The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries
Abstract
:1. Introduction
2. Results
2.1. Perception of Extreme Weather Patterns
2.2. Changes in the Traits on Which Breeders Are Working
2.3. Changes in the Genetic Materials Used in Breeding Programs
2.4. Changing Sources of Breeding Materials
2.5. Policy, Financial and Other Limitations
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing Climate Change Adaptation Need for Food Security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, R.; Jagadish, S.V.K.; Heuer, S.; Ismail, A.; Redona, E.; Serraj, R.; Singh, R.K.; Howell, G.; Pathak, H.; Sumfleth, K. Chapter 2. Climate Change Affecting Rice Production: The Physiological and Agronomic Basis for Possible Adaptation Strategies. Adv. Agron. 2009, 101, 59–122. [Google Scholar]
- Vadez, V.; Kholova, J.; Choudhary, S.; Zindy, P.; Terrier, M.; Krishnamurthy, L.; Ratna Kumar, P.; Turner, N.C. Responses to Increased Moisture Stress and Extremes: Whole Plant Response to Drought under Climate Change. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 186–197. [Google Scholar]
- Schafleitner, R.; Ramirez, J.; Jarvis, A.; Evers, D.; Gutierrez, R.; Scurrah, M. Adaptation of the Potato Crop to Changing Climates. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 287–297. [Google Scholar]
- Singh, R.P.; Vara Prasad, P.V.; Sharma, A.K.; Raja Reddy, K. Impacts of High-Temperature Stress and Potential Opportunities for Breeding. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 166–185. [Google Scholar]
- Oszako, T.; Nowakowska, J.A. Climate change and food security: Challenges for plant health, plant breeding and genetic resources. Folia For. Pol. 2015, 57, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant adaptation to climate change—opportunities and priorities in breeding. Crop Pasture Sci. 2012, 63, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Maxted, N.; Kell, S. Establishment of a Global Network for the in Situ Conservation of Crop Wild Relatives: Status and Needs; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2009; p. 266. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M.; et al. Climate Change Impact on Agriculture and Costs of Adaptation. Food Policy Report; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 21, p. 20. [Google Scholar]
- Mba, C.; Guimaraes, E.P.; Ghosh, K. Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric. Food Secur. 2012, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C.; Meyer, R. Synthesis of Regional Impacts and Global Agricultural Adjustments. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 156–165. [Google Scholar]
- Smit, B.; Burton, I.; Klein, R.J.T.; Wandel, J. An Anatomy of Adaptation to Climate Change and Variability. Clim. Chang. 2000, 45, 223–251. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Lotze-Campden, H. Climate Change, Population Growth, and Crop Production: An Overview. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 1–11. [Google Scholar]
- Vinet, L.; Zhedanov, A. A ‘missing’ family of classical orthogonal polynomials. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; pp. 1–32. [Google Scholar]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [Green Version]
- Redden, R.J.; Yadav, S.S.; Hatfield, J.L.; Prasanna, B.M.; Vasal, S.K.; Lafarge, T. The Potential of Climate Change Adjustment in Crops: A Synthesis. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 482–494. [Google Scholar]
- Deresa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of Farmers’ Choice of Adaptation Methods to Climate Change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Kurukulasuriya, P.; Mendelsohn, R. Crop switching as a strategy for adapting to climate change. Afr. J. Agric. Resour. Econ. 2008, 2, 105–126. [Google Scholar]
- Tucker, C.M.; Eakin, H.; Castellanos, E.J.; Tucker, C.M. Perceptions of risk and adaptation: Coffee producers, market shocks, and extreme weather in Central America and Mexico. Glob. Environ. Chang. 2010, 20, 23–32. [Google Scholar] [CrossRef]
