, Stanford University]. [Google Scholar]
- Gomez, P., & Spielmann, N. (2019). A taste of the elite: The effect of pairing food products with elite groups on taste perceptions. Journal of Business Research, 100, 175–183. [Google Scholar] [CrossRef]
- Gries, S. (2009). What is corpus linguistics? Language and Linguistics Compass, 3, 1225–1241. [Google Scholar] [CrossRef]
- Hamilton, L. M., Neill, C. L., & Lahne, J. (2023). Flavor language in expert reviews versus consumer preferences: An application to expensive American whiskeys. Food Quality and Preference, 109, 104892. [Google Scholar] [CrossRef]
- Hanks, P. (2012). The corpus revolution in lexicography. International Journal of Lexicography, 25(4), 398–436. [Google Scholar] [CrossRef]
- Harland, T., & Wald, N. (2018). Vanilla teaching as a rational choice: The impact of research and compliance on teacher development. Teaching in Higher Education, 23, 419–434. [Google Scholar] [CrossRef]
- Heintz, C. M., & Kader, A. A. (1983). Procedures for the sensory evaluation of horticultural crops1,2. HortScience, 18, 18–22. [Google Scholar] [CrossRef]
- Industry at a Glance. (n.d.). U.S. apple association. Available online: https://usapple.org/industry-at-a-glance (accessed on 20 June 2024).
- Jaworska, S. (2017). Metaphors we travel by: A corpus-assisted study of metaphors in promotional tourism discourse. Metaphor and Symbol, 32, 161–177. [Google Scholar] [CrossRef]
- Jeltema, M., Beckley, J., & Vahalik, J. (2015). Model for understanding consumer textural food choice. Food Science and Nutrition, 3, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S., & Lee, J. (2021). Effects of cultural background on consumer perception and acceptability of foods and drinks: A review of latest cross-cultural studies. Current Opinion in Food Science, 42, 248–256. [Google Scholar] [CrossRef]
- Johnson, T. M., & Pfenninger, S. E. (2021). Tasty words: Using frame semantics to enhance consumer liking of potato chips and apples. International Journal of Applied Linguistics, 31, 79–94. [Google Scholar] [CrossRef]
- Jurafsky, D. (2015). The language of food: A linguist reads the menu. W.W. Norton & Company. [Google Scholar]
- Jurafsky, D., Chahuneau, V., Routledge, B. R., & Smith, N. A. (2016). Linguistic markers of status in food culture: Bourdieu’s distinction in a menu corpus. Journal of Cultural Analytics, 1, 1–24. [Google Scholar] [CrossRef]
- Karagiannis, D., Hatzithomas, L., Fotiadis, T., & Gasteratos, A. (2022). The impact of brand awareness and country of origin in the advertising effectiveness of Greek food products in the United Kingdom: The case of Greek yogurt. Foods, 11, 4019. [Google Scholar] [CrossRef]
- Ke, Q., & Wang, W. (2013). The adjective frequency in advertising English slogans. Theory and Practice in Language Studies, 3, 275–284. [Google Scholar] [CrossRef]
- Kiang, M., & Kutas, M. (2006). Abnormal typicality of responses on a category fluency task in schizotypy. Psychiatry Research, 145, 119–126. [Google Scholar] [CrossRef]
- Koukova, N. T., Wang, R. J.-H., & Isaac, M. S. (2023). “If you loved our product”: Do conditional review requests harm retailer loyalty? Journal of Retailing, 99, 85–101. [Google Scholar] [CrossRef]
- Kumar, R., & Chambers, E. (2019). Understanding the terminology for snack foods and their texture by consumers in four languages: A qualitative study. Foods, 8, 484. [Google Scholar] [CrossRef]
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1–26. [Google Scholar] [CrossRef]
- Lehrer, K., & Lehrer, A. (2016). The language of taste. Inquiry, 59, 752–765. [Google Scholar] [CrossRef]
- López Arroyo, B., & Roberts, R. P. (2016). Differences in wine tasting notes in English and Spanish. Babel. Revue Internationale de la Traduction/International Journal of Translation, 62(3), 370–401. [Google Scholar] [CrossRef]
