The Role of Additive Manufacturing in Reducing Demand Volatility in Aerospace: A Conceptual Framework
Abstract
:1. Introduction
2. Demand Volatility in Spare Parts
2.1. Production and Inventory Planning
2.2. AM Characteristics and Inventory Costs
2.3. AM in Aerospace Spare Parts
3. Framework for Aerospace Spare Parts Demand Volatility Isolation through AM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abolghasemi, M.; Beh, E.; Tarr, G.; Gerlach, R. Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Comput. Ind. Eng. 2020, 142, 106380. [Google Scholar] [CrossRef]
- Reichhart, A.; Holweg, M. Creating the customer-responsive supply chain: A reconciliation of concepts. Int. J. Oper. Prod. Manag. 2007, 27, 1144–1172. [Google Scholar] [CrossRef]
- Achee, B.; Kundu, S.; Latif, M. Exploiting discrete event simulation to improve a chicken supply chain. BOHR Int. J. Adv. Manag. Res. 2022, 1, 65–75. [Google Scholar] [CrossRef]
- Malik, Y.; Niemeyer, A.; Ruwadi, B. Building the supply chain of the future. TMI-Treas. Manag. Int. 2011, 83, 21. [Google Scholar]
- Christopher, M.; Holweg, M. “Supply Chain 2.0”: Managing supply chains in the era of turbulence. Int. J. Phys. Distrib. Logist. Manag. 2011, 41, 63–82. [Google Scholar] [CrossRef]
- Huang, M.-G.; Chang, P.-L.; Chou, Y.-C. Demand forecasting and smoothing capacity planning for products with high random demand volatility. Int. J. Prod. Res. 2008, 46, 3223–3239. [Google Scholar] [CrossRef]
- Umam, R.; Sommanawat, K. Strategic flexibility, manufacturing flexibility, and firm performance under the presence of an agile supply chain: A case of strategic management in fashion industry. Pol. J. Manag. Stud. 2019, 19, 407–418. [Google Scholar] [CrossRef]
- Saldanha, T.J.; Melville, N.P.; Ramirez, R.; Richardson, V.J. Information systems for collaborating versus transacting: Impact on manufacturing plant performance in the presence of demand volatility. J. Oper. Manag. 2013, 31, 313–329. [Google Scholar] [CrossRef]
- Humair, S.; Ruark, J.D.; Tomlin, B.; Willems, S.P. Incorporating stochastic lead times into the guaranteed service model of safety stock optimization. Interfaces 2013, 43, 421–434. [Google Scholar] [CrossRef]
- Ali, U.; Salah, B.; Naeem, K.; Khan, A.S.; Khan, R.; Pruncu, C.I.; Abas, M.; Khan, S. Improved MRO inventory management system in oil and gas company: Increased service level and reduced average inventory investment. Sustainability 2020, 12, 8027. [Google Scholar] [CrossRef]
- Boutselis, P.; McNaught, K. Using Bayesian Networks to forecast spares demand from equipment failures in a changing service logistics context. Int. J. Prod. Econ. 2019, 209, 325–333. [Google Scholar] [CrossRef]
- Lengu, D.; Syntetos, A.A.; Babai, M.Z. Spare parts management: Linking distributional assumptions to demand classification. Eur. J. Oper. Res. 2014, 235, 624–635. [Google Scholar] [CrossRef]
- Singh, J.; Singh, H.; Singh, G. Productivity improvement using lean manufacturing in manufacturing industry of Northern India: A case study. Int. J. Product. Perform. Manag. 2018, 67, 1394–1415. [Google Scholar] [CrossRef]
- Bouissiere, F.; Cuiller, C.; Dereux, P.-E.; Malchair, C.; Favi, C.; Formentini, G. Conceptual design for assembly in aerospace industry: A method to assess manufacturing and assembly aspects of product architectures. In Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019; pp. 2961–2970. [Google Scholar]
- Wee, H.M.; Wu, K.H.; Yosef, D. A Flexible Policy Using Failure Rate to Forecast the Repairable Spare Part Stock out Time. In Proceedings of the 2017 International Conference on Management Science and Management Innovation (MSMI 2017), Suzhou, China, 23–25 June 2017; pp. 154–158. [Google Scholar]
- Zhu, S.; van Jaarsveld, W.; Dekker, R. Spare parts inventory control based on maintenance planning. Reliab. Eng. Syst. Saf. 2020, 193, 106600. [Google Scholar] [CrossRef]
