Previous Issue

Table of Contents

J. Sens. Actuator Netw., Volume 7, Issue 4 (December 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:
Open AccessArticle A Joint Routing and Channel Assignment Scheme for Hybrid Wireless-Optical Broadband-Access Networks
J. Sens. Actuator Netw. 2018, 7(4), 44; https://doi.org/10.3390/jsan7040044
Received: 31 August 2018 / Revised: 5 October 2018 / Accepted: 10 October 2018 / Published: 16 October 2018
PDF Full-text (1136 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, we investigate mechanisms for improving the quality of communications in wireless-optical broadband access networks (WOBAN), which present a promising solution to meet the growing needs for capacity of access networks. This is achieved by using multiple gateways and multi-channel operation
[...] Read more.
In this paper, we investigate mechanisms for improving the quality of communications in wireless-optical broadband access networks (WOBAN), which present a promising solution to meet the growing needs for capacity of access networks. This is achieved by using multiple gateways and multi-channel operation along with a routing protocol that effectively reduces the effect of radio interference. We present a joint route and channel assignment scheme with the objective of maximizing the end-to-end probability of success and minimizing the end-to-end delay for all active upstream traffic in the WOBAN. Performance evaluations of the proposed scheme are presented using ns-2 simulations, which show that the proposed scheme improves the network throughput up to three times and reduces the traffic delay by six times in presence of 12 channels and four network interface cards (NICs), compared to a single channel scenario. Full article
Figures

Figure 1

Open AccessArticle Context-Based Dynamic Meshed Backhaul Construction for 5G Heterogeneous Networks
J. Sens. Actuator Netw. 2018, 7(4), 43; https://doi.org/10.3390/jsan7040043
Received: 3 August 2018 / Revised: 5 September 2018 / Accepted: 5 September 2018 / Published: 2 October 2018
PDF Full-text (2948 KB) | HTML Full-text | XML Full-text
Abstract
Five-G heterogeneous network overlaid by millimeter-wave (mmWave) access employs mmWave meshed backhauling as a promising cost-efficient backhaul architecture. Due to the nature of mobile traffic distribution in practice which is both time-variant and spatially non-uniform, dynamic construction of mmWave meshed backhaul is a
[...] Read more.
Five-G heterogeneous network overlaid by millimeter-wave (mmWave) access employs mmWave meshed backhauling as a promising cost-efficient backhaul architecture. Due to the nature of mobile traffic distribution in practice which is both time-variant and spatially non-uniform, dynamic construction of mmWave meshed backhaul is a prerequisite to support the varying traffic distribution. Focusing on such scenario of outdoor dynamic crowd (ODC), this paper proposes a novel method to control mmWave meshed backhaul for efficient operation of mmWave overlay 5G HetNet through Software-Defined Network (SDN) technology. Our algorithm is featured by two functionalities, i.e., backhauling route multiplexing for overloaded mmWave small cell base stations (SC-BSs) and mmWave SC-BSs’ ON/OFF status switching for underloaded spot. In this paper, the effectiveness of the proposed meshed network is confirmed by both numerical analyses and experimental results. Simulations are conducted over a practical user distribution modeled from measured data in realistic environments. Numerical results show that the proposed algorithm can cope with the locally intensive traffic and reduce energy consumption. Furthermore, a WiGig (Wireless Gigabit Alliance certified) device based testbed is developed for Proof-of-Concept (PoC) and preliminary measurement results confirm the proposed dynamic formation of the meshed network’s efficiency. Full article
(This article belongs to the Special Issue Trends, Issues and Challenges toward 5G)
Figures

Figure 1

Open AccessArticle Development and Experimental Evaluation of a Low-Cost Cooperative UAV Localization Network Prototype
J. Sens. Actuator Netw. 2018, 7(4), 42; https://doi.org/10.3390/jsan7040042
Received: 22 August 2018 / Revised: 7 September 2018 / Accepted: 11 September 2018 / Published: 20 September 2018
PDF Full-text (20392 KB) | HTML Full-text | XML Full-text
Abstract
Precise localization is one of the key requirements in the deployment of UAVs (Unmanned Aerial Vehicles) for any application including precision mapping, surveillance, assisted navigation, search and rescue. The need for precise positioning is even more relevant with the increasing automation in UAVs
[...] Read more.
Precise localization is one of the key requirements in the deployment of UAVs (Unmanned Aerial Vehicles) for any application including precision mapping, surveillance, assisted navigation, search and rescue. The need for precise positioning is even more relevant with the increasing automation in UAVs and growing interest in commercial UAV applications such as transport and delivery. In the near future, the airspace is expected to be occupied with a large number of unmanned as well as manned aircraft, a majority of which are expected to be operating autonomously. This paper develops a new cooperative localization prototype that utilizes information sharing among UAVs and static anchor nodes for precise positioning of the UAVs. The UAVs are retrofitted with low-cost sensors including a camera, GPS receiver, UWB (Ultra Wide Band) radio and low-cost inertial sensors. The performance of the low-cost prototype is evaluated in real-world conditions in partially and obscured GNSS (Global Navigation Satellite Systems) environments. The performance is analyzed for both centralized and distributed cooperative network designs. It is demonstrated that the developed system is capable of achieving navigation grade (2–4 m) accuracy in partially GNSS denied environments, provided a consistent communication in the cooperative network is available. Furthermore, this paper provides experimental validation that information sharing is beneficial to improve positioning performance even in ideal GNSS environments. The experiments demonstrate that the major challenges for low-cost cooperative networks are consistent connectivity among UAV platforms and sensor synchronization. Full article
(This article belongs to the Special Issue Localization in Wireless Sensor Networks)
Figures

Figure 1

Back to Top