- D’Alpoim Guedes, J.; Bocinsky, R.K. Climate change stimulated agricultural innovation and exchange across Asia. Sci. Adv. 2018, 4, eaar4491. [Google Scholar] [CrossRef] [Green Version]
- Gowda, C.L.L.; Saxena, K.B.; Srivastava, R.K.; Upadhyaya, H.D.; Silim, S.N. Pigeonpea: From an Orphan to A Leader in Food Legumes. In Biodiversity in Agriculture: Domestication, Evolution, and Sustainability; Cambridge University Press: New York, NY, USA, 2011; pp. 362–373. [Google Scholar]
- Uprety, D.C.; Sirohi, G.S. Comparative Study on the Effect of Water Stress on the Photosynthesis and Water Relations of Triticale, Rye and Wheat. J. Agron. Crop Sci. 1987, 159, 349–355. [Google Scholar] [CrossRef]
- Harlan, J.R.; De Wet, J.M.J.; Price, E.G. Comparative evolution in cereals. Evolution 1973, 27, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Zohary, D. Unconscious selection and the evolution of domesticated plants. Econ. Bot. 2004, 58, 5–10. [Google Scholar] [CrossRef]
- Ceccarelli, S. Efficiency of Plant Breeding. Crop Sci. 2015, 55, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Vigouroux, Y.; Mariac, C.; De Mita, S.; Pham, J.-L.; Gérard, B.; Kapran, I.; Sagnard, F.; Deu, M.; Chantereau, J.; Ali, A.; et al. Selection for Earlier Flowering Crop Associated with Climatic Variations in the Sahel. PLoS ONE 2011, 6, e19563. [Google Scholar] [CrossRef] [Green Version]
- Mercer, K.L.; Perales, H.R. Evolutionary response of landraces to climate change in centers of crop diversity. Evol. Appl. 2010, 3, 480–493. [Google Scholar] [CrossRef]
- Lafarge, T.; Peng, S.; Hasegawa, T.; William, P.; Quick, S.V.; Jagadish, K.; Wassmann, R. Genetic Adjustment to Changing Climates: Rice. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 298–313. [Google Scholar]
- Trethowan, R.M.; Mahmood, T. Genetic Options for Improving Productivity of Wheat in Water-Limited and Temperature-Stressed Environments. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 218–237. [Google Scholar]
- Haussmann, B.I.G.; Fred Rattunde, H.; Weltzien-Rattunde, E.; Traoré, P.S.C.; vom Brocke, K.; Parzies, H.K. Breeding Strategies for Adaptation of Pearl Millet and Sorghum to Climate Variability and Change in West Africa. J. Agron. Crop Sci. 2012, 198, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef] [PubMed]
- McCouch, S.; Baute, G.J.; Bradeen, J.; Bramel, P.; Bretting, P.K.; Buckler, E.; Burke, J.M.; Charest, D.; Cloutier, S.; Cole, G.; et al. Feeding the future. Nature 2013, 499, 23. [Google Scholar] [CrossRef] [PubMed]
- FAO. Coping with Climate Change—The Roles of Genetic Resources for Food and Agriculture. Rome; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; ISBN 9789251084410. [Google Scholar]
- Michael, T.P.; VanBuren, R. Progress, challenges and the future of crop genomes. Curr. Opin. Plant Biol. 2015, 24, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Brozynska, M.; Furtado, A.; Henry, R.J. Genomics of crop wild relatives: Expanding the gene pool for crop improvement. Plant Biotechnol. J. 2016, 14, 1070–1085. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.-H. Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 2017, 10, 5–24. [Google Scholar] [CrossRef]
- Lopes, M.S.; El-Basyoni, I.; Baenziger, P.S.; Singh, S.; Royo, C.; Ozbek, K.; Aktas, H.; Ozer, E.; Ozdemir, F.; Manickavelu, A.; et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. 2015, 66, 3477–3486. [Google Scholar] [CrossRef]
- Ceccarelli, S. Evolution, plant breeding and biodiversity. J. Agric. Environ. Int. Dev. 2009, 103, 131–145. [Google Scholar]
- Ceccarelli, S.; Valkoun, J.; Erskine, W.; Weigand, S.; Miller, R.; van Leur, J. Plant Genetic Resources and Plant Improvement as Tools to Develop Sustainable Agriculture. Exp. Agric. 1992, 28, 89–98. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Maatougui, M.; Michael, M.; Slash, M.; Haghparast, R.; Rahmanian, M.; Taheri, A.; Al-Yassin, A.; Benbelkacem, A.; et al. Plant breeding and climate changes. J. Agric. Sci. 2010, 148, 627–637. [Google Scholar] [CrossRef]
- Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nat. Rev. Genet. 2005, 6, 946. [Google Scholar] [CrossRef] [PubMed]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Müller, J.V.; Toll, J. Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Tanksley, S.D.; McCouch, S.R. Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala, M.; Guzmán, C.; Alvarez, J.B.; Peña, R.J. Characterization of genetic diversity of puroindoline genes in Mexican wheat landraces. Euphytica 2013, 190, 53–63. [Google Scholar] [CrossRef]
- Machida-Hirano, R. Diversity of potato genetic resources. Breed. Sci. 2015, 65, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Lakew, B.; Henry, R.J.; Eglinton, J.; Baum, M.; Ceccarelli, S.; Grando, S. SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp vulgare). Euphytica 2013, 191, 231–243. [Google Scholar] [CrossRef]
- Bennett, E. Adaptation in Wild and Cultivated Plant Populations. In Genetic Resources in Plants—Their Exploration and Cultivation IBP Handbook No 11; Frankel, O.H., Bennett, E., Eds.; Blackwell Scientific Publications: Oxford, UK, 1970; pp. 115–129. [Google Scholar]
- Gutaker, R.M.; Groen, S.C.; Bellis, E.S.; Choi, J.Y.; Pires, I.S.; Bocinsky, R.K.; Slayton, E.R.; Wilkins, O.; Castillo, C.C.; Negrão, S.; et al. Genomic history and ecology of the geographic spread of rice. Nat. Plants 2020, 6, 492–502. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Dwivedi, S.L.; Ambrose, M.; Ellis, N.; Berger, J.; Smýkal, P.; Debouck, D.; Duc, G.; Dumet, D.; Flavell, A.; et al. Legume genetic resources: Management, diversity assessment, and utilization in crop improvement. Euphytica 2011, 180, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Redden, R.J.; Zong, X.; Berger, J.D.; Bennett, S.J. Ecogeographic analysis of pea collection sites from China to determine potential sites with abiotic stresses. Genet. Resour. Crop Evol. 2013, 60, 1801–1815. [Google Scholar] [CrossRef]
- Fowler, C.; Smale, M.; Gaiji, S. The Demand for Crop Genetic Resources from International Collections; International Food Policy Research Institute: Washington, DC, USA, 2003. [Google Scholar]
- Bamberg, J.; del Rio, A.; Huaman, Z.; Vega, S.; Martin, M.; Salas, A.; Pavek, J.; Kiru, S.; Fernandez, C.; Spooner, D. A decade of collecting and research on wild potatoes of the Southwest USA. Am. J. Potato Res. 2003, 80, 159–172. [Google Scholar] [CrossRef]
- López Noriega, I.; Halewood, M.; Galluzzi, G.; Vernooy, R.; Bertacchini, E.; Gauchan, D.; Welch, E. How Policies Affect the Use of Plant Genetic Resources: The Experience of the CGIAR. Resources 2013, 2, 231–269. [Google Scholar] [CrossRef] [Green Version]
- Henry, R.J. Genomics strategies for germplasm characterization and the development of climate resilient crops. Front. Plant Sci. 2014, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Smale, M.; Day Rubenstein, K. The Demand for Crop Genetic Resources: International Use of the US National Plant Germplasm System. World Dev. 2002, 30, 1639–1655. [Google Scholar] [CrossRef] [Green Version]
- Galluzzi, G.; Halewood, M.; Lopez Noriega, I.; Vernooy, R. Twenty-five years of international exchanges of plant genetic resources facilitated by the CGIAR genebanks: A case study on global interdependence. Biodivers. Conserv. 2016, 25, 1421–1446. [Google Scholar] [CrossRef] [Green Version]
- Seyoum, A.; Welch, E.W. Ex Post Use Restriction and Benefit-sharing Provisions for Access to Non-plant Genetic Materials for Public Research. Appl. Econ. Perspect. Policy 2015, 37, 667–691. [Google Scholar] [CrossRef]
- Halewood, M. International efforts to pool and conserve crop genetic resources in times of Radical Legal Change. In Intellectual Property Rights—Initiative for Policy Dialogue; Cimoli, M., Dosi, G., Maskus, K.E., Okediji, R.L., Reichman, J.H., Eds.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Halewood, M.; López Noriega, I.; Louafi, S. Crop Genetic Resources as a Global Commons: Challenges in International Governance and Law; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Chiarolla, C.; Jungcurt, S. Outstanding Issues on Access and Benefit Sharing under the Multilateral System of the International Treaty on Plant Genetic Resources for Food and Agriculture; The Berne Declaration/Development Fund: Zurich, Switzerland; Oslo, Norway, 2011.
