Next Article in Journal
Detecting System Fault/Cyberattack within a Photovoltaic System Connected to the Grid: A Neural Network-Based Solution
Previous Article in Journal
Swarm-based Parallel Control of Adjacent Irregular Buildings Considering Soil–structure Interaction
Open AccessReview

Advancement of Routing Protocols and Applications of Underwater Wireless Sensor Network (UWSN)—A Survey

1
College of Science and Engineering, Central Michigan University, Mount Pleasant, MI 48859, USA
2
Department of Electrical and Electronic Engineering, Islamic University of Technology, Gazipur 1704, Bangladesh
*
Author to whom correspondence should be addressed.
J. Sens. Actuator Netw. 2020, 9(2), 19; https://doi.org/10.3390/jsan9020019
Received: 16 February 2020 / Revised: 31 March 2020 / Accepted: 1 April 2020 / Published: 5 April 2020
(This article belongs to the Special Issue Architectures and Protocols for Wireless Sensor and Actuator Networks)
Water covers a greater part of the Earth’s surface. However, little knowledge has been achieved regarding the underwater world as most parts of it remain unexplored. Oceans, including other water bodies, hold substantial natural resources and also the aquatic lives. These are mostly undiscovered and unknown due to the unsuited and hazardous underwater environments for the human. This inspires the unmanned exploration of these dicey environments. Neither unmanned exploration nor the distant real-time monitoring is possible without deploying Underwater Wireless Sensor Network (UWSN). Consequently, UWSN has drawn the interests of the researchers recently. This vast underwater world is possible to be monitored remotely from a distant location with much ease and less risk. The UWSN is required to be deployed over the volume of the water body to monitor and surveil. For vast water bodies like oceans, rivers and large lakes, data is collected from the different heights/depths of the water level which is then delivered to the surface sinks. Unlike terrestrial communication and radio waves, conventional mediums do not serve the purpose of underwater communication due to their high attenuation and low underwater-transmission range. Instead, an acoustic medium is able to transmit data in underwater more efficiently and reliably in comparison to other mediums. To transmit and relay the data reliably from the bottom of the sea to the sinks at the surface, multi-hop communication is utilized with different schemes. For seabed to surface sink communication, leading researchers proposed different routing protocols. The goal of these routing protocols is to make underwater communications more reliable, energy-efficient and delay efficient. This paper surveys the advancement of some of the routing protocols which eventually helps in finding the most efficient routing protocol and some recent applications for the UWSN. This work also summarizes the remaining challenging issues and the future trends of those considered routing protocols. This survey encourages further research efforts to improve the routing protocols of UWSN for enhanced underwater monitoring and exploration. View Full-Text
Keywords: Underwater Wireless Sensor Network (UWSN); routing protocols; acoustic communication; multi-hop communication; energy-efficient; reliable Underwater Wireless Sensor Network (UWSN); routing protocols; acoustic communication; multi-hop communication; energy-efficient; reliable
Show Figures

Figure 1

MDPI and ACS Style

Haque, K.F.; Kabir, K.H.; Abdelgawad, A. Advancement of Routing Protocols and Applications of Underwater Wireless Sensor Network (UWSN)—A Survey. J. Sens. Actuator Netw. 2020, 9, 19.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop