Next Article in Journal
Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus tuberosus L.)
Previous Article in Journal
In Vitro Propagation of Isoëtes sabatina (Isoetaceae): A Key Conservation Challenge for a Critically Endangered Quillwort
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Phytochemistry, Chemotaxonomy, and Biological Activities of the Araucariaceae Family—A Review

1
Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
2
Dipartimento di Chimica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
*
Author to whom correspondence should be addressed.
Plants 2020, 9(7), 888; https://doi.org/10.3390/plants9070888
Submission received: 22 June 2020 / Revised: 9 July 2020 / Accepted: 9 July 2020 / Published: 14 July 2020
(This article belongs to the Section Phytochemistry)

Abstract

:
In this review article, the phytochemistry of the species belonging to the Araucariaceae family is explored. Among these, in particular, it is given a wide overview on the phytochemical profile of Wollemia genus, for the first time. In addition to this, the ethnopharmacology and the general biological activities associated to the Araucariaceae species are singularly described. Lastly, the chemotaxonomy at the genus and family levels is described and detailed.

Graphical Abstract

1. Introduction

Araucariaceae Henkel and W. Hochstetter is a family of coniferous trees, classified under the order Pinales, the class Pinopsoda, the division Pinophyta, and the Clade Tracheophytes [1].
It is a very ancient family since its maximum diversity was achieved during the Jurassic and Cretaceous periods with a worldwide distribution. Yet, during the extinction events occurred in the transition from Cretaceous to Paleogene, these species totally vanished from the Northern Hemisphere whereas they remained in the Southern Hemisphere apart for a very few exceptions. In particular, Araucariaceae species are well present in South America, Australia, New Zealand, New Guinea, New Caledonia, and other South Pacific islands while Malaysia represents the exception [2].
From the taxonomic point of view, the family comprises four genera: Agathis Salisb., Araucaria Juss., Columbea Salisb., and Wollemia W.G.Jones, K.D.Hill and J.M.Allen. Yet, Columbea and Wollemia genera are formed by one only species each i.e., Columbea brasiliensis (A. Rich.) Carrière and Wollemia nobilis W.G.Jones, K.D.Hill and J.M.Allen. On the other hand, Agathis genus is formed by 18 accepted species and 4 unresolved species whilst Araucaria genus is formed by 19 accepted species [3].
From the phylogenetic standpoint derived from molecular data, Araucariaceae family belongs to a major subdivision that includes the Podocarpaceae, Sciadopityaceae, Cupressaceae, Cephalotaxaceae, and Taxaceae families. In particular, Araucariaceae family belongs to the same clade as Podocarpaceae and represents the least evolved family of the subdivision. Within the family itself, the phylogeny tree forecasts Wollemia genus as the least evolved one followed by Agathis and Araucaria genera. Within the Araucaria genus, the situation is more complex, with several existing sub-clades [1].
In the following pages, all the general botanical features, the phytochemistry, the ethnopharmacology, and the biological activities associated to each genus are described separately. The following databases were used for this study: Scopus, Google Scholar, PubMed, Reaxys, SciFinder, PubChem. The literature research was conducted by digiting every single species name as reported in the site ww.theplantlist.org [3] in all the databases and collecting the relative outcome data.

2. Genus Agathis

2.1. Botany

The species belonging to this genus are usually monoecious. They are characterized by a large and very robust trunk with no branching in the inferior part when they are mature trees. Indeed, when they are young, they are generally conical and have more irregular crowns. The bark is smooth and grey-brownish colored, usually with a peeling that form irregular flakes that become thicker and thicker as the age of the tree proceeds. The branches are often horizontal, or ascending when they are too large. The lower ones often leave circular branch scars when they detach from the lower trunk. The juvenile leaves are larger than the adult ones and are more or less acute, with an ovate to lanceolate shape. They are often coppery-red colored also. Indeed, the adult leaves are opposite, from linear to elliptical, quite thick and very leathery. They produce two cones: male (pollen) and female (seed). The male ones appear only on the largest trees. The female ones usually develop on short lateral branchlets and get mature after two years. They are generally oval or globe shaped (Figure 1) [4].

2.2. Distribution

Agathis is a quite widespread genus of the family. In fact, their species can be found in New Zealand, the Philippines, New Guinea, Melanesia, and Australia, but also in Malaysia, beyond the Equator line. They grow on diverse substrates including podzolized sands, ultramafics, carbonates, and silicates. They occur from near sea level to the altitude of about 2500 m. They mainly prefer sites that never see frost, and that receive between five and ten meters of rain per year [5].

2.3. Phytochemistry

Table 1 shows data of all the compounds identified in the genus divided according to the species.
As Table 1 clearly shows, not all the existing species of the genus have been studied. In addition, most of the phytochemical works reported in the literature about this genus regards species collected in Oceania or in South-Eastern Asia [8,10,11,12,21,24] except two, whose studied exemplars were collected in Italy and United Kingdom and these are both associated with A. robusta [22,23]. This fact is not so unusual since, as already mentioned, these species are mainly known to grow in those areas. Nevertheless, only about the exemplar collected in Italy, the phytochemical characterization has been fully described and the reported compounds are quite similar to those reported for the other samples collected in other growth areas. Yet, in order to verify if this is a general tendency, more phytochemical studies must be carried out both on the same exemplar and on other samples coming from different areas of Italy and of the world. In addition, in all the cases, more exemplars coming from different areas were studied [8,9,10,12,13,16,17,18,19,22,23,24,25] except for A. borneensis samples coming only from Malaysia [11] and A. microstachya samples coming only from Australia [8,20]. For what concerns the studied organs, leaves represent the most studied ones. Nevertheless, resin, stem barks, branches, and the generic aerial parts have also been considered. In some cases, one only type of organs were analyzed i.e., A. alba, A. australis, A. dammara, and A. ovata of which only the leaves were analyzed [6,7,8,9,12,13], A. lanceolata of which only the phytochemical analysis of the resin is reported in literature [14,15] and A. moorei of which only the phytochemical analysis of the leaves is reported in literature [8]. The exudate of only A. philippinensis [21] as well as the seeds of only A. robusta purchased in the United Kingdom [25] have been analyzed for their phytochemical composition reporting the presence of essential oil metabolites for the former and fatty acids for the latter. Right about this point, essential oil components and polar fraction components have been evidenced in the genus. Yet, only for six species i.e., A. atropurpurea [8,9], A. australis [8,9], A. macrophylla [8,16,17,18,19], A. microstachya [8,20], A. ovata [8,9] and A. robusta [8,9,22,23,24,25], the phytochemical studies regarded both kinds of natural compounds. Indeed, for four species i.e., A. borneensis [11], A. dammara [12], A. moorei [8], and A. philippinensis [21], only the essential oil composition was studied whereas for two species i.e., A. alba [6,7] and A. lanceolata [14,15], only the polar fraction composition was analyzed. Among the essential oil metabolites, none has been reported in all the compositions present in literature. Yet, 16-kaurene, α-copaene, α-cubebene, α-pinene, β-caryophyllene, β-pinene, δ-cadinene, allo-aromadendrene, aromadendrene, camphene, germacrene D, limonene, myrcene, sabinene, and spathulenol represent the most common compounds in this context. Among them, none can actually be used as chemotaxonomic marker at the genus level since they are quite widespread compounds as constituents of the plant essential oils [26,27]. Additionally, among the polar fraction metabolites, none have been reported in all the compositions present in literature. Yet, biflavonoids and, in particular, agathisflavone and its derivatives represent the most common compounds in this context. By the way, these compounds have actually been used as chemotaxonomic markers at the genus level [22,28,29,30,31,32,33], even if their occurrence seems, now, to be extended at the whole family level. Some diterpenes have also been reported for this genus from A. lanceolata [14,15], A. macrophylla from China [16] and from Fiji [18,19] and the resin of A. microstachya [20]. Only in one case i.e., A. macrophylla, some triterpenes have also been noticed [17]. In two cases i.e., A. dammara from Philippines [13] and A. robusta from United Kingdom [23], the exact polar fraction composition was not reported since only a phytochemical screening was performed. In both cases, the presence of flavonoids, tannins and phenolics has been reported. For what concerns the methodology, in some cases, the essential oil was obtained through hydrodistillation [10,12,21,24] whereas for three cases, solvent extraction [11,25] and solvent distillation [8] were used. In all the cases, multiple and different GC analyses were used for the separation and identification of the essential oil metabolites [8,10,11,12,21,24,25]. In this regard it should be underlined the presence of improbable natural products, such as iodo-derivatives, and a possible artifact, methyl-β-D-mannofuranoside, due to the extraction solvent [34], among the constituents identified by Adam and colleagues in A. borneensis [11]. In some cases i.e., A. atropurpurea leaves from Australia [8], A. australis leaves [8], A. macrophylla from Australia [8], A. microstachya leaves [8], A. moorei [8], A. ovata from Australia [8], and A. robusta from Australia [8], [α]D and NMR analyses accompanied the GC ones. Indeed, for the analysis of the polar fraction metabolites, SE was the only method for the extraction of these compounds, CC, TLC, LC, and HPLC, together or separated, were the methods for the separation procedure of the compounds and [α]D, IR, NMR, and MS, together or separated, were the methods for the identification procedure of the compounds [6,7,9,14,15,16,17,18,19,20,22].