- Vernooy, R.; Ruiz, M. Conclusions: Race to the Bottom versus Slow Walk to the Top. In The Custodians of Biodiversity: Sharing Access to and Benefits of Genetic Resources; Ruiz, M., Vernooy, R., Eds.; Earthscan; International Development Research Center of Canada (IDRC): London, UK; Ottawa, ON, Canada, 2012; pp. 163–180. [Google Scholar]
- Morris, M.; Edmeades, G.; Pehu, E. The global need for plant breeding capacity: What roles for the public and private sectors? HortScience 2006, 41, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Gepts, P.; Hancock, J. The future of plant breeding. Crop Sci. 2006, 46, 1630–1634. [Google Scholar] [CrossRef]
- Thirtle, C.; Srinivasan, C.; Heisey, P. Public Sector Plant Breeding In A Privatizing World. United States Dep. Agric. Econ. Res. Serv. Agric. Inf. Bull. 2001, 772, 22. [Google Scholar]
- Vernooy, R.; Sthapit, B.; Galluzzi, G.; Shrestha, P. The Multiple Functions and Services of Community Seedbanks. Resources 2014, 3, 636–656. [Google Scholar] [CrossRef]
- Vernooy, R.; Shrestha, P.; Sthapit, B. Community Seed Banks; Earthscan: London, UK, 2015; ISBN 9780415708050. [Google Scholar]
- Ceccarelli, S.; Grando, S.; Baum, M.; Udupa, S.M. Breeding for Drought Resistance in a Changing Climate. In Challenges and Strategies of Dryland Agriculture; CSSA Special Publication SV—32; Crop Science Society of America and American Society of Agronomy: Madison, WI, USA, 2004; pp. 167–190. ISBN 978-0-89118-611-3. [Google Scholar]
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, S.; Grando, S.; Baum, M. Participatory Plant Breeding in Water-limited Environments. Exp. Agric. 2007, 43, 411–435. [Google Scholar] [CrossRef]
- Rejesus, R.M.; Smale, M.; van Ginkel, M. Wheat breeders’ perspectives on genetic diversity and germplasm use: Findings from an international survey. Plant Var. Seeds 1996, 9, 129–147. [Google Scholar]
- Evenson, R.E.; Gollin, D. Genetic resources, international organisations, and improvement in rice varieties. Econ. Dev. Cult. Chang. 1997, 45, 471–500. [Google Scholar] [CrossRef]
- Evenson, R.E.; Gollin, D. Assessing the impact of the Green Revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Lantican, M.A.; Braun, H.J.; Payne, T.S.; Singh, R.P.; Sonder, K.; Baum, M.; van Ginkel, M.; Erenstein, O. Impacts of International Wheat Improvement Research, 1994–2014; International Maize and Wheat Improvement Center (CIMMYT): Mexico City, Mexico, 2016. [Google Scholar]
- Renkow, M.; Byerlee, D. The impacts of CGIAR research: A review of recent evidence. Food Policy 2010, 35, 391–402. [Google Scholar] [CrossRef]
- Varshney, R.; Ojiewo, C.; Monyo, E. A decade of Tropical Legumes projects: Development and adoption of improved varieties, creation of market-demand to benefit smallholder farmers and empowerment of national programmes in sub-Saharan Africa and South Asia. Plant Breed. 2019, 138, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Resour. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Bellon, M.; van Etten, J. Climate change and on-farm conservation of crop landraces in centres of diversity. In Plant Genetic Resources and Climate Change; CABI: Wallingford, UK, 2014; pp. 137–150. ISBN 978-1-78064-197-3. [Google Scholar]