- Mason, D. D., & Koch, E. J. (1953). Some problems in the design and statistical analysis of taste tests. Biometrics, 9, 39–46. [Google Scholar] [CrossRef]
- Maughan, C., Tansawat, R., Cornforth, D., Ward, R., & Martini, S. (2012). Development of a beef flavor lexicon and its application to compare the flavor profile and consumer acceptance of rib steaks from grass-or grain-fed cattle. Meat Science, 90, 116–121. [Google Scholar] [CrossRef]
- Mazzuca, C., & Majid, A. (2023). The semantic representation of food is shaped by cultural experience. Language and Cognition, 15, 651–669. [Google Scholar] [CrossRef]
- Meilleur, L. R. (2012). Manipulating attention to improve preventive health behaviors [Ph.D. dissertation, Ohio State University]. [Google Scholar]
- Melekoglu, E. (2023). Healthy food choice education for undergraduate university students: A quasi-experimental design. European Review for Medical and Pharmacological Sciences, 27, 8975–8984. [Google Scholar] [CrossRef]
- Mollin, S. (2009). Combining corpus linguistic and psychological data on word co-occurrences: Corpus collocates versus word associations. Corpus Linguistics and Linguistic Theory, 5(2), 175–200. [Google Scholar] [CrossRef]
- Murphy, M. L. (2013). What we talk about when we talk about synonyms: (And what it can tell us about thesauruses). International Journal of Lexicography, 26(3), 279–304. [Google Scholar] [CrossRef]
- Ninomiya, K. (2015). Science of umami taste: Adaptation to gastronomic culture. Flavour, 4(1), 13. [Google Scholar] [CrossRef]
- Okamoto, M., Wada, Y., Yamaguchi, Y., Kimura, A., Dan, H., Masuda, T., Singh, A. K., Clowney, L., & Dan, I. (2009). Influences of food-name labels on perceived tastes. Chemical Senses, 34, 187–194. [Google Scholar] [CrossRef]
- Paccosi, T., Menini, S., Leonardelli, E., Barzon, I., & Tonelli, S. (2023, December 6). Scent and sensibility: Perception shifts in the olfactory domain. 4th Workshop on Computational Approaches to Historical Language Change (pp. 143–152), Singapore. [Google Scholar]
- Peng-Li, D., Byrne, D. V., Chan, R. C. K., & Wang, Q. J. (2020). The influence of taste-congruent soundtracks on visual attention and food choice: A cross-cultural eye-tracking study in Chinese and Danish consumers. Food Quality and Preference, 85, 103962. [Google Scholar] [CrossRef]
- Perdue, S. W., Driscoll, D. L., & Petrykowski, A. (2017). Centering institutional status and scholarly identity: An analysis of writing center administration position advertisements, 2004–2014. Writing Center Journal, 36, 265–293. [Google Scholar] [CrossRef]
- Pettersson-Traba, D. (2021). A diachronic perspective on near-synonymy: The concept of SWEET-SMELLING in American English. Corpus Linguistics and Linguistic Theory, 17(2), 319–349. [Google Scholar] [CrossRef]
- Poortvliet, M. (2017). Proeven as an acquired taste: Semantic change among dutch gustatory verbs. Linguistics in the Netherlands, 34, 111–126. [Google Scholar] [CrossRef]
- Prescott, T. J., Newton, L. D., Mir, N. U., Woodruff, P. W. R., & Parks, R. W. (2006). A new dissimilarity measure for finding semantic structure in category fluency data with implications for understanding memory organization in schizophrenia. Neuropsychology, 20, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Rapp, R. (2014). Using word association norms to measure corpus representativeness. In A. Gelbukh (Ed.), Computational linguistics and intelligent text processing (vol. 8403). Springer. [Google Scholar] [CrossRef]
- R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Google Scholar]
- Risso, D. S., Giuliani, C., Antinucci, M., Morini, G., Garagnani, P., Tofanelli, S., & Luiselli, D. (2017). A bio-cultural approach to the study of food choice: The contribution of taste genetics, population and culture. Appetite, 114, 240–247. [Google Scholar] [CrossRef]