2.4. Ethnopharmacology

The ethnopharmacological uses of species belonging to the Agathis genus are quite limited. In fact, only a couple of works have dealt with this argument. In particular, it was reported that, in Borneo, A. borneensis is used to treat fever by boiling the bark in water and drinking it as an herbal tea [35]. Moreover, still in Borneo, the powdered woods of A. borneensis, A. philippinensis and A. dammara are employed to treat headache and myalgia [36].

2.5. Biological Activities

2.5.1. Extracts

The biological activities associated with the essential oil or the extracts of Agathis species are quite numerous.
A. atropurpurea resin extract has shown to possess medium antifungal properties against Aspergillus niger and Rhizopus stolonifer with MIC values equal to 625 and 1250 μg/mL, respectively [37]. It also showed strong antileishmanial activities against L. amazonensis promastigotes and amastigotes with IC50 values equal to < 12.5 and 19.3 μg/mL, respectively, as well as weak cytotoxic effects against BALB/c mouse macrophage cells with a CC50 value equal to 118.4 μg/mL [38].
A. borneensis leaf methanol extract is able to exert strong antiplasmodial properties against Plasmodium falciparum D10 strain (sensitive strain) with an IC50 value equal to 11.00 μg/mL [36].
The essential oil of A. dammara exerts good antibacterial effects against several bacterial strains (Staphylococcus aureus, Bacillus subtilis, Pneumonia aeruginosa, and Escherichia coli) with inhibition zones in the range of 14.5–23.7 mm and with MIC values ranging from 1.25 to 2.5 mg/mL [12]. In addition to this, the methanolic extract obtained from its leaves was found to be active also against Proteus vulgaris with an inhibition zone in the range 19–21 mm [13]. Moreover, the n-hexane, methanol, and ethyl acetate extracts of its resin display very low antioxidant effects (IC50 values equal to 438.55, 313.51, 245.99 mg/mL, respectively) [39].
The hydroalcoholic extract of A. robusta from England at the concentration of 400 μg/mL has shown good anti-inflammatory activities according to the HRBC (HumanRedBloodCell) membrane stabilization and heat-induced hemolytic methods with percentages of denaturation inhibition equal to 76.84% and 77.12%, which are comparable to those observed for diclofenac (79.25%) and aspirin (83.78%) for the respective models [23]. Moreover, the resin essential oil has shown interesting antibacterial effects against several bacterial strains (Staphylococcus spp., Klebsiella pneumoniae, Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa) with MIC and MBC values ranging from 250 to 500 and from 500 to more than 1000 μg/mL, respectively [24].

2.5.2. Phytochemicals

In literature there are also some works about the biological activities associated with specific compounds isolated from Agathis species.
3-oxo-podocarp-8(14)-en-19-oic acid, 16-hydroxy-8(17),13-labdadien-15,16-olid-19-oic acid, 15ξ-hydroxypinusolidic acid and lambertianic acid isolated from A. macrophylla, are time-dependent moderate inhibitors of tyrosine phosphatase 1B (PTP1B) with ki values of 0.11, 0.07 and 0.058 M−1s−1, respectively [16]. Moreover, (4S,5R,9S,10R)-methyl-19-hydroxy-15,16-dinorlabda-8(17),11-E- dien-13-oxo-18-oate, (4R,5R,9R,10R,13S)-13-hydroxypodocarp-8(14)-en-19-oic acid, (4R,5R,9R,10R,13R)-13-hydroxypodocarp-8(14)-en-19-oic acid, 15-nor-14-oxolabda-8(17),12E-dien-19-oic acid, 13-oxo-podocarp-8(14)-en-19-oic acid, 13-oxo-podocarp-8(14)-en-19-oate, 16-hydroxy-8(17),13-labdadien-15,16-olid-19-oic acid, 15ξ-hydroxypinusolidic acid, lambertianic acid, methyl lambertianate, pinusolidic acid, pinusolide, angustanoic acid F and 8,11,13-abietatrien-15-ol, again isolated from A. macrophylla, showed quite weak anticancer properties against HL-60 (human promyelocytic leukemia) and SMMC-7721 (human hepatocarcinoma) cancer cell lines [16].
7α,15α-dihydroxystigmast-4-en-3-one and 3β,22,23-trihydroxystigmast-5-en-7-one, isolated from A. macrophylla, have shown medium cytotoxic effects against A549 (adenocarcinomic human alveolar basal epithelial) tumor cell lines with IC50 values equal to 36.5 and 16.0 μmol/L [17].

2.6. Other Facts

In literature some interesting curiosities about Agathis species are also reported. In particular, these curiosities regard other uses of these species in the past.
Agathis spp. have been widely used for their timber in order to make panels, cabinets, joinery, turnery, moldings, patterns making, battery separators, piano parts, and artificial limbs. This is because the timber is straight-grained, strong, knot-free, with a silky and lustrous surface and it can be easily worked. In addition, the resin has been used to make the so-called Manila copal to be a component of varnishes, mainly. This resin derives from their living inner barks, is translucent or clear white, and slowly hardens on exposure to air with age, eventually becoming brittle. It is soluble in alcohol to a varying degree and has a melting point between 115–135 °C. Actually, this copal is a complex mixture of monoterpenes, sesquiterpenes, and diterpenes [40].
The young gum of A. australis has been used for many centuries as chewing gum by Maori people [41].
The Borneo aborigens consider A. boorneensis as a magical plant, capable to exert special powers including protection against bad spirits.

3. Genus Araucaria

3.1. Botany

The species belonging to this genus are mostly dioecious trees even if monoecious trees can also be found. Moreover, some trees are even able to change sex with time. These species are characterized by a massive and erect stem. They can reach up to 80 m high. The branches are gathered in whorls and grow horizontally. They are covered with leathery or needled leaves, with no branching in the inferior part when they are mature trees. In some species, the leaves are narrow and lanceolate, barely overlapping each other, whilst in others they are very broad, flat, and widely overlapped with each other. They produce two cones: male (pollen) and female (seed). The female cones are globose and can be very variable size according to the species. They are found only on the top of the tree and they contain many large edible seeds. Indeed, the male cones are smaller in size and present a broad cylindrical shape (Figure 2) [42].