- Fowler, C.; Smale, M.; Gaiji, S. Unequal Exchange? Recent Transfers of Agricultural Resources and their Implications for Developing Countries. Dev. Policy Rev. 2001, 19, 181–204. [Google Scholar] [CrossRef]
- Baenziger, P.S.; Salah, I.; Little, R.S.; Santra, D.K.; Regassa, T.; Wang, M.Y. Structuring an efficient organic wheat breeding program. Sustainability 2011, 3, 1190–1205. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, A.; Lane, A.; Hijmans, R. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- Parra-Quijano, M.; Iriondo, J.M.; Torres, E. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genet. Resour. Crop Evol. 2011, 59, 205–217. [Google Scholar] [CrossRef]
- Kantar, M.B.; Sosa, C.C.; Khoury, C.K.; Castañeda-Álvarez, N.P.; Achicanoy, H.A.; Bernau, V.; Kane, N.C.; Marek, L.; Seiler, G.; Rieseberg, L.H. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front. Plant Sci. 2015, 6, 841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zonneveld, M.; Thomas, E.; Galluzzi, G.; Scheldeman, X. Mapping the ecogeographic distribution of biodiversity and GIS tools for plant germplasm collectors. In Collecting Plant Genetic Diversity: Technical Guidelines—2011 Update; Guarino, L., Ramanatha Rao, V., Goldberg, E., Eds.; CAB International on behalf of Bioversity International, the Food and Agriculture Organization of the United Nations (FAO), the World Conservation Union (IUCN) and the United Nations Environment Programme (UNEP): Wallingford, UK, 2011; p. 26. [Google Scholar]
- Berger, J.D.; Mackay, M.C.; Street, K.A.; Konopka, J.; Adhikari, K.; Clarke, H.J.; Sandhu, J.S.; Nayyar, H. Emerging Opportunities for Agriculture: Investigating Plant Adaptation by Characterizing Germplasm Collection Habitats. In Global Issues, Paddock Action: Proceedings of the 14th Australian Agronomy Conference, Adelaide, Australia, 21–25 September 2008; The Regional Institute: Adelaide, Australia, 2008; p. 5395. [Google Scholar]
- Meilleur, B.A.; Hodgkin, T. In situ conservation of crop wild relatives. Biodivers. Conserv. 2004, 13, 663–684. [Google Scholar] [CrossRef]
- Gepts, P. A Comparison between Crop Domestication, Classical Plant Breeding, and Genetic Engineering. Crop Sci. 2002, 42, 1780–1790. [Google Scholar] [CrossRef] [Green Version]
- Zhong, G.-Y. Genetic issues and pitfalls in transgenic plant breeding. Euphytica 2001, 118, 137–144. [Google Scholar] [CrossRef]
- Abberton, M.; Batley, J.; Bentley, A.; Bryant, J.; Cai, H.; Cockram, J.; Costa de Oliveira, A.; Cseke, L.J.; Dempewolf, H.; De Pace, C.; et al. Global agricultural intensification during climate change: A role for genomics. Plant Biotechnol. J. 2016, 14, 1095–1098. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, G.N.; Norton, S.L. Genebank Phenomics: A Strategic Approach to Enhance Value and Utilization of Crop Germplasm. Plants 2020, 9, 817. [Google Scholar] [CrossRef]
- Ribaut, J.-M.; de Vicente, M.C.; Delannay, X. Molecular breeding in developing countries: Challenges and perspectives. Curr. Opin. Plant Biol. 2010, 13, 213–218. [Google Scholar] [CrossRef]
- Delannay, X.; McLaren, G.; Ribaut, J.-M. Fostering molecular breeding in developing countries. Mol. Breed. 2012, 29, 857–873. [Google Scholar] [CrossRef]
- Edmeades, G.O.; McMaster, G.S.; White, J.W.; Campos, H. Genomics and the Physiologist: Bridging the gap between genes and crop response. Field Crop. Res. 2004, 90, 5–18. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Purcell, L.C.; Sneller, C.H. Crop transformation and the challenge to increase yield potential. Trends Plant Sci. 2004, 9, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Endresen, D.T.F. Predictive Association between Trait Data and Ecogeographic Data for Nordic Barley Landraces. Crop Sci. 2010, 50, 2418–2430. [Google Scholar] [CrossRef] [Green Version]
- Parra Quijano, M.; Iriondo, J.; Torres, E. Review. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Span. J. Agric. Res. 2012, 10, 419–429. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
Language | Country | Respondents |
---|---|---|
English | China | 38 |
Ethiopia | 15 | |
India | 33 | |
Jordan | 6 | |
Kenya | 5 | |
Nepal | 20 | |
Philippines | 5 | |
Rwanda | 5 | |
Uganda | 12 | |
Zambia | 1 | |
French | Burkina Faso | 7 |
Cote d’Ivoire | 10 | |
Morocco | 9 | |
Spanish | Bolivia | 3 |
Brazil | 12 | |
Costa Rica | 3 | |
Guatemala | 2 | |
Peru | 14 | |
Total | 200 |
Change in Breeders’ Priority Traits | |||||||
---|---|---|---|---|---|---|---|
Drought Tolerance | Short Growth Cycle | High Temp Tolerance | Low Temp Tolerance | Waterlogging Tolerance | Pest/Disease Resistance | ||
Perceived changes in climate | Rainfall quantity | −0.07 | −0.11 | −0.02 | 0.05 | 0.03 | 0.01 |
Irregular rainfall | 0.11 | 0.12 | 0.03 | −0.03 | −0.09 | 0.11 | |
Early seasons | −0.08 | 0.07 | 0.11 | 0.10 | −0.12 | 0.13 | |
Late seasons | 0.12 | 0.11 | 0.14 * | −0.16 | −0.05 | 0.23 *** | |
Irregular drought | 0.18 ** | 0.24 *** | 0.10 | −0.05 | −0.06 | 0.15 * | |
Excessive drought | 0.20 ** | 0.08 | 0.08 | 0.06 | −0.02 | 0.18 ** | |
Excessive cold | 0.13 | 0.04 | 0.11 | 0.31 *** | 0.15 | 0.08 | |
Prolonged cold | 0.03 | 0.03 | 0.02 | 0.27 *** | 0.07 | 0.10 | |
Strong winds | −0.06 | 0.03 | −0.05 | 0.05 | −0.06 | 0.03 | |
Tornadoes/hurricanes | 0.03 | 0.03 | -0.01 | 0.01 | 0.02 | −0.02 |
Change in Breeders’ Priority Traits | |||||||
---|---|---|---|---|---|---|---|
Drought Tolerance | Short Growth Cycle | High Temp Tolerance | Low Temp Tolerance | Waterlogging Tolerance | Pest/Disease Resistance | ||
Change in famers’ priority traits | Drought tolerance | 0.35 *** | 0.15 ** | 0.11 | −0.10 | −0.05 | −0.01 |
Short growth cycle | 0.22 *** | 0.53 *** | 0.08 | 0.04 | −0.08 | 0.09 | |
High temp tolerance | −0.06 | 0.09 | 0.57 *** | −0.04 | −0.02 | 0.17 ** | |
Low temp tolerance | −0.02 | −0.08 | −0.07 | 0.47 *** | −0.02 | 0.06 | |
Waterlogging tolerance | −0.04 | −0.07 | −0.08 | 0.02 | 0.41 *** | 0.02 | |
Pest and disease resistance | 0.01 | 0.09 | 0.03 | 0.13 * | 0.11 | 0.20 *** |
Crop Wild Relatives | Landraces | Advanced/Elite Lines | |
---|---|---|---|
Rainfall quantity | 0.12 | 0.15 * | −0.06 |
