A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis †
Abstract
:1. Introduction
2. Methodology
2.1. Non-Equilibrium Navier–Stokes–Fourier Equations
2.2. Energy Transfers
2.3. Departure from the Continuum Regime
3. Results and Discussion
3.1. Mach 11.3 Blunted Cone
3.2. Mach 20 Cylinder
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Clarendon: Oxford, UK, 1994. [Google Scholar]
- Park, C. Nonequilibrium Hypersonic Aerothermodynamics; Wiley International: New York, NY, USA, 1990. [Google Scholar]
- Github Repository of the hy2Foam Solver. Version 0.01, Commit 98032f1. Available online: https://github.com/vincentcasseau/hyStrath/ (accessed on 5 December 2016).
- Casseau, V.; Palharini, R.C.; Scanlon, T.J.; Brown, R.E. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part One: Zero-dimensional Analysis. Aerospace 2016, 3, 34. [Google Scholar] [CrossRef]
- Casseau, V.; Scanlon, T.J.; John, B.; Emerson, D.R.; Brown, R.E. Hypersonic Simulations using Open-Source CFD and DSMC Solvers. In Proceedings of the AIP Conference, Victoria, BC, Canada, 10–15 July 2016; Volume 1786.
- OpenFOAM Official Website. Available online: http://www.openfoam.org/ (accessed on 2 August 2016).
- Espinoza, D.E.R.; Casseau, V.; Scanlon, T.J.; Brown, R.E. An Open Source Hybrid CFD-DSMC Solver for High-Speed Flows. In Proceedings of the AIP Conference, Victoria, BC, Canada, 10–15 July 2016; Volume 1786.
- Scanlon, T.J.; White, C.; Borg, M.K.; Palharini, R.C.; Farbar, E.; Boyd, I.D.; Reese, J.M.; Brown, R.E. Open source Direct Simulation Monte Carlo (DSMC) Chemistry Modelling for Hypersonic Flows. AIAA J. 2015, 53, 1670–1680. [Google Scholar] [CrossRef]
- Palharini, R.C. Atmospheric Reentry Modelling Using an Open-Source DSMC Code. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2014. [Google Scholar]
- Borgnakke, C.; Larsen, P.S. Statistical collision model for simulating polyatomic gas with restricted energy exchange. In Rarefied Gas Dynamics; DFVLR Press: Porz-Wahn, Germany, 1974; Volume 1, p. A7. [Google Scholar]
- Bird, G.A. The DSMC Method, 2nd ed.; CreateSpace Independent Publishing Platform: Seattle, WA, USA, 2013. [Google Scholar]
- Candler, G.V.; Nompelis, I. Computational Fluid Dynamics for Atmospheric Entry. In Non-Equilibrium Dynamics: From Physical Models to Hypersonic Flights; The von Karman Institute for Fluid Dynamics: Rhode-Saint-Genèse, Belgium, 2009. [Google Scholar]
- Blottner, F.G.; Johnson, M.; Ellis, M. Chemically Reacting Viscous Flow Program for Multicomponent Gas Mixtures; Report No. SC-RR-70-754; Sandia Laboratories: Albuquerque, NM, USA, 1971. [Google Scholar]
- Vincenti, W.G.; Kruger, C.H. Introduction to Physical Gas Dynamics; Krieger Publishing Company: Malabar, FL, USA, 1965. [Google Scholar]
- Wilke, C.R. A Viscosity Equation for Gas Mixtures. J. Chem. Phys. 1950, 18, 517–519. [Google Scholar] [CrossRef]
- Gupta, R.; Yos, J.M.; Thompson, R.A.; Lee, K.P. A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilbrium Calculations to 30,000 K; NASA RP-1232; NASA: Washington, DC, USA, 1990.
- Armaly, B.F.; Sutton, L. Viscosity of Multicomponent Partially Ionized Gas Mixtures. In Proceedings of the 15th Thermophysics Conference, Snowmass, CO, USA, 14–16 July 1980. AIAA Paper 80-1495.
- Palmer, G.E.; Wright, M.J. Comparison of Methods to Compute High-Temperature Gas Viscosity. J. Thermophys. Heat Transf. 2003, 17, 232–239. [Google Scholar] [CrossRef]
- Sutton, K.; Gnoffo, P.A. Multi-Component Diffusion with Application to Computational Aerothermodynamics. In Proceedings of the 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Albuquerque, NM, USA, 15–18 June 1998. AIAA Paper 98-2575.