- Liu, T.B.; Kang, J.S.; You, Z.F. Research on spare part requirement for repairable system based on the quasi-renewal model. Appl. Mech. Mater. 2013, 401, 2349–2353. [Google Scholar] [CrossRef]
- Fu, X.; Fang, J. Study on the inventory optimization model of aeronautic spare parts under the condition of uncertain demand. In Proceedings of the 2011 International Conference on Business Management and Electronic Information, Guangzhou, China, 13–15 May 2011; pp. 225–228. [Google Scholar]
- Zhao, Z.; Zou, P. Attention-based Dual-channel Deep Neural Network for Aero-engine RUL Prediction Under Time-varying Operating Conditions. J. Phys. Conf. Ser. 2022, 2386, 012027. [Google Scholar] [CrossRef]
- Hron, R.; Martaus, F.; Kadlec, M.; Růžek, R. Geopolymer Laminate Peel Resistance of Adhesive Bonds with Foam and Honeycomb Cores. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Vienna, Austria, 27–29 November 2017; Volume 17, pp. 563–569. [Google Scholar]
- Alogla, A.A.; Alruqi, M. Aircraft assembly snags: Human errors or lack of production design? Aerospace 2021, 8, 391. [Google Scholar] [CrossRef]
- Habib, K.A.; Turkoglu, C. Analysis of aircraft maintenance related accidents and serious incidents in Nigeria. Aerospace 2020, 7, 178. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, J.; Yang, S. Research on the Dynamic Correlation Between COVID-19 Pandemic and Boeing Stock. In Proceedings of the 2022 7th International Conference on Social Sciences and Economic Development (ICSSED 2022), Wuhan, China, 25–27 March 2022; pp. 2156–2162. [Google Scholar]
- Istiningrum, A.A.; Munandar, L.M. Reducing Spare Part Inventory Cost with Shortage Elimination through Probabilistic Economic Order Quantity. KINERJA 2021, 25, 179–191. [Google Scholar] [CrossRef]
- Smith, E.T. Legal Issues Relating to Airports Promoting Competition; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Guo, Y.; Shi, Q.; Guo, C. Multi-Period Spare Parts Supply Chain Network Optimization under (T, s, S) Inventory Control Policy with Improved Dynamic Particle Swarm Optimization. Electronics 2022, 11, 3454. [Google Scholar] [CrossRef]
- Vaitkus, V.; Zylius, G.; Maskeliunas, R. Electrical spare parts demand forecasting. Elektron. Ir Elektrotechnika 2014, 20, 7–10. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, M.; Peng, Y. A dynamic predictive maintenance model considering spare parts inventory based on hidden semi-Markov model. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 2090–2103. [Google Scholar] [CrossRef]
- Lelo, N.A.; Heyns, P.S.; Wannenburg, J. Forecasting spare parts demand using condition monitoring information. J. Qual. Maint. Eng. 2020, 26, 53–68. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Yan, X.; Peng, Z. A novel prediction model for aircraft spare part intermittent demand in aviation transportation logistics using multi-components accumulation and high resolution analysis. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 384–395. [Google Scholar] [CrossRef]
- Dombrowski, U.; Weckenborg, S. Determination of the spare parts demand for maintenance, repair and overhaul service providers. In Proceedings of the Advances in Production Management Systems. Sustainable Production and Service Supply Chains: IFIP WG 5.7 International Conference, APMS 2013, Proceedings, Part I, State College, PA, USA, 9–12 September 2013; pp. 433–440. [Google Scholar]
- Lukitosari, V.; Subriadi, A.; Siyamah, I. Minimizing cost and backorder risk through customer priority on spares inventory. J. Phys. Conf. Ser. 2019, 1218, 012061. [Google Scholar] [CrossRef]
- Abidar, Y.; Chaabane, A. On the Integration of Additive Manufacturing for Aircraft Spare Parts Inventory Control. 2022. Available online: https://assets.researchsquare.com/files/rs-2113133/v1_covered.pdf?c=1667495584 (accessed on 27 February 2023).
- Dombrowski, U.; Weckenborg, S.; Mederer, M. Demand control loops for a global spare parts management. In Proceedings of the Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services: IFIP WG 5.7 International Conference, APMS 2012, Revised Selected Papers, Part II, Rhodes, Greece, 24–26 September 2012; pp. 407–414. [Google Scholar]
- Wang, Y.; Shi, Q.; Li, L.; Li, F.; Xia, W. Spare parts supply network optimization with uncertain distributed lead times and demands. Rev. Int. De Métodos Numéricos Para Cálculo Y Diseño En Ing. 2021, 37, 1–16. [Google Scholar] [CrossRef]
- Nandiwardhana, A.P.; Harahap, M.E. Routine Aircraft Airframe Spare Parts Inventory Analysis Used on Planned Maintenance at PT XYZ. In Proceedings of the Business Innovation and Engineering Conference 2020 (BIEC 2020), Bogor, Indonesia, 28 July 2020; pp. 9–14. [Google Scholar]
- Cui, X.; Ai, P.; He, J.; Wang, S. The research of Monte-Carlo method for aviation materials demand forecast based on the life of the reliability. J. Phys. Conf. Ser. 2021, 1838, 012009. [Google Scholar] [CrossRef]
- Thormann, M. Integration of Real-Time Demand Information and Spare Parts Distribution Planning for the Optimization of Spare Parts Supply in After-Sales Service Networks. Oper. Supply Chain. Manag. Int. J. 2015, 8, 1–10. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022, 28, 87–100. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Ishigaki, T.; Sawaki, K. On the (s, S) policy with fixed inventory holding and shortage costs. J. Oper. Res. Soc. Jpn. 1991, 34, 47–57. [Google Scholar] [CrossRef]
- Mustafa Tanrikulu, M.; Şen, A.; Alp, O. A joint replenishment policy with individual control and constant size orders. Int. J. Prod. Res. 2010, 48, 4253–4271. [Google Scholar] [CrossRef]
- Chao, X.; Zhou, S.X. Joint inventory-and-pricing strategy for a stochastic continuous-review system. IIE Trans. 2006, 38, 401–408. [Google Scholar] [CrossRef]
- Damayanti, V.; Fajar, M.Y. Penentuan Kuantitas Produksi Kue Brownies yang Optimal pada Model Persediaan Periode Tunggal. J. Ris. Mat. 2021, 1, 30–36. [Google Scholar] [CrossRef]
- Alogla, A. The Impact of Adopting Additive Manufacturing on Responsive Supply Chain Performance. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2021. [Google Scholar]
- Larasati, R.; Khabibah, S.; Aziz, A. An optimization model of economic order quantity with financial constraints and market tolerance in ud plastikq. J. Phys. Conf. Ser. 2020, 1524, 012097. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, R.; Vakharia, A.J.; Chen, Y.; Seref, M.M. The newsvendor problem: Review and directions for future research. Eur. J. Oper. Res. 2011, 213, 361–374. [Google Scholar] [CrossRef]
- Truett, L.J.; Truett, D.B. Production and costs in the South African motor vehicle industry. Appl. Econ. 2006, 38, 2381–2392. [Google Scholar] [CrossRef]
- Ding, D.; Pan, Z.; Cuiuri, D.; Li, H.; Larkin, N. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. J. Clean. Prod. 2016, 133, 942–952. [Google Scholar] [CrossRef]
- Christopher, M. Logistics & Supply Chain Management; Pearson: London, UK, 2016. [Google Scholar]
- Alogla, A.; Baumers, M.; Tuck, C. The impact of adopting additive manufacturing on the performance of a responsive supply chain. In Proceedings of the 24th International Symposium on Logistics (ISL 2019): Supply Chain Networks vs Platforms: Innovations, Challenges and Opportunities, Wurzburg, Germany, 14–17 July 2019; pp. 14–22. [Google Scholar]
- Alogla, A.A.; Baumers, M.; Tuck, C.; Elmadih, W. The impact of additive manufacturing on the flexibility of a manufacturing supply chain. Appl. Sci. 2021, 11, 3707. [Google Scholar] [CrossRef]
- Baumers, M.; Dickens, P.; Tuck, C.; Hague, R. The cost of additive manufacturing: Machine productivity, economies of scale and technology-push. Technol. Forecast. Soc. Chang. 2016, 102, 193–201. [Google Scholar] [CrossRef]
- Alogla, A.; Baumers, M.; Tuck, C. Analysis of the effects of operator experience and learning in laser sintering. Int. J. Mechatron. Manuf. Syst. 2021, 14, 87–110. [Google Scholar] [CrossRef]