Irregular distribution of rainfall | −0.01 | 0.15 ** | −0.02 |
Early seasons | −0.02 | 0.04 | −0.19 ** |
Late seasons | −0.09 | −0.17 ** | 0.09 |
Irregular drought | −0.08 | −0.01 | 0.22 *** |
Excessive droughts | −0.00 | 0.07 | 0.07 |
Excessive cold | 0.01 | 0.22 *** | −0.09 |
Prolonged cold | −0.02 | 0.22 *** | −0.08 |
Strong winds | 0.09 | 0.01 | −0.12 |
Tornadoes/hurricanes | 0.02 | 0.10 | −0.01 |
Germplasm Types | ||||
---|---|---|---|---|
Crop Wild Relatives | Landraces | Advanced/Elite Lines | ||
Sources of genetic materials | Your own collection or the collection/genebank in your organization | 0.10 | 0.19 ** | 0.03 |
Farmers’ fields or natural areas | 0.09 | 0.28 *** | −0.07 | |
National genebanks in your country | 0.13 | 0.29 *** | −0.03 | |
National genebanks in other countries | 0.28 *** | 0.03 | 0.17 * | |
Farmer community genebanks in your country | −0.06 | 0.32 *** | 0.08 | |
CGIAR | 0.19 * | 0.04 | 0.23 ** | |
Other genebanks | 0.05 | −0.03 | 0.13 | |
Non-governmental organizations | 0.23 * | −0.09 | 0.05 | |
University researchers in your country | 0.15 | 0.11 | 0.04 | |
University researchers in other countries | 0.08 | −0.01 | 0.23 ** | |
Researchers in national agricultural research organizations | 0.14 | 0.22 ** | 0.12 | |
Private companies | 0.25 ** | −0.05 | 0.17 |
Germplasm Types | ||||
---|---|---|---|---|
Crop Wild Relatives | Landraces | Elite Lines | ||
Limiting factors | Administrative procedures set by providers | 0.03 | 0.10 | −0.13 * |
Administrative procedures set by your organization | 0.07 | −0.01 | −0.14 * | |
Material transfer agreements | −0.01 | −0.01 | −0.02 | |
International rules or regulations | 0.05 | 0.03 | −0.08 | |
National rules, regulations or legislation | −0.04 | −0.02 | −0.09 | |
Intellectual property or licensing issues | −0.08 | −0.11 | −0.06 | |
Restrictions on the further transfer of the germplasm to third parties | −0.05 | 0.09 | −0.00 | |
Technical/capacity limitations | −0.23 *** | −0.00 | −0.10 | |
Costs of shipment | −0.18 ** | 0.22 *** | −0.02 | |
Required payment for germplasm | −0.14 | 0.12 | −0.03 | |
Unwillingness of other organizations to provide germplasm | −0.10 | −0.18 ** | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzi, G.; Seyoum, A.; Halewood, M.; López Noriega, I.; Welch, E.W. The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. Plants 2020, 9, 1129. https://doi.org/10.3390/plants9091129
Galluzzi G, Seyoum A, Halewood M, López Noriega I, Welch EW. The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. Plants. 2020; 9(9):1129. https://doi.org/10.3390/plants9091129
Chicago/Turabian StyleGalluzzi, Gea, Aseffa Seyoum, Michael Halewood, Isabel López Noriega, and Eric W. Welch. 2020. "The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries" Plants 9, no. 9: 1129. https://doi.org/10.3390/plants9091129
APA StyleGalluzzi, G., Seyoum, A., Halewood, M., López Noriega, I., & Welch, E. W. (2020). The Role of Genetic Resources in Breeding for Climate Change: The Case of Public Breeding Programmes in Eighteen Developing Countries. Plants, 9(9), 1129. https://doi.org/10.3390/plants9091129