- Hirschfelder, J.O.; Curtiss, C.; Bird, R.B. Molecular Theory of Gases and Liquids; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1954. [Google Scholar]
- Alkandry, H.; Boyd, I.D.; Martin, A. Comparaison of Models for Mixture Transport Properties for Numerical Simulations of Ablative Heat-Shields. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine (Dallas/Ft. Worth Region), Grapevine, TX, USA, 7–10 January 2013. AIAA Paper 2013-0303.
- Landau, L.; Teller, E. On the theory of sound dispersion. Phys. Z. Sowjetunion 1936, 10, 34. [Google Scholar]
- Millikan, R.C.; White, D.R. Systematics of Vibrational Relaxation. J. Chem. Phys. 1963, 39, 3209–3213. [Google Scholar] [CrossRef]
- Schwartz, R.N.; Slawsky, Z.I.; Herzfeld, K.F. Calculation of Vibrational Relaxation Times in Gases. J. Chem. Phys. 1952, 20, 1591–1599. [Google Scholar] [CrossRef]
- Thivet, F.; Perrin, M.Y.; Candel, S. A unified nonequilibrium model for hypersonic flows. Phys. Fluids 1991, 3, 2799–2812. [Google Scholar] [CrossRef]
- Knab, O.; Frühauf, H.H.; Jonas, S. Multiple Temperature Descriptions of Reaction Rate Constants with Regard to Consistent Chemical-Vibrational Coupling. In Proceedings of the 27th Thermophysics Conference, Nashville, TN, USA, 6–8 July 1992. AIAA Paper 92-2947.
- Knab, O.; Frühauf, H.H.; Messerschmid, E.W. Theory and Validation of the Physically Consistent Coupled Vibration-Chemistry-Vibration Model. J. Thermophys. Heat Transf. 1995, 9, 219–226. [Google Scholar] [CrossRef]
- Gnoffo, P.A.; Gupta, R.; Shinn, J.L. Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium; Technical Report NASA-TP-2867; NASA Langley: Hampton, VA, USA, 1989.
- Boyd, I.D.; Chen, G.; Candler, G.V. Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys. Fluids 1995, 7, 210–219. [Google Scholar] [CrossRef]
- Schwartzentruber, T.E.; Scalabrin, L.C.; Boyd, I.D. A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows. J. Comput. Phys. 2007, 225, 1159–1174. [Google Scholar] [CrossRef]
- Abbate, G.; Thijsse, B.J.; Kleijn, C.R. Computational Science—ICCS 2007. Part I, Chapter Coupled Navier–Stokes/DSMC Method for Transient and Steady-State Gas Flows. In Proceedings of the 7th International Conference, Beijing, China, 27–30 May 2007; Springer: Berlin/Heidelberg, Germany, 2007; Volume 225, pp. 842–849. [Google Scholar]
- Darbandi, M.; Roohi, E. Applying a hybrid DSMC/Navier–Stokes frame to explore the effect of splitter catalyst plates in micro/nanopropulsion systems. Sens. Actuators A 2013, 189, 409–419. [Google Scholar] [CrossRef]
- Roveda, R.; Goldstein, D.B.; Varghese, P.L. Hybrid Euler/particle approach for continuum/rarefied flows. J. Spacecr. Rocket. 1998, 35, 258–265. [Google Scholar] [CrossRef]
- Schwartzentruber, T.E.; Scalabrin, L.C.; Boyd, I.D. Hybrid Particle-Continuum Simulations of Nonequilibrium Hypersonic Blunt-Body Flowfields. J. Thermodyn. Heat Transf. 2008, 22, 29–37. [Google Scholar] [CrossRef]
- Von Smoluchowski, M. Über wärmeleitung in verdünnten Gasen. Ann. Phys. Chem. 1898, 64, 101–130. [Google Scholar] [CrossRef]
- Maxwell, J.C. On stresses in Rarefied Gases Arising from Inequalities of Temperature. Phil. Trans. R. Soc. Lond. 1879, 170, 231–256. [Google Scholar] [CrossRef]
- Greenshields, C.J.; Weller, H.G.; Gasparini, L.; Reese, J.M. Implementation of semi-discrete, non-staggered central schemes in a collocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 2010, 63, 1–21. [Google Scholar]
- Kurganov, A.; Noelle, S.; Petrova, G. Semi-discrete central-upwind schemes for hypersonic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 2001, 23, 707–740. [Google Scholar] [CrossRef]
- ARCHIE-WeSt High Performance Computer. Available online: https://www.archie-west.ac.uk/ (accessed on 20 November 2016).