- Wei, Z.; Du, J. Heat and Mass Transfer of Additive Manufacturing Processes for Metals. In Heat and Mass Transfer-Advances in Science and Technology Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Gleadall, A.; Visscher, D.; Yang, J.; Thomas, D.; Segal, J. Review of additive manufactured tissue engineering scaffolds: Relationship between geometry and performance. Burn. Trauma 2018, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.C.; Easton, H.; Caldwell, C.B. Design and construction of a quality control phantom for SPECT and PET imaging. Med. Phys. 2009, 36, 5404–5411. [Google Scholar] [CrossRef] [PubMed]
- Chandra, U.; Chauhan, S.P.; Porwal, R.K.; Sharma, K.A. Microstructure and Structural Comparison between Additively Manufactured Metal and Ceramics. Int. J. Veh. Struct. Syst. 2022, 14, 655–662. [Google Scholar] [CrossRef]
- Levy, G.N.; Schindel, R.; Kruth, J.-P. Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann. 2003, 52, 589–609. [Google Scholar] [CrossRef]
- Kontio, R.; Björkstrand, R.; Salmi, M.; Paloheimo, M.; Paloheimo, K.; Tuomi, J.; Mäkitie, A. Designing and additive manufacturing a prototype for a novel instrument for mandible fracture reduction. Surg. S 2012, 1, 2161-1076. [Google Scholar] [CrossRef]
- Bak, D. Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assem. Autom. 2003, 23, 340–345. [Google Scholar] [CrossRef]
- Huang, Y.; Leu, M.C.; Mazumder, J.; Donmez, A. Additive manufacturing: Current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 2015, 137, 014001. [Google Scholar] [CrossRef]
- Gibson, I.; Mateus, A.; Bartolo, P. RapidPRE: A new additive manufacturing technique based on reaction injection moulding. Ann. DAAAM 2010 Proc. 2010, 21, 1589–1590. [Google Scholar]
- Mellor, S.; Hao, L.; Zhang, D. Additive manufacturing: A framework for implementation. Int. J. Prod. Econ. 2014, 149, 194–201. [Google Scholar] [CrossRef]
- Khajavi, S.H.; Partanen, J.; Holmström, J. Additive manufacturing in the spare parts supply chain. Comput. Ind. 2014, 65, 50–63. [Google Scholar] [CrossRef]
- Debnath, B.; Shakur, M.S.; Tanjum, F.; Rahman, M.A.; Adnan, Z.H. Impact of Additive Manufacturing on the Supply Chain of Aerospace Spare Parts Industry—A Review. Logistics 2022, 6, 28. [Google Scholar] [CrossRef]
- Mecheter, A.; Pokharel, S.; Tarlochan, F. Additive manufacturing technology for spare parts application: A systematic review on supply chain management. Appl. Sci. 2022, 12, 4160. [Google Scholar] [CrossRef]
- Najmon, J.C.; Raeisi, S.; Tovar, A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 7–31. [Google Scholar]
- Nickels, L. AM and aerospace: An ideal combination. Met. Powder Rep. 2015, 70, 300–303. [Google Scholar] [CrossRef]
- Mohanavel, V.; Ali, K.A.; Ranganathan, K.; Jeffrey, J.A.; Ravikumar, M.; Rajkumar, S. The roles and applications of additive manufacturing in the aerospace and automobile sector. Mater. Today Proc. 2021, 47, 405–409. [Google Scholar] [CrossRef]
- Reddy, K.V.P.; Mirzana, I.M.; Reddy, A.K. Application of Additive Manufacturing technology to an Aerospace component for better trade-off’s. Mater. Today Proc. 2018, 5, 3895–3902. [Google Scholar]
- Sgarbossa, F.; Peron, M.; Lolli, F.; Balugani, E. Conventional or additive manufacturing for spare parts management: An extensive comparison for Poisson demand. Int. J. Prod. Econ. 2021, 233, 107993. [Google Scholar] [CrossRef]
- Angela, B.M.; Simona, M.; Francesco, L. A framework to assess the sustainability of additive manufacturing for spare parts. IFAC-PapersOnLine 2022, 55, 1509–1514. [Google Scholar] [CrossRef]
- Cestana, A.; Pastore, E.; Alfieri, A.; Matta, A. Reducing resupply time with additive manufacturing in spare part supply chain. IFAC-PapersOnLine 2019, 52, 577–582. [Google Scholar] [CrossRef]
- Lolli, F.; Coruzzolo, A.; Peron, M.; Sgarbossa, F. On the suitability of insourced Additive Manufacturing for spare parts management. IFAC-PapersOnLine 2022, 55, 1147–1152. [Google Scholar] [CrossRef]
- Lastra, R.; Pereira, A.; Díaz-Cacho, M.; Acevedo, J.; Collazo, A. Spare Parts Made by Additive Manufacturing to Improve Preventive Maintenance. Appl. Sci. 2022, 12, 10564. [Google Scholar] [CrossRef]
- Knofius, N.; van der Heijden, M.C.; Zijm, W. Moving to additive manufacturing for spare parts supply. Comput. Ind. 2019, 113, 103134. [Google Scholar] [CrossRef]
- Bacciaglia, A.; Ceruti, A.; Liverani, A. Towards large parts manufacturing in additive technologies for aerospace and automotive applications. Procedia Comput. Sci. 2022, 200, 1113–1124. [Google Scholar] [CrossRef]
- Halvorsen, T.; Lamvik, G.M. Additive Manufacturing of Spare Parts in the Maritime Industry: Knowledge Gaps for Developing a Norwegian AM-Based Business Ecosystem for Maritime Spare Parts. In Proceedings of the 22nd European Conference on Knowledge Management: A Virtual Conference Hosted by Coventry University, Virtual Conference, UK, 2–3 September 2021. [Google Scholar]
- Ghadge, A.; Karantoni, G.; Chaudhuri, A.; Srinivasan, A. Impact of additive manufacturing on aircraft supply chain performance: A system dynamics approach. J. Manuf. Technol. Manag. 2018, 29, 846–865. [Google Scholar] [CrossRef]
- Zhang, Y.; Jedeck, S.; Yang, L.; Bai, L. Modeling and analysis of the on-demand spare parts supply using additive manufacturing. Rapid Prototyp. J. 2019, 25, 473–487. [Google Scholar] [CrossRef]
- Knofius, N.; Van der Heijden, M.C.; Zijm, W.H. Selecting parts for additive manufacturing in service logistics. J. Manuf. Technol. Manag. 2016, 27, 915–931. [Google Scholar] [CrossRef]
- Olhager, J. Strategic positioning of the order penetration point. Int. J. Prod. Econ. 2003, 85, 319–329. [Google Scholar] [CrossRef]
- Braziotis, C.; Rogers, H.; Jimo, A. 3D printing strategic deployment: The supply chain perspective. Supply Chain. Manag. Int. J. 2019, 24, 397–404. [Google Scholar] [CrossRef]
- Sasson, A.; Johnson, J.C. The 3D printing order: Variability, supercenters and supply chain reconfigurations. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 82–94. [Google Scholar] [CrossRef]
- Saraçyakupoğlu, T. The qualification of the additively manufactured parts in the aviation industry. Am. J. Aerosp. Eng. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2132–2147. [Google Scholar] [CrossRef]
Study | Method | Result | AM Impact | ||||
---|---|---|---|---|---|---|---|
Case Study | Review | Strong Suggestion | Suggest with Limitations | No Suggestion | Positive | Negative | |
Mecheter, Pokharel, and Tarlochan [67] | None | ||||||
Najmon, Raeisi, and Tovar [68] | |||||||
Mohanavel, Ali, Ranganathan, Jeffrey, Ravikumar, and Rajkumar [70] | |||||||
Reddy, Mirzana, and Reddy [71] | |||||||
Khajavi, Partanen, and Holmström [65] | |||||||
Sgarbossa, Peron, Lolli, and Balugani [72] | |||||||
Cestana, Pastore, Alfieri, and Matta [74] | |||||||
Bacciaglia, Ceruti, and Liverani [78] | |||||||
Lolli, Coruzzolo, Peron, and Sgarbossa [75] | |||||||
Abidar and Chaabane [33] | |||||||
Lastra, Pereira, Díaz-Cacho, Acevedo, and Collazo [76] | |||||||
Knofius, van der Heijden, and Zijm [77] | |||||||
Bacciaglia, Ceruti, and Liverani [78] | |||||||
Halvorsen and Lamvik [79] | |||||||
Ghadge, Karantoni, Chaudhuri, and Srinivasan [80] | |||||||
Zhang, Jedeck, Yang, and Bai [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alogla, A.A.; Alzahrani, A.; Alghamdi, A. The Role of Additive Manufacturing in Reducing Demand Volatility in Aerospace: A Conceptual Framework. Aerospace 2023, 10, 381. https://doi.org/10.3390/aerospace10040381
Alogla AA, Alzahrani A, Alghamdi A. The Role of Additive Manufacturing in Reducing Demand Volatility in Aerospace: A Conceptual Framework. Aerospace. 2023; 10(4):381. https://doi.org/10.3390/aerospace10040381
Chicago/Turabian StyleAlogla, Ageel Abdulaziz, Ateyah Alzahrani, and Ahmad Alghamdi. 2023. "The Role of Additive Manufacturing in Reducing Demand Volatility in Aerospace: A Conceptual Framework" Aerospace 10, no. 4: 381. https://doi.org/10.3390/aerospace10040381
APA StyleAlogla, A. A., Alzahrani, A., & Alghamdi, A. (2023). The Role of Additive Manufacturing in Reducing Demand Volatility in Aerospace: A Conceptual Framework. Aerospace, 10(4), 381. https://doi.org/10.3390/aerospace10040381