3.2. Distribution

Araucaria is widespread only in the Southern Hemisphere even if at different meridians. In fact, their species can be found in New Guinea, Australia, but also in Chile, Argentina, Brazil, New Caledonia, and Norfolk Island. In addition to this, there is a naturalized population of A. columnaris(G.Forst.) Hook. on the island of Lanai in the Hawaii. The greatest biodiversity of the genus is in New Caledonia. They prefer ultrabasic schistose and calcareous soils [43].

3.3. Phytochemistry

Table 2 shows data of all the compounds identified in the genus divided according to the species.
As Table 2 clearly shows, not all the existing species of this genus have been studied, too. For what concerns the collection sites of the studied species, most of the phytochemical works reported regard species collected in Oceania, South-Eastern Asia, or Southern America [6,8,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,67,70,71,74,75,76,77,78,79,80,81,82,87,88]. Only in a few cases, the phytochemical works regarded species collected in other areas of the world such as Europe and Africa [63,68,69,72,73,83,84,85,86]. This fact is, again, not so unusual since, as already mentioned, these species are mainly known to grow in those areas even if Araucaria species are, anyway, more widespread than all the other genera of this family. In one further case, the collection site of the studied species could not be obtained [66] whereas in the case of A. columnaris, it was purchased and not collected in the wild [78]. For what concerns the studied organs, leaves remain the most studied ones [6,8,63,64,68,69,70,76,82,83,85,87,88]. Nevertheless, many other organs have been considered for their phytochemical constituents for this genus. In particular, these organs are: the generic aerial parts [78,79], the foliage [81], the bark [44,74], the bracts [45], the branches [65,75], the cells [57], the dead bark [46], the female strobili [48], the knots [50,51], the needles [52,53,73], the oleoresin [71,72], the resin [54,58,59,60,61,67], the resin oil [81], the resin from the stems [86], the seeds [47,55], the stem bark resin [84], the whole plant [56,77], and the wood [62]. In one case i.e., A.cunninghamii from India, the study on the foliage was further divided into fresh and senescent foliage [81], and in one further case i.e., A. columnaris from China, twigs and leaves were studied together [80]. Lastly, in one only case, none could be obtained about the studied organs i.e., A. araucana [66]. For what concerns the reported phytochemical metabolite composition, both essential oil and polar fractions metabolites were observed. Both compositions were analyzed in most cases. Indeed, in a few cases, only the essential oil composition was analyzed such as for A. hunsteinii, A. luxurians, A. montana, A. muelleri and A. scopulorum [8] whereas in one only case i.e., A. rulei, only the polar fraction composition was studied [89]. Anyway, in no case, the same plant exemplar was used to study both the essential oil and polar fraction compositions. In other cases, the phytochemical studies were only phytochemical screenings reporting the classes of the natural compounds present like for the cooked seeds of A. angustifolia from Brazil [47], the oleoresin of A.bidwilli from India [71], the whole plant of A. columnaris from India [74], the aerial parts of A. columnaris from Pakistan [78], the stem bark resin of A. cunninghamii from South Africa [84], the leaves of A. heterophylla from Egypt [85], the whole plant of A. heterophylla from India [77] and the leaves of A. heterophylla from Indonesia [88]. In a few cases, the phytochemical composition was given only partially such as for the needles and the seeds of A. angustifolia from Brazil [52,53,55], the leaves of A. bidwilli from India [6,70], the fresh and senescent foliage, the resin oil and the leaves of A. cunninghamii from India [70,81], the foliage and the resin oil A. heterophylla from India [70,81]. Among the essential oil metabolites, none has been reported in all the compositions present in literature. Yet, 16-kaurene, α-copaene, α-cubebene, α-pinene, β-caryophyllene, β-pinene, δ-cadinene, allo-aromadendrene, aromadendrene, camphene, caryophyllene oxide, germacrene D, globulol, hibaene, humulene, limonene, luxuriadiene, myrcene, p-cymene, phyllocladene, spathulenol, viridiflorene, and viridiflorol represent the most common compounds in this context. Among them, none can again be used as chemotaxonomic marker at the genus level since they are quite widespread compounds as constituents of the plant essential oils [26,27]. Additionally, among the polar fraction metabolites, none has been reported in all the compositions present in literature. Yet, diterpenes and biflavonoids represent the most common compounds in this context. By the way, these compounds have actually been used as chemotaxonomic markers at the genus level even if their occurrence seems, now, to be extended at the whole family level [22,28,29,30,31,32,33]. Several other sub-classes of natural compounds, including triterpenes, lignans, simple flavonoids, and organic acids, have been recorded for this genus [44,45,46,47,50,51,54,55,57,58,62,68,69,71,73,75,77,80,82,84,88]. For what concerns the methodology, in only a few cases, the essential oil was obtained through hydrodistillation [81,83,87] whereas in all the other cases, solvent extraction and solvent distillation methods were used. In all the cases, multiple and different GC analyses were used for the separation and identification of the essential oil metabolites [8,63,65,75,81,83,84]. In this context the presence of improbable natural constituents should be underlined [34], such as siloxane and silyl-derivatives, in the case of the stem bark exudate (resin) of A. cunninghamii [84] since in that work the methanolic extract was injected in GC-MS without previous derivatization. In many cases, other identifications techniques such as [α]D, TLC, IR, and NMR, alone or together, accompanied the GC analyses [8,63,65]. Indeed, for the analysis of the polar fraction metabolites, SE was the only method for the extraction of these compounds, except one case i.e., the branches of A. columnaris from India where US was used [75]. Indeed, CC, TLC, LC, MP, and HPLC techniques, together or separated, were the methods for the separation procedure of the compounds and [α]D, IR, NMR, and MS, together or separated, were the methods for the identification procedure of the compounds. In one case, GC-MS was the only method used for the separation and identification of these compounds [58] whereas in others, it accompanied the other methods [62,75]. In one case i.e., the leaves of A. bidwilli from Egypt, ECD was another method used for the phytochemical study [69]. In one case, a 2D-TLC screening was used as method for the phytochemical screening of the extract [88]. Lastly, in one case i.e., A. araucana, nothing about the methodology could be written since it was not accessible [66].

3.4. Ethnopharmacology

The ethnopharmacological uses of species belonging to the Araucaria genus are quite numerous.
In particular, in Brazil, A. angustifolia leaves are used as emollient, antiseptic, and to treat respiratory infections and rheumatisms. Their dyes are also used for the treatment of wounds and herpes eruptions [90]. In addition, the tinctures derived from the nodes are employed to treat rheumatism. The infusions of the nodes are used orally for the treatment of kidney diseases and sexually transmitted diseases. The infusions of the bark are used topically to treat muscular tensions and varicose veins. The syrup produced of the resin is used for the treatment of respiratory infections [91].
A. araucana resin has been used by Amerindian Mapuche tribes located in Southern Chile and Argentina to treat contusions, ulcers, as well as to help cicatrization of skin wounds [60,61].
A. bidwillii bark is employed in South Africa against amenorrhoea and as a body and steam wash [92]. Moreover, it is employed in the Lahu tribes of Northern Thailand to treat insomnia [93].
A. cunninghamii bark is used by the Yali tribe in West Papua for thatching and in several rituals [94].
A. heterophylla aerial parts are used in Peru for toothache and to extract teeth [95].