- Wang, W.L.; Boyd, I. Hybrid DSMC-CFD Simulations of Hypersonic Flow over Sharp and Blunted Bodies. In Proceedings of the 36th AIAA Thermophysics Conference, Orlando, FL, USA, 23–26 June 2003. AIAA Paper 2003-3644.
- Holden, M.S. Experimental Database from CUBRC Studies in Hypersonic Laminar and Turbulent Interacting Flows including Flowfield Chemistry; RTO Code Validation of DSMC and Navier–Stokes Code Validation Studies CUBRC Report; Calspan-University at Buffalo Research Center: Buffalo, NY, USA, 2000. [Google Scholar]
- Geuzaine, C.; Remacle, J.F. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualization; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Williams, T.; Kelley, C. Gnuplot 5.0: An Interactive Plotting Program. Available online: http://gnuplot.sourceforge.net/ (accessed on 20 November 2016).
- ANSYS, Inc. ANSYS ICEM CFD Academic Research, Release 15.0. Available online: http://www.ansys.com (accessed on 20 November 2016).
Quantity | Value | Unit |
---|---|---|
Free-stream velocity, | 2764.5 | m/s |
Free-stream pressure, | 21.9139 | Pa |
Free-stream density, | kg/m | |
Free-stream temperature, | 144.4 | K |
Free-stream mean-free-path, | m | |
Overall Knudsen number, | 0.002 | - |
Wall temperature, | 297.2 | K |
Quantity | Value | Unit |
---|---|---|
Free-stream velocity, | 6047 | m/s |
Free-stream pressure, | 0.89 | Pa |
Free-stream density, | kg/m | |
Free-stream temperature, | 220 | K |
Free-stream mean-free-path, | m | |
Overall Knudsen number, | 0.0022 | - |
Wall temperature, | 1000 | K |
Run Number | V–T Transfer | Electronic Mode | CV Model | Rates |
---|---|---|---|---|
1 | MWP | no | CVDV | QK |
2 | SSH | no | CVDV | QK |
3 | MWP | no | Park TTv | Park |
Reaction Rate | Reaction | Arrhenius Law Constants | ||
---|---|---|---|---|
Colliding Partner | A | β | ||
Quantum-Kinetics (QK) | N2 | −0.62 | 113,500 | |
N | −0.68 | 113,500 | ||
Park | N2 | −1.6 | 113,200 | |
N | −1.6 | 113,200 |
CFD Run Number | ||||
---|---|---|---|---|
CFD | DSMC | CFD | DSMC | |
NR | 1.3 | 1.286 | 106 | 115 |
1 | 1.302 | 1.284 | 81.0 | 63.3 |
2 | 1.302 | 80.5 | ||
3 | 1.304 | 88.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casseau, V.; Espinoza, D.E.R.; Scanlon, T.J.; Brown, R.E. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis. Aerospace 2016, 3, 45. https://doi.org/10.3390/aerospace3040045
Casseau V, Espinoza DER, Scanlon TJ, Brown RE. A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis. Aerospace. 2016; 3(4):45. https://doi.org/10.3390/aerospace3040045
Chicago/Turabian StyleCasseau, Vincent, Daniel E. R. Espinoza, Thomas J. Scanlon, and Richard E. Brown. 2016. "A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis" Aerospace 3, no. 4: 45. https://doi.org/10.3390/aerospace3040045
APA StyleCasseau, V., Espinoza, D. E. R., Scanlon, T. J., & Brown, R. E. (2016). A Two-Temperature Open-Source CFD Model for Hypersonic Reacting Flows, Part Two: Multi-Dimensional Analysis. Aerospace, 3(4), 45. https://doi.org/10.3390/aerospace3040045