- Rombach, M., Lucock, X., & Dean, D. L. (2023). No cow? Understanding US consumer preferences for plant-based over regular milk-based products. Sustainability, 15, 10853. [Google Scholar] [CrossRef]
- Sarkar, D. (2008). Lattice: Multivariate data visualization with R. In Use R! Springer. [Google Scholar]
- Shengze, S., Shuang, Q., Wang, J., Yang, Y., & Wang, B. (2022, June 24). Research on music intervention cognitive load. IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) (pp. 1051–1056), Dalian, China. [Google Scholar] [CrossRef]
- Singh, A., & Seo, H.-S. (2020). Sample temperatures can modulate both emotional responses to and sensory attributes of tomato soup samples. Food Quality and Preference, 86, 104005. [Google Scholar] [CrossRef]
- Small, D. M., & Prescott, J. (2005). Odor/taste integration and the perception of flavor. Experimental Brain Research, 166, 345–357. [Google Scholar] [CrossRef]
- Strauss, S. (2005). The linguistic aestheticization of food: A cross-cultural look at food commercials in Japan, Korea, and the United States. Journal of Pragmatics, 37, 1427–1455. [Google Scholar] [CrossRef]
- Ting, Z., Lahlou, H., & Azam, Y. (2023). A corpus-based cognitive linguistic analysis of taste words: The case of English bitter and Chinese ku. KEMANUSIAAN: The Asian Journal of Humanities, 30, 43–72. [Google Scholar] [CrossRef]
- Torres Soler, J. (2021). Variation in embodied metaphors: A contrastive analysis of taste metaphors in Spanish and English. Complutense Journal of English Studies, 29, 21–33. [Google Scholar] [CrossRef]
- Twenge, J. M., Campbell, W. K., & Sherman, R. A. (2019). Declines in vocabulary among American adults within levels of educational attainment, 1974–2016. Intelligence, 76, 101377. [Google Scholar] [CrossRef]
- Van Der Wal, R. C., & Van Dillen, L. F. (2013). Leaving a flat taste in your mouth: Task load reduces taste perception. Psychological Science, 24, 1277–1284. [Google Scholar] [CrossRef]
- Van Meer, F., Van Steenbergen, H., & Van Dillen, L. F. (2023). The effect of cognitive load on preference and intensity processing of sweet taste in the brain. Appetite, 188, 106630. [Google Scholar] [CrossRef]
- Venables, W. N., Ripley, B. D., & Venables, W. N. (2002). Modern applied statistics with S. In Statistics and computing (4th ed.). Springer. [Google Scholar]
- Vilkaitė-Lozdienė, L., & Conklin, K. (2021). Word order effect in collocation processing. The Mental Lexicon, 16, 362–396. [Google Scholar] [CrossRef]
- Vogel, A., Stokholm, J., & Jørgensen, K. (2020). Normative data for eight verbal fluency measures in older Danish adults. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 27, 114–124. [Google Scholar] [CrossRef]
- Wang, R. W. Y., & Chou, M.-C. (2010). The comprehension modes of visual elements: How people know about the contents by product packaging. International Journal of Business Research and Management, 1, 1–13. [Google Scholar]
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. In Use R! (2nd ed.) Springer. [Google Scholar]
- Wickham, H., & Bryan, J. (2023). Readxl: Read excel files. Available online: https://cran.r-project.org/package=readxl (accessed on 20 June 2024).
- Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar of data manipulation. Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 20 June 2024).
- Wickham, H., Vaughan, D., & Girlich, M. (2024). Tidyr: Tidy messy data. Available online: https://cran.r-project.org/package=tidyr (accessed on 20 June 2024).
- Winter, B. (2016). Taste and smell words form an affectively loaded and emotionally flexible part of the English lexicon. Language, Cognition and Neuroscience, 31, 975–988. [Google Scholar] [CrossRef]
- Xu, X., & Huang, Y. (2019). Restaurant information cues, diners’ expectations, and need for cognition: Experimental studies of online-to-offline mobile food ordering. Journal of Retailing and Consumer Services, 51, 231–241. [Google Scholar] [CrossRef]