3.5. Biological Activities

3.5.1. Extracts

The biological activities associated with the essential oil or the extracts of Araucaria species are also quite numerous.
The biflavonoid rich fraction derived from the fresh needles of A. angustifolia has shown to be a potent UV-A UV-B radiation protector [53] as well as to protect liposomes against peroxidative degradation caused by UV-irradiation [52]. The ethyl acetate and n-butanol fractions derived from the whole plant of A. angustifolia showed strong antiviral effects against HSV-1 with IC50 values equal to 8.19 and 11.04 μg/mL, respectively [56]. The ethanol and water extracts of its seeds showed good antioxidant properties [55]. The hydroalcoholic and ethyl acetate extracts of its dead bark showed high antioxidant properties in the DPPH assay with IC50 values equal to 1 and 0.9 μg/mL, respectively. Moreover, the same extracts showed medium activity in the lipid peroxidation assay induced by UV, ascorbyl, and hydroxyl free radicals with IC50 values equal to 36 and 25 μg/mL, respectively, for the former case, 18 and 17 μg/mL, respectively, for the second case and 12 and 22 μg/mL, respectively, for the latter case [46]. Indeed, the water extract of its female strobili also exerts a time-dependent antiproliferative activity against HEp-2 (human laryngeal cancer) cell lines. In particular, at the concentrations of 250 and 500 μg/mL, it was able to inhibit tumor growth by about 50% after 24 h from the subministration whereas, after 48 h, the percentage of inhibition was about 65 and 70%, respectively, and after 72 h, for both, the percentage of inhibition was 80%, approximately [48]. The same extract showed good DPPH and SOD activities with IC50 values equal to 10.0 and 14.7 μM, respectively, as well as good antimutagenic effects against H2O2 in three different loci i.e., Lys, His, and Hom at the concentrations of 0.05, 0.1, and 0.15% with a percentage of survivals of 100% [49]. The water extract of its bracts at the concentration of 50 μg/mL is also able to completely avoid, in human lung fibroblast cells, cell mortality, protein damage, and SOD and CAT depletions induced by H2O2 [45].
The crude A. araucana resin possesses dose-dependent gastroprotective effects on ethanol–HCl-induced gastric lesions in mice [60]. In addition, the methanol extract of its wood showed moderate antibacterial activity against Citrobacter pilifera, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus with growth inhibition percentages around 20%, which are values much lower than gentamicin used as control. Indeed, the same extract showed moderate antifungal activities against Mucor miehei, Paecilomyces variotii, Ceratocystis pilifera, and Trametes versicolor with growth inhibition percentages from 28.7% for the second one to 57.1% for the latter one. The relative IC50 values were in the range 1250–2000 μg/mL [62].
The petroleum ether and methanolic extracts of the leaves and oleoresin of A. bidwillii, at the doses 300 mg/kg for the former ones and 100 mg/kg for the latter ones, possess strong anti-insomnia, analgesic, and anti-inflammatory activities [96]. In addition to this, the ethanol extract of its leaves, at the dose of 5 mg/Kg, exerts strong anti-inflammatory activity with percentages of inhibition similar to those of indomethacin i.e., 68.51% vs. 63.28%, respectively [97]. The same extract demonstrated high antinociceptive effects at the concentration of 300 mg/Kg in four different tests: the hot plate test, the acetic acid-induced writhing test, the carrageenan-induced edema test, and the serotonin-induced rat paw oedema test. The associated percentages of inhibition were equal to 81.69%, 54.64%, 45.64%, and 40.75%, respectively. All these values are comparable with those reported for the standard compounds in the relative tests [97]. In addition, its methanolic and ethyl acetate extracts derived from the leaves are able to exert good antitumor effects against HL-60 and K-562 (chronic myelogenic leukemia) cancer cell lines with IC50 values equal to 33.11 and 39.81 μg/mL, respectively, for the former and 28.18 and 34.64 μg/mL, respectively, for the latter [98]. The leaf methanol extracts at the concentration of 100 μg/mL showed also strong anti-inflammatory activity acting as an inhibitory agent on the levels of IL-1β, TNF-α by reducing them by 58.4% and 56.4%. Indeed, for what concerns IL-6, the effect was observed to be concentration-dependent. Additionally, the n-butanol polyphenolic rich extract at the concentration of 10 μg/mL showed these effects but in minor extent i.e., 44.8% inhibition on the levels of IL-1β and 33.6% inhibition on the levels of TNF-α. Indeed, for what concerns IL-6, also this effect was concentration-dependent. All these values were quite similar to those observed for indomethacin [68]. Its oleoresin possesses good antipyretic activity on female albino rats at the dose of 100 mg/Kg showing the maximum decrease in the rectal temperature after 60 min (−1.35 °C) [71].
The ethanol extract of the branches of A. columnaris showed good antioxidant and antiradical activities in absolute with values equal to 93.14 and 74.12% for the DRSC (DPPH radical scavenging activity) and NOSC (nitric oxide scavenging capacity) assays, respectively. Moreover, it also showed a good ferric reducing antioxidant power with a value equal to 113.05  mg Fe(II)E/g FS, a good cupric ion reducing capacity with a value equal to 128.34 mg TE/g FS. Indeed, its dichloromethane extract showed good TAC and MCA activities with values equal to 93.26 mg AAE/g FS and 81.50 mg EDTAE/g FS, respectively [75]. The 70% aqueous methanol extract of the needles of A. columnaris showed moderate antioxidant effects with a SC50 value equal to 73.0 μg/mL which is, anyway, much higher than ascorbic acid (SC50 = 8.0 μg/mL) [73]. Different extracts of its leaves showed to possess also medium antioxidant properties and good α-amylase inhibitory and antibacterial effects against Pseudomonas and Klebsiella spp. and Escherichia coli [76]. These results were also confirmed by another study by Zaffar et al. [99]. Indeed, the study performed by Joshi et al. [100] demonstrated that these extracts were also active against Xanthomonas phaseoli and Erwinia chrysanthemi with the best MIC values i.e., 62.5 μg/mL for the methanol and n-hexane extracts for both bacterial strains.
The methanolic extract of A. columnaris bark exerts strong antibacterial effects against Staphylococcus aureus, Escherichia coli and Bacillus subtillis with maximum inhibition zones equal to 20, 18 and 15 mm, respectively. The same extract was also found to be quite cytotoxic against HEK (human kidney) cancer cell line, having an IC50 value equal to 95.0 μg/mL [74].
The extracts of A. cunninghamii leaves in different solvents (n-hexane, chloroform, ethanol, methanol) possess good antifungal activities against Alternaria alternata, Colletotrichum falcatum, Fusarium oxysporum, Pyricularia oryzae, Sclerotinia rolfsii, Sclerotinia sclerotiorum, and Tillatia indica with inhibition percentages from 39% for the chloroform extract against A. alternata to 57% of the n-hexane extract against A. alternata itself. All the extracts were active except the n-hexane and chloroform ones against Fusarium oxysporum. Most of the extracts showed percentages of inhibition similar or better than clotrimazol used as reference [101]. The methanolic extract of its leaves also showed good DPPH radical scavenging activities with an IC50 value equal to of 181.9 μg/mL as well as a little reducing power (IC50 = 1384.42 μg/mL) and a moderate prevention effect of nitric oxide radical (IC50 = 1026.51 μg/mL) [82]. Moreover, the extracts of A. cunninghamii stem bark resin in different solvents showed different biological activities. In particular, the methanol extract showed high α-glucosidase inhibition effects with a percentage equal to 48.48% which is very close to that of acarbose i.e., 48.69. The n-hexane and dichloromethane effects were lower i.e., 24.2% and 26.58%, respectively. The dichloromethane showed strong cytotoxic effects against in Chang liver cells with an IC50 value equal to 92.9 μg/mL. The n-hexane and methanol extracts showed minor effect with IC50 value equal to 386 and above 500 μg/mL, respectively [84]. In addition to this, its essential oil derived from the foliage showed moderate antibacterial activity against Salmonella typhimurium, Staphylococcus aureus, and Staphylococcus epidermidis with inhibition zones equal to 9, 6, and 5 mm, respectively, whereas it was low against Staphylococcus aureus and Bacillus subtilis with inhibition zones both equal to 4 mm. Indeed, its essential oil derived from the resin was moderately active only against Staphylococcus aureus with an inhibition zone equal to 5 mm. The relative MIC values were in the range 250 and 500 μg/mL and the minimum bactericidal concentrations were 1000 μg/mL or more [81].
The resin extract of A. heterophylla stems showed strong cytotoxic effects in vitro against colon (HCT116) and breast (MCF7) human cancer cell lines with IC50 values equal to 0.54 and 0.94 μg/mL, respectively, which are quite similar to those observed for doxorubicin (0.70 and 0.96 μg/mL, respectively) [86]. The extracts of its leaves in different solvents showed strong to weak anticancer activity against HEPG-2 (hepatocellular carcinoma), MCF-7, PC-3 (human prostate cancer), and Hela (epitheliod carcinoma) cell lines. In particular, the n-butanol extract was one of the most effective with IC50 values equal to 12.06, 9.13, 17.42, and 7.69 μg/mL, respectively. These values are lower than doxorubicin but absolutely comparable. The ethyl acetate extract was the most efficient one against MCF-7 and Hela cancer cell lines with IC50 values equal to 7.64 and 6.72 μg/mL, respectively. The water extract was more effective against Hela cell lines with an IC50 value to 9.84 μg/mL. The petroleum ether and dichloromethane extracts showed quite moderate activities against all the studied cancer cell lines with IC50 values above 20 μg/mL, except for the petroleum ether extract against Hela whose IC50 value was 19.34 μg/mL [85].

