Special Issue “Advances in Hybrid Rocket Technology and Related Analysis Methodologies”
Acknowledgments
Conflicts of Interest
References
- Altman, D.; Humble, R. Hybrid Rocket Propulsion Systems. In Space Propulsion Analysis and Design; Humble, R.W., Henry, G.N., Larson, W.J., Eds.; The McGraw-Hill Companies, Inc., Primis Custom Publishing: New York, NY, USA, 1995; pp. 365–370. [Google Scholar]
- Altman, D.; Holzman, A. Overview and History of Hybrid Rocket Propulsion. In Fundamentals of Hybrid Rocket Combustion and Propulsion; Kuo, K., Chiaverini, M., Eds.; Progress in Astronautics and Aeronautics; AIAA: Reston, VA, USA, 2007; pp. 1–36. [Google Scholar]
- Schmierer, C.; Kobald, M.; Tomilin, K.; Fischer, U.; Schlechtriem, S. Low cost small-satellite access to space using hybrid rocket propulsion. Acta Astronautica 2019, 158, 578–583. [Google Scholar] [CrossRef]
- Jens, E.T.; Cantwell, B.J.; Hubbard, G.S. Hybrid rocket propulsion systems for outer planet exploration missions. Acta Astronautica 2016, 128, 119–130. [Google Scholar] [CrossRef]
- Altman, D. Hybrid Rocket Development History. In Proceedings of the 27th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, CA, USA, 24–26 June 1991. [Google Scholar]
- Okninski, A. On use of hybrid rocket propulsion for suborbital vehicles. Acta Astronautica 2018, 145, 1–10. [Google Scholar] [CrossRef]
- Kobald, M.; Fischer, U.; Tomilin, K.; Schmierer, C.; Petrarolo, A. Hybrid Sounding Rocket HEROS: TRL 9. In Proceedings of the 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS), Milano, Italy, 3–7 July 2017. [Google Scholar]
- Grossman, D. Richard Branson’s Plans for Space Tourism Sure Are Aggressive. Popular Mechanics. 11 September 2019. Available online: https://www.popularmechanics.com/space/rockets/a28987245/virgin-galactic-space-flight-plans/ (accessed on 26 November 2019).
- Foustm, J. Boeing to invest in Virgin Galactic. Spacenews. 8 October 2019. Available online: https://spacenews.com/boeing-to-invest-in-virgin-galactic/ (accessed on 26 November 2019).
- Marquardt, T.; Majdalani, J. Review of Classical Diffusion-Limited Regression Rate Models in Hybrid Rockets. Aerospace 2019, 6, 75. [Google Scholar] [CrossRef]
- Di Martino, G.D.; Carmicino, C.; Mungiguerra, S.; Savino, R. The Application of Computational Thermo-Fluid-Dynamics to the Simulation of Hybrid Rocket Internal Ballistics with Classical or Liquefying Fuels: A Review. Aerospace 2019, 6, 56. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Y.; Zhang, W.; Shen, R.; Yu, H.; Ye, Y.; DeLuca, L.T. Innovative Methods to Enhance the Combustion Properties of Solid Fuels for Hybrid Rocket Propulsion. Aerospace 2019, 6, 47. [Google Scholar] [CrossRef]
- Messineo, J.; Shimada, T. Theoretical Investigation on Feedback Control of Hybrid Rocket Engines. Aerospace 2019, 6, 65. [Google Scholar] [CrossRef]
- Casalino, L.; Masseni, F.; Pastrone, D. Viability of an Electrically Driven Pump-Fed Hybrid Rocket for Small Launcher Upper Stages. Aerospace 2019, 6, 36. [Google Scholar] [CrossRef]
- Moon, H.; Han, S.; You, Y.; Kwon, M. Hybrid Rocket Underwater Propulsion: A Preliminary Assessment. Aerospace 2019, 6, 28. [Google Scholar] [CrossRef]
- Battista, F.; Cardillo, D.; Fragiacomo, M.; Di Martino, G.D.; Mungiguerra, S.; Savino, R. Design and Testing of a Paraffin-Based 1000 N HRE Breadboard. Aerospace 2019, 6, 89. [Google Scholar] [CrossRef]
- Bianchi, D.; Leccese, G.; Nasuti, F.; Onofri, M.; Carmicino, C. Modeling of High Density Polyethylene Regression Rate in the Simulation of Hybrid Rocket Flowfields. Aerospace 2019, 6, 88. [Google Scholar] [CrossRef]
- McFarland, M.; Antunes, E. Small-Scale Static Fire Tests of 3D Printing Hybrid Rocket Fuel Grains Produced from Different Materials. Aerospace 2019, 6, 81. [Google Scholar] [CrossRef]
- Kamps, L.; Sakurai, K.; Saito, Y.; Nagata, H. Comprehensive Data Reduction for N2O/HDPE Hybrid Rocket Motor Performance Evaluation. Aerospace 2019, 6, 45. [Google Scholar] [CrossRef]
- Paravan, C. Nano-Sized and Mechanically Activated Composites: Perspectives for Enhanced Mass Burning Rate in Aluminized Solid Fuels for Hybrid Rocket Propulsion. Aerospace 2019, 6, 127. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, S. N2O/O2 Blend as an Inherently Safe and Volumetrically Efficient Oxidizer for Small Spacecraft Hybrid Propulsion Systems. Aerospace 2019, in press. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmicino, C. Special Issue “Advances in Hybrid Rocket Technology and Related Analysis Methodologies”. Aerospace 2019, 6, 128. https://doi.org/10.3390/aerospace6120128
Carmicino C. Special Issue “Advances in Hybrid Rocket Technology and Related Analysis Methodologies”. Aerospace. 2019; 6(12):128. https://doi.org/10.3390/aerospace6120128
Chicago/Turabian StyleCarmicino, Carmine. 2019. "Special Issue “Advances in Hybrid Rocket Technology and Related Analysis Methodologies”" Aerospace 6, no. 12: 128. https://doi.org/10.3390/aerospace6120128
APA StyleCarmicino, C. (2019). Special Issue “Advances in Hybrid Rocket Technology and Related Analysis Methodologies”. Aerospace, 6(12), 128. https://doi.org/10.3390/aerospace6120128