- Yamakata, Y., Mori, S., & Carroll, J. A. (2020, May 11–16). English recipe flow graph corpus. Twelfth Language Resources and Evaluation Conference (pp. 5187–5194), Marseille, France. [Google Scholar]
- Yang, G., Chambers, E., & Wang, H. (2021). Flavor lexicon development (in English and Chinese) and descriptive analysis of Sichuan pepper. Journal of Sensory Studies, 36, e12636. [Google Scholar] [CrossRef]
- Yingst, J. M., Veldheer, S., Hammett, E., Hrabovsky, S., & Foulds, J. (2017). A method for classifying user-reported electronic cigarette liquid flavors. Nicotine and Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 19, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Zawisławska, M. A., & Falkowska, M. H. (2018). “All my sour-sweet days I will lament and love”—A comparative analysis of metaphors with the basic taste adjectives in Polish and English. Cognitive Studies Études Cognitives, 18, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T., Lahlou, H., & Azam, Y. (2025). A corpus-based cognitive linguistic analysis of taste terms: The case of English sour and Chinese suan. Terminology. [Google Scholar] [CrossRef]
- Zhou, Y., & Tse, C. S. (2020). The taste of emotion: Metaphoric association between taste words and emotion/emotion-laden words. Frontiers in Psychology, 11, 986. [Google Scholar] [CrossRef]
Pair 1 | Pair 2 | Pair 3 | Pair 4 | Pair 5 | Pair 6 |
---|---|---|---|---|---|
crispy | foamy | juicy | sour | sugary | piquant |
crunchy | frothy | succulent | tart | sweet | spicy |
Pair | Foods |
---|---|
Crispy and crunchy | Chips, bread, cereal, chicken, potatoes, produce |
Foamy and frothy | Coffee, beer, cream, milk |
Juicy and succulent | Steak, apple, chicken, peach, succulents, watermelon |
Sour and tart | Lemons, apple, candy, cherries, grapefruit, tarts |
Sugary and sweet | Soda, cake, candy, cookies, ice cream, sweeteners, tea |
Variable | Coefficients | Standard Errors | z | p | Odds Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | crunchy | (Intercept) | crunchy | (Intercept) | crunchy | (Intercept) | crunchy | (Intercept) | crunchy | |
Bread | −0.8872507 | −1.149643 | 0.4490929 | 0.7605888 | −1.9756508 | −1.511518 | 0.048 | 0.131 | 4.117863e-01 | 3.167497e-01 |
Cereal | −2.8331441 | 1.894840 | 1.0289865 | 1.1015464 | −2.7533345 | 1.720164 | 0.006 | 0.085 | 5.882761e-02 | 6.651486e+00 |
Chicken | 0.3023341 | −2.339214 | 0.3198518 | 0.6921788 | 0.9452320 | −3.379495 | 0.345 | 0.001 * | 1.353013e+00 | 9.640334e-02 |
Potatoes | −0.8872096 | −2.248171 | 0.4490863 | 1.1158089 | −1.9755882 | −2.014835 | 0.048 | 0.044 * | 4.118032e-01 | 1.055922e-01 |
Produce | −10.0345402 | 9.201591 | 36.6243461 | 36.6263049 | −0.2739855 | 0.251229 | 0.784 | 0.802 | 4.385858e-05 | 9.912891e+03 |
Variable | Coefficients | Standard Errors | z | p | Odds Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | frothy | (Intercept) | frothy | (Intercept) | frothy | (Intercept) | frothy | (Intercept) | frothy | |
Beer | −0.6506158 | −0.3187888 | 0.3561085 | 0.5022005 | −1.827015 | −0.6347839 | 0.068 | 0.526 | 0.5217244 | 0.7270291 |
Cream | −0.7375887 | −1.0202978 | 0.3665866 | 0.6073499 | −2.012045 | −1.6799177 | 0.044 | 0.093 | 0.4782658 | 0.3604876 |
Milk | −2.0368901 | 1.1545102 | 0.6138505 | 0.7032976 | −3.318219 | 1.6415670 | 0.001 | 0.101 | 0.1304337 | 3.1724691 |
Variable | Coefficients | Standard Errors | z | p | Odds Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | succulent | (Intercept) | succulent | (Intercept) | succulent | (Intercept) | succulent | (Intercept) | succulent | |
Apple | 0.1539458 | −2.86215105 | 0.5563313 | 1.1731619 | 0.2767161 | −2.43968982 | 0.782 | 0.015 * | 1.1664276606 | 5.714570e-02 |