3.5.2. Phytochemicals

In literature there are also some works about the biological activities associated with specific compounds isolated from Araucaria species.
Protocatechuic acid, quercetin, (–)-epiafzelechin protocatechuate, and (–)-epiafzelechin p-hydroxybenzoate extracted from A. angustifolia dead bark from Brazil showed all antioxidant effects in the DPPH assay with IC50 values ranging from 0.6 μM of quercetin to 11 μM of (–)-epiafzelechin p-hydroxybenzoate. Moreover, only quercetin and (–)-epiafzelechin protocatechuate showed activity in the lipid peroxidation assay and only in that induced by UV and ascorbyl free radicals with IC50 values equal to 9 and 21 μM, respectively, for the former case and 30 and 35 μM, respectively, for the second case [46].
Imbricatolic acid, 15-hydroxy-imbricatolal, and 15-acetoxy-imbricatolic acid isolated from A. araucana resin from Chile showed dose-dependent gastroprotective effects on ethanol-HCl-induced gastric lesions in mice with maximum activity at doses up to 100 mg/Kg [60]. Moreover, at the dose of 100 mg/kg, 15-hydroxy-imbricatolal, 15-acetoxy-imbricatolic acid, and 15-acetoxylabd-8(17)-en-19-ol were also seen to have effects similar to those of lansoprazole, a standard a proton pump inhibitor drug, reducing the lesions by 78, 69, and 73%, respectively [61]. In addition to this, 15,19-diacetoxylabd-8(17)-en, again isolated from A. araucana resin, was observed to possess a good cytotoxic activity against AGS cells (human gastric epithelial) and fibroblasts after treatment for 24 h with IC50 values equal to 52 and 72 μM, respectively. These values are much better than those observed for lansoprazole (IC50 values equal to 162 and 306 μM, respectively) [61]. Additionally, seco-isolariciresinol, pinoresinol, eudesmin, lariciresinol extracted from the wood of this species from Chile showed weak antibacterial activities against Citrobacter pilifera, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus with growth inhibition percentages below 20%, which are, again, values much lower than gentamicin used as control. Indeed, the same compounds showed moderate antifungal activities against Mucor miehei, Paecilomyces variotii, Ceratocystis pilifera, and Trametes versicolor with growth inhibition percentages above 20.0% but below 50%. Actually, pinoresinol was the only compound not active against Paecilomyces variotii whereas the seco-isolariciresinol was the most active in all the cases with growth inhibition percentages equal to 29.7%, 21.9%, 41.5%, and 45.1%, respectively [62].
The two compounds extracted from the A. bidwillii leaves from Egypt, 7-hydroxy-labda-8(17),13(16),14-trien-19-yl-(E)-coumarate and 7-hydroxy-labda-8(17),13(16),14-trien-19-yl-7′-O-methyl-(Z)-coumarate, showed potent cytotoxic effects against L5178Y (mouse lymphoma) cancer cell line with IC50 values equal to 2.22 and 1.42 μM, respectively. These values revealed a major effectiveness of these two diterpenoids than the standard drug, kahalalide F, which has an IC50 value equal to 4.30 μM [69].
The biflavonoid rich fraction from A. bidwillii, both at the concentration of 100 and 200 mg/Kg, was also observed to be a strong protective agent against ischemia-induced oxidative stress in rats by inhibiting free radicals generation, by scavenging reactive oxygen species and by modulating the intracellular antioxidants against ischemia/reperfusion-induced decreases [102].
Ent-19-(Z)-coumaroyloxy-labda-8(17),13(16),14-triene, and labda-8(14),15(16)-dien-3β-ol extracted from A. cunninghamii aerial parts from China exhibited modest inhibitory effects against E. coli with MIC values equal to of 31.9 and 36.3 µM, respectively. Moreover, ent-19-(Z)-coumaroyloxy-labda-8(17),13(16),14-triene possess moderate antitumor activity against HL-60 and SMMC-7721 (human hepatoma) cancer cell lines with IC50 values equal to 8.90 and 11.53µM, respectively [79].
5-p-cis-coumaroyl-quinic acid isolated from the twigs and leaves of A. cunninghamii showed good antifungal activity against Helminthosporium sativum, Rhizoctonia solani Kuhn, Fusarium oxysporum f. sp. niveum and Fusarium oxysporum f. sp. cubense with EC50 values equal to 42.3, 90.0, 62.7 and 100.2 μg/mL, respectively. In addition, this same compound and 4′,7,7′’-O-trimethyl-cupressuflavone also showed moderate antibacterial activities against Escherichia coli, Bacillus cereus, Staphyloccocus aureus, Erwinia carotovora, and Bacillus subtilis with MIC values equal in sequence to 62.5, 62.5, 62.5, 7.8, 15.5 μg/mL and 31.3, 62.5, 62.5, 125.0, and 125.0 μg/mL, respectively. Anyway, most of these data are worse than those observed for ampicillin [80].
Labda-8(17),14-diene and 13-epi-cupressic acid isolated from the resin extract of A. heterophylla stems showed moderate cytotoxic effects in vitro against colon (HCT116) and breast (MCF7) human cancer cell lines with IC50 values ranging from 2.33 μg/mL for 13-epi-cupressic acid against MCF7 to 8.04 μg/mL for 13-epi-cupressic acid against HCT116. Indeed, 13-O-acetyl-13-epi-cupressic acid was only active against MCF7 with an IC50 value equal to 9.77 μg/mL. All these values are much higher than those observed for doxorubicin [86].

3.6. Other Facts

In literature, one interesting curiosity about the Araucaria species is also reported. In particular, the edible part of the seeds of A. angustifolia are eaten by animals and people for their high nutritional value [47].

4. Genus Columbea

The overall data of this genus including its morphological description, its distribution, its phytochemistry, its ethnopharmacological uses, and its pharmacological activities are associated to the data of its only existing species i.e., Columbea brasiliensis (A. Rich.) Carrière. Yet, besides its distribution which is endemic to Brazil [103], there are no data reported in literature for what concerns the other arguments.

5. Genus Wollemia

5.1. Botany

The overall data of this genus including, its morphological description, its distribution, its phytochemistry, its ethnopharmacological uses, and its pharmacological activities are associated to the data of its only existing species i.e., Wollemia nobilis W.G.Jones, K.D.Hill and J.M.Allen.
This species is a monoecious tree which can reach up to 40 m tall. The bark is brown. The stem is multiple with a complex root system. The branching is vertical and lateral. The leaves are flattened, and arranged spirally on the shoots but twisted at the base to form two or four ranks flattened at their own time and they open in November or December depending on the location of the tree. There are two different cones. The male ones (the pollen) are conic and large with a brown-reddish color. Indeed, the female ones (the seeds) are lighter in color and narrower. These cones are disposed in lower positions than the male cones (Figure 3) [104,105].

5.2. Distribution

This species is native to Australia and is very rare. In fact, it grows wild only in three different localities within the Wollemi National Park, NSW of Australia where 20 large trees (up to 40 m in height) and 20 juvenile trees are present. Additionally, it was considered to be extinct until 1994. Given these elements, it has been subjected to several protection and conservation programs with the aims to keep its growth habitat secret, monitor them against illegal visits, and develop a plan that favors its cultivation and marketing all around the world. Right because of this, nowadays several W. nobilis exemplars are now hosted in a few Botanical Gardens outside Australia (including Italy) as well as in thousands of Australian home gardens. The species prefers sandy soils with good drainage and watering [104,105].

5.3. Phytochemistry

Table 3 shows data of all the compounds identified in W. nobilis.
As Table 3 clearly shows, most of the phytochemical works reported in the literature about this species regard exemplars collected in Italy [28,29,30,31,32,33]. Yet, this fact is not so unusual since, as already mentioned, Italy is one of the main places where this species has been introduced in order to favor its survival. One only work has regarded the phytochemistry of an exemplar from Australia but only for the essential oil composition [8]. In addition, there are two works regarding the essential oil content of a sample collected in Belgium [106] and one regarding the polar fraction metabolites of an exemplar purchased from a company in Poland [107]. The studied organs were mainly the leaves [8,32,106] but also other organs were taken into considerations i.e., twigs [106,107], half-matured female cones [33], male reproduction organs [29], unripe female cones [31], and male cones for two different studies in the time distance of one year [28,30]. For what concerns the identified compounds, also W. nobilis is known to biosynthesize both components of the essential oil and polar fraction metabolites. For none of the studied samples, both essential oil and polar fraction composition were studied. In particular, only the essential oil composition was analyzed for the exemplar from Australia [8] and for the leaves and twigs of the exemplar coming from Belgium [106], whereas only the polar fraction composition was analyzed in all the other cases [28,29,30,31,32,33,107]. Among the essential oil metabolites, only β-pinene and germacrene D are present in all the studied samples [8,106]. Yet, it is still not possible to draw a general conclusion on this matter since the exemplars studied until now are still too few. Anyhow, they cannot be considered as chemotaxonomic markers since they represent very common compounds of the essential oils of different plants. Among the polar fraction metabolites, none have been evidenced in all the studied samples. Yet, biflavonoids and diterpenes have been generally evidenced in all the studied samples [28,29,30,31,32,33,107], but they are mostly considered as chemotaxonomic markers at the family level. For what concerns the methodology, in one case, the essential oil was obtained through solvent distillation [8] whereas in two cases, it was obtained through hydrodistillation [106]. In one case, GLC was also used for the separation of the essential oil metabolites [8] whilst in all the other cases GC-MS was used for the separation and identification of the essential oil metabolites [8,106]. In one case [8], [α]D and NMR analyses accompanied the GC ones. Indeed, for the analysis of the polar fraction metabolites, SE was the only method for the extraction of these compounds [28,29,30,31,32,33,107]. CC was the method for the separation procedure of the compounds in most cases [28,29,30,31,32,33] whereas HPLC and TLC were used in one case [107]. Lastly, NMR and MS techniques were used for the identification procedure of the compounds in all the cases [28,29,30,31,32,33,107]. In one case, UHPLC-HRMS was used for the specific separation and identification of one compound [30].

5.4. Ethnopharmacology and Biological Activities

At the moment, in literature, no ethnopharmacological uses and biological activities of the extracts are reported for this species. Nevertheless, it is known that the cones of this species are widely eaten by herbivores [28] and that isocupressic acid and acetyl isocupressic acid are known to exert abortifacient activity in cattle [108] especially in case of late term pregnancy [109].

6. Phytochemistry of the Araucariaceae Family

Table 4 shows the phytochemical comparison among all the essential oil metabolites evidenced in the Araucariaceae family.
Table 5 shows, instead, the phytochemical comparison among all the polar fraction metabolites evidenced in the Araucariaceae family.

7. Chemotaxonomy of the Araucariaceae Family

As Table 4 and Table 5 clearly show, the phytochemistry of the Araucariaceae family is quite complex. Several metabolites belonging to different classes of natural compounds have been evidenced within it. Yet, none of them have an occurrence spread in all of it even if some compounds have been isolated in many different species. Conversely, other compounds have been isolated in specific species, if not specific exemplars and this fact is not atypical since the qualitative and quantitative content in secondary metabolites of plants is much affected by environmental and genetic factors [26].
Nevertheless, among the essential oil metabolites, the most common compounds were found to be: 16-kaurene, α-copaene, α-cubebene, α-pinene, β-bourbonene, β-caryophyllene, β-cubebene, β-elemene, β-pinene, β-ylangene, δ-cadinene, allo-aromadendrene, aromadendrene, bicyclogermacrene, camphene, caryophyllene oxide, germacrene D, globulol, hibaene, humulene, limonene, luxuriadiene, myrcene, p-cymene, sabinene, spathulenol, viridiflorene, and viridiflorol (Figure 4 and Figure 5).
Yet, none of these compounds can be actually considered as chemotaxonomic markers since they all are widespread compounds in the plant kingdom [26,27,110,111,112,113,114].
A particular speech regards the presence of alkyl chains. These were evidenced in several species of the family [8] even if not always the exact compounds were identified, but only the general molecular formula. By the way, these compounds are also quite widespread [26,27,110,111,112,113,114].
Indeed, among the polar fraction metabolites, the most common compounds were found to be: 7-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7′’-O-methyl-agathisflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, 7,4′,7′’-tri-O-methyl-cupressuflavone, 7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavone, agathisflavone, and cupressuflavone (Figure 6).
As previously mentioned, the derivatives of agathisflavone can be really considered as chemotaxonomic markers of the whole Araucariaceae family [22,28,29,30,31,32,33] whereas cupressuflavone and its derivatives have now been started to be evidenced also in other families [115] and so they can no longer be considered as chemotaxonomic markers of the family.
For what concerns the diterpenes, even if no specific compound of this class has been evidenced in all the species reported in literature, as previously mentioned, they are also known to be used as chemotaxonomic markers of the family. In particular, this concerns labdane diterpenes which are, anyway, a very big sub-class of natural compounds and so, they are not so specific also because this kind of compound has been isolated from other families also [116].

8. Conclusions

This review article has clearly showed the huge importance of Araucaricaeae species both under different standpoints: phytochemistry, chemotaxonomy, ethnobotany, and pharmacology.
In fact, as for the first point, many compounds, components of the essential oil, and of the polar fraction have been reported in them, including several new ones. For what concerns chemotaxonomy, some compounds could be eventually used as chemotaxonomic markers even if some other studied on this point are necessary in order to develop this concept better. Several species of the Araucariaceae family are also used for ethnobotanical and ethnopharmacological purposes, especially the species belonging to the Araucaria genus. Lastly, several extracts derived from Araucariaceae species as well several compounds isolated from them have been found to possess interesting and amazing pharmacological activities, ranging from the mere antioxidant to the greater cytotoxic effects.
Nevertheless, the studies in these fields about this family are quite limited in several senses, not to say absent for the genus Columbea, and this review article wants to be a first of its kind but also an incentive to continue the phytochemical, chemotaxonomic, ethnobotanical, and pharmacological studies on the Araucariaceae family in a specific as well as generic manner.

Author Contributions

C.F., A.V. (Alessandro Venditti) made the conceptualization. C.F., A.V. (Alessandro Venditti), D.D.V., C.T., M.F., A.V. (Antonio Ventrone), L.T., S.F., M.G., M.N., A.B., M.S. made research, wrote and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no potential conflict of interests in this article.