Chicken | −0.6934319 | −0.06869529 | 0.7071184 | 0.8423390 | −0.9806447 | −0.08155302 | 0.327 | 0.935 | 0.4998576530 | 9.336111e-01 |
Peach | −0.1825416 | −0.91607407 | 0.6055189 | 0.7958116 | −0.3014631 | −1.15111928 | 0.763 | 0.250 | 0.8331499675 | 4.000867e-01 |
Succulents | −10.4134969 | 9.90260565 | 74.5004544 | 74.5016476 | −0.1397776 | 0.13291794 | 0.889 | 0.894 | 0.0000300245 | 1.998237e+04 |
Watermelon | 0.9161278 | −13.22887336 | 0.4830192 | 121.7962563 | 1.8966695 | −0.10861478 | 0.058 | 0.914 | 2.4995926733 | 1.797932e-06 |
Variable | Coefficients | Standard Errors | z | p | Odds Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | tart | (Intercept) | tart | (Intercept) | tart | (Intercept) | tart | (Intercept) | tart | |
Apple | −1.3437448 | −0.3301623 | 0.4584340 | 0.7784519 | −2.9311629 | −0.42412677 | 0.003 | 0.671 | 2.608669e-01 | 7.188071e-01 |
Candy | −0.6504981 | −0.5126180 | 0.3561085 | 0.6239524 | −1.8266850 | −0.82156595 | 0.068 | 0.411 | 5.217858e-01 | 5.989255e-01 |
Cherries | −3.1335093 | 2.5581976 | 1.0205736 | 1.1023532 | −3.0703414 | 2.32066968 | 0.002 | 0.020 * | 4.356465e-02 | 1.291252e+01 |
Grapefruit | −1.7492017 | 0.0752561 | 0.5417563 | 0.8302640 | −3.2287612 | 0.09064117 | 0.001 | 0.928 | 1.739127e-01 | 1.078160e+00 |
Tarts | −11.1699927 | 10.5947186 | 55.5504905 | 55.5520531 | −0.2010782 | 0.19071696 | 0.841 | 0.849 | 1.409074e-05 | 3.992343e+04 |
Variable | Coefficients | Standard Errors | z | p | Odds Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|
(Intercept) | sweet | (Intercept) | sweet | (Intercept) | sweet | (Intercept) | sweet | (Intercept) | sweet | |
Cake | −2.1400564 | 3.8448341 | 0.7475393 | 1.0722622 | −2.862801 | 3.5857220 | 0.004 | 0.000 * | 0.11764820 | 46.750928 |
Candy | −0.6360057 | 1.7346854 | 0.4122322 | 0.9146686 | −1.542833 | 1.8965179 | 0.123 | 0.058 | 0.52940279 | 5.667145 |
Cookies | −0.8873120 | 0.8873239 | 0.4490887 | 1.0962283 | −1.975806 | 0.8094335 | 0.048 | 0.418 | 0.41176107 | 2.428622 |
Ice cream | −1.2237777 | 2.4765987 | 0.5087458 | 0.9495778 | −2.405480 | 2.6081050 | 0.016 | 0.009 * | 0.29411699 | 11.900717 |
Sweeteners | −1.7346242 | 3.2387528 | 0.6262284 | 1.0016452 | −2.769954 | 3.2334333 | 0.006 | 0.001 * | 0.17646650 | 25.501897 |
Tea | −2.8332220 | 3.9318639 | 1.0289924 | 1.3135886 | −2.753394 | 2.9932232 | 0.006 | 0.003 * | 0.05882302 | 51.001951 |
Day 1 (N = 52) | ||
---|---|---|
Sampled Product | More Associated Label | Less Associated Label |
Cherries | tart | sour |
Cake | sweet | sugary |
Steak | succulent | juicy |
Milk | frothy | foamy |
Day 2 (N = 41) | ||
---|---|---|
Sampled Product | More Associated Label | Less Associated Label |
Candy | sour | tart |
Soda | sugary | sweet |
Watermelon | juicy | succulent |
Whipped cream | foamy | frothy |
Product | Average Rating with More Associated Label | Average Rating with Less Associated Label |
---|---|---|
Cherries | 0.692 | 0.25 |
Cake | 1.88 | 1.40 |
Steak | 1.37 | 1.31 |
Milk | 0.538 | 0.769 |
Candy | 1.20 | 1.63 |
Soda | −1.05 | −1.02 |
Watermelon | 1.85 | 2.15 |
Whipped cream | 1.94 | 1.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, T.M.; Pfenninger, S.E. How Synonymic Taste Words Alter Perceived Taste in American Consumers. Languages 2025, 10, 132. https://doi.org/10.3390/languages10060132
Johnson TM, Pfenninger SE. How Synonymic Taste Words Alter Perceived Taste in American Consumers. Languages. 2025; 10(6):132. https://doi.org/10.3390/languages10060132
Chicago/Turabian StyleJohnson, Tamara Marie, and Simone Eveline Pfenninger. 2025. "How Synonymic Taste Words Alter Perceived Taste in American Consumers" Languages 10, no. 6: 132. https://doi.org/10.3390/languages10060132
APA StyleJohnson, T. M., & Pfenninger, S. E. (2025). How Synonymic Taste Words Alter Perceived Taste in American Consumers. Languages, 10(6), 132. https://doi.org/10.3390/languages10060132