References

  1. Escapa, I.H.; Catalano, S.A. Phylogenetic analysis of Araucariaceae: Integrating molecules, morphology, and fossils. Int. J. Plant Sci. 2013, 174, 1153–1170. [Google Scholar] [CrossRef] [Green Version]
  2. Setoguvhi, H.; Osawa, T.A.; Pintaud, J.; Jaffré, T.; Veillon, J.-M. Phylogenetic relationships within Araucariaceae based on RBCL gene sequences. Am. J. Bot. 1998, 85, 1507–1516. [Google Scholar] [CrossRef]
  3. Available online: www.theplantlist.org (accessed on 22 June 2020).
  4. Wilf, P.; Escapa, I.H.; Cúneo, N.R.; Kooyman, R.M.; Johnson, K.R.; Iglesias, A. First South American Agathis(Araucariaceae), Eocene of Patagonia. Am. J. Bot. 2014, 101, 156–179. [Google Scholar] [CrossRef]
  5. Whitmore, T.C.; Page, C.N. Evolutionary implications of the distribution and ecology of the tropical genus Agathis. New Phytol. 1980, 84, 407–416. [Google Scholar] [CrossRef]
  6. Khan, N.U.; Ilyas, M.; Rahman, W.; Mashima, T.; Okigawa, M.; Kawano, N. Biflavones from the leaves of Araucaria bidwillii Hooker and Agathis alba foxworthy (Araucariaceae). Tetrahedron 1972, 28, 5689–5695. [Google Scholar] [CrossRef]
  7. Mashima, T.; Okigawa, M.; Kawano, N.; Khan, N.U.; Ilyas, M.; Rahman, W. On the bisflavones in the leaves of Agathis alba Foxworthy. Tetrahedr. Lett. 1970, 11, 2937–2940. [Google Scholar] [CrossRef]
  8. Brophy, J.J.; Goldsack, R.J.; Wu, M.Z.; Fookes, C.J.R.; Forster, P.I. The steam volatile oil of Wollemia nobilis and its comparison with other members of the Araucariaceae (Agathis and Araucaria). Biochem. Syst. Ecol. 2000, 28, 563–578. [Google Scholar] [CrossRef]
  9. Ofman, D.J.; Markham, K.R.; Vilain, C.; Molloy, B.P.J. Flavonoid profiles of New Zealand kauri and other species of Agathis. Phytochemistry 1995, 38, 1223–1228. [Google Scholar] [CrossRef]
  10. Garrison, M.S.; Irvine, A.K.; Setzer, W.N. Chemical composition of the resin essential oil from Agathis atropurpurea from North Queensland, Australia. Am. J. Essent. Oils Nat. Prod. 2016, 4, 4–5. [Google Scholar]
  11. Adam, A.Z.; Juiling, S.; Lee, S.Y.; Jumaat, S.R.; Mohamed, R. Phytochemical composition of Agathis borneensis (Araucariaceae) and their biological activities. Malays. For. 2017, 80, 169–177. [Google Scholar]
  12. Chen, Z.; He, D.; Deng, J.; Zhu, J.; Mao, Q. Chemical composition and antibacterial activity of the essential oil from Agathis dammara (Lamb.) Rich fresh leaves. Nat. Prod. Res. 2015, 29, 2050–2053. [Google Scholar] [CrossRef]
  13. Gutierrez, R.M.; Baculi, R.; Pastor, N.; Puma-at, T.; Balangcod, T. Antibacterial potential of some medicinal plants of the Cordillera Region, Philippines. Indian J. Tradit. Knowl. 2013, 12, 630–637. [Google Scholar]
  14. Manh, D.D.K.; Bastard, J.; Fétizon, M. Acide nor-19 anticopalique d’Agathis lanceolata. Phytochemistry 1979, 18, 1839–1842. [Google Scholar]
  15. Manh, D.D.K.; Bastard, J.; Fétizon, M.; Sévenet, T. Plantes De Nouvelle-Caledonie. LXXVII. Diterpènes d’Agathis lanceolata. J. Nat. Prod. 1983, 46, 262–273. [Google Scholar] [CrossRef]
  16. Li, Y.; Wang, T.-T.; Zhao, J.; Shi, X.; Hu, S.-C.; Gao, K. Norditerpenoids from Agathis macrophylla. Food Chem. 2012, 131, 972–976. [Google Scholar] [CrossRef]
  17. Li, Y.; Wang, T.-T.; Gao, K. A new cytotoxic stigmasterone from Agathis macrophylla. Nat. Prod. Comm. 2017, 12, 343–344. [Google Scholar] [CrossRef] [Green Version]
  18. Cambie, R.C.; Coddington, J.M.; Stone, M.J.; Tanaka, N.; Hua, L.Y.; Arigayo, S. Diterpenoids of the wood of Agathis vitiensis. Phytochemistry 1989, 28, 1675–1679. [Google Scholar] [CrossRef]
  19. Smith, R.M.; Marty, R.A.; Peters, C.F. The diterpene acids in the bled resins of three pacific kauri, Agathis vitiensis, A. lanceolata and A. macrophylla. Phytochemistry 1981, 20, 2205–2207. [Google Scholar] [CrossRef]
  20. Carman, R.M.; Marty, R.A. Diterpenoids. XXIV. A survey of the Agathis species of North Queensland. Two new resin acids. Austr. J. Chem. 1970, 23, 1457–1464. [Google Scholar] [CrossRef]
  21. Lassak, E.V.; Brophy, J.J. The steam-volatile oil of commercial “Almaciga” resin (Agathis philippinensis Warb.) from the Philippines. J. Essent. Oil Bear. Pl. 2008, 11, 634–637. [Google Scholar] [CrossRef]
  22. Venditti, A.; Frezza, C.; Campanelli, C.; Foddai, S.; Bianco, A.; Serafini, M. Phytochemical analysis of the ethanolic extract of Agathis robusta (C. Moore ex F. Muell.) F.M. Bailey. Nat. Prod. Res. 2017, 31, 1604–1611. [Google Scholar] [CrossRef]
  23. Bisht, B.; Nainwal, P.; Saini, P. Evaluation of in vitro anti-inflammatory activity of Agathis robusta. J. Pharma. Res. 2012, 2, 1304–1306. [Google Scholar]
  24. Verma, R.S.; Padalia, R.C.; Goswami, P.; Verma, S.K.; Chauhan, A.; Darokar, M.P. Chemical composition and antibacterial activity of the essential oil of Kauri Pine [Agathis robusta (C. Moore ex F. Muell.) F.M. Bailey] from India. J. Wood Chem. Technol. 2016, 36, 270–277. [Google Scholar] [CrossRef]
  25. Wolff, R.L.; Christie, W.W.; Pédrono, F.; Marpeau, A.M. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta. Lipids 1999, 34, 1083–1097. [Google Scholar] [CrossRef]
  26. Frezza, C.; Venditti, A.; Serafini, M.; Bianco, A. Phytochemistry, chemotaxonomy, ethnopharmacology, and nutraceutics of Lamiaceae. Stud. Nat. Prod. Chem. 2019, 62, 125–178. [Google Scholar]
  27. Frezza, C.; Venditti, A.; Toniolo, C.; De Vita, D.; Serafini, I.; Ciccòla, A.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; et al. Pedicularis L. genus: Systematics, botany, phytochemistry, chemotaxonomy, ethnopharmacology, and other. Plants 2019, 8, 306. [Google Scholar] [CrossRef] [PubMed]
  28. Venditti, A.; Frezza, C.; Sciubba, F.; Foddai, S.; Serafini, M.; Bianco, A. Terpenoids and more polar compounds from the male cones of Wollemia nobilis. Chem. Biodiver. 2017, 14, e1600332. [Google Scholar] [CrossRef] [PubMed]
  29. Venditti, A.; Frezza, C.; Rossi, G.; Serafini, I.; Ciccòla, A.; Sciubba, F.; Foddai, S.; Tomassini, L.; Bianco, A.; Serafini, M. A new byciclic monoterpene glucoside and a new biflavone from the male reproduction organs of Wollemia nobilis. Fitoterapia 2019, 133, 62–69. [Google Scholar] [CrossRef]
  30. Venditti, A.; Frezza, C.; Vincenti, F.; Brodella, A.; Sciubba, F.; Montesano, C.; Franceschin, M.; Sergi, M.; Foddai, S.; Di Cocco, M.E.; et al. A syn-ent-labdadiene derivative with a rare spiro-β-lactone function from the male cones of Wollemia nobilis. Phytochemistry 2019, 158, 91–95. [Google Scholar] [CrossRef]
  31. Venditti, A.; Frezza, C.; Rossi, G.; Sciubba, F.; Ornano, L.; De Vita, D.; Toniolo, C.; Tomassini, L.; Foddai, S.; Nicoletti, M.; et al. A new diterpene and other compounds from the unripe female cones of Wollemia nobilis. Nat. Prod. Res. 2020, in press. [Google Scholar] [CrossRef]
  32. Frezza, C.; Venditti, A.; Rossi, G.; Serafini, I.; Pitorri, M.; Ciccòla, A.; Foddai, S.; Bianco, A.; Serafini, M. Phytochemical study on the leaves of Wollemia nobilis. Biochem. Syst. Ecol. 2017, 74, 63–66. [Google Scholar] [CrossRef]
  33. Frezza, C.; Venditti, A.; Scandurra, C.; Ciccòla, A.; Serafini, I.; Sciubba, F.; Foddai, S.; Franceschin, M.; Bianco, A.; Serafini, M. Phytochemical profile of Wollemia nobilis half-matured female cones and their potential ethnopharmacological and nutraceutical activities. J. Agric. Sci. Technol. A 2018, 8, 162–170. [Google Scholar]
  34. Venditti, A. What is and what should never be: Artifacts, improbable phytochemicals, contaminants and natural products. Nat. Prod. Res. 2020, 34, 1014–1031. [Google Scholar] [CrossRef] [PubMed]
  35. Kulip, J. An ethnobotanical survey of medicinal and other useful plants of Muruts in Sabah, Malaysia. Telopea 2003, 10, 81–98. [Google Scholar] [CrossRef]
  36. Noor Rain, A.; Khozirah, S.; Mohd Ridzuan, M.A.; Ong, B.K.; Rohaya, C.; Rosilawati, M.; Zakiah, I. Antiplasmodial properties of some Malaysian medicinal plants. Tropic. Biomed. 2007, 24, 29–35. [Google Scholar]
  37. Surapuram, V.; Setzer, W.N.; McFeeters, R.L.; McFeeters, H. Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Nat. Prod. Comm. 2014, 9, 1603–1605. [Google Scholar] [CrossRef] [Green Version]
  38. Monzote, L.; Piñón, A.; Setzer, W.N. Antileishmanial potential of tropical rainforest plant extracts. Medicines 2014, 1, 32–55. [Google Scholar] [CrossRef] [Green Version]
  39. Tillah, M.; Batubara, I.; Sari, R.K. Antimicrobial and antioxidant activities of resins and essential oil from Pine (Pinus merkusii, Pinus oocarpa, Pinus insularis) and Agathis (Agathis loranthifolia). Proc. Int. Conf. Math. Sci. Educ. 2016, 3, C4–C9. [Google Scholar]
  40. Whitmore, T.C. Utilization, potential, and conservation of Agathis, a genus of tropical Asian conifers. Econ. Bot. 1980, 34, 1–12. [Google Scholar] [CrossRef]
  41. Riley, M. Māori Healing and Herbal: New Zealand Ethnobotanical Sourcebook; Viking Sevenseas: Paraparaumu, New Zealand, 1994. [Google Scholar]
  42. Simpson, M.G. Plant Systematics; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
  43. Zonneveld, B.J.M. Genome sizes of all 19 Araucaria species are correlated with their geographical distribution. Plant Syst. Evol. 2012, 298, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
  44. De Paiva Campello, J.; Ferreira Fonseca, S. Diterpenes from Araucaria angustifolia. Phytochemistry 1975, 14, 2299–2300. [Google Scholar] [CrossRef]
  45. Souza, M.O.; Branco, C.S.; Sene, J.; Dall’Agnol, R.; Agostini, F.; Moura, S.; Salvado, M. Antioxidant and antigenotoxic activities of the Brazilian Pine Araucaria angustifolia (Bert.) O. Kuntze. Antioxidants 2014, 3, 24–37. [Google Scholar] [CrossRef] [PubMed]
  46. Seccon, A.; Rosa, D.W.; Freitas, R.A.; Biavatti, M.W.; Creczynski-Pasa, T.B. Antioxidant activity and low cytotoxicity of extracts and isolated compounds from Araucaria angustifolia dead bark. Redox Rep. 2010, 15, 234–242. [Google Scholar] [CrossRef] [PubMed]
  47. Cordenunsi, B.R.; De Menezes, E.W.; Genovese, M.I.S.; Colli, C.L.; Alves De Souza, A.G.; Lajolo, F.M. Chemical composition and glycemic index of Brazilian Pine (Araucaria angustifolia) seeds. J. Agric. Food Chem. 2004, 52, 3412–3416. [Google Scholar] [CrossRef] [PubMed]
  48. Dos Santos Branco, C.; De Lima, E.D.; Rodrigues, T.S.; Becker Scheffel, T.; Scola, G.; Fernandes Correia Laurino, C.C.; Moura, S.; Salvador, M. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chemico-Biol. Interact. 2015, 231, 108–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Michelon, F.; Branco, C.S.; Calloni, C.; Giazzon, I.; Agostini, F.; Spada, P.K.W.; Salvador, M. Araucaria angustifolia: A potential nutraceutical with antioxidant and antimutagenic activities. Curr. Nutr. Food Sci. 2012, 8, 155–159. [Google Scholar] [CrossRef]
  50. Ferreira Fonseca, S.; Campello, J.P.; Barata, L.E.S.; Rúveda, E.A. 13C NMR spectral analysis of lignans from Araucaria angustifolia. Phytochemistry 1978, 17, 499–502. [Google Scholar] [CrossRef]
  51. Ferreira Fonseca, S.; Nielsen, L.T.; Rúveda, E.A. Lignans of Araucaria angustifolia and 13C NMR analysis of some phenyltetralin lignans. Phytochemistry 1979, 18, 1703–1708. [Google Scholar] [CrossRef]
  52. Yamaguchi, L.F.; Vassão, D.G.; Kato, M.J.; Di Mascio, P. Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry 2005, 66, 2238–2247. [Google Scholar] [CrossRef]
  53. Yamaguchi, L.F.; Kato, M.J.; Di Mascio, P. Biflavonoids from Araucaria angustifolia protect against DNA UV-induced damage. Phytochemistry 2009, 70, 615–620. [Google Scholar] [CrossRef]
  54. Anderegg, R.J.; Rowe, J.W. Lignans, the major component of resin from Araucaria angustifolia knots. Holzforschung 1973, 28, 171–175. [Google Scholar] [CrossRef]
  55. Barbedo De Freitas, T.; Koslinski Santos, C.H.; Vieira da Silva, M.; Shirai, M.A.; Dias, M.I.; Barros, L.; Barreiro, M.F.; Ferreira, I.C.F.R.; Gonçalves, O.H.; Leimann, F.W. Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Pack. Shelf Life 2018, 15, 28–34. [Google Scholar] [CrossRef]
  56. Freitas, A.M.; Almeida, M.T.R.; Andrighetti-Fröhner, C.R.; Cardozo, F.T.G.S.; Barardi, C.R.M.; Farias, M.R.; Simões, C.M.O. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract. J. Ethnopharmacol. 2009, 126, 512–517. [Google Scholar] [CrossRef] [PubMed]
  57. Fonseca, F.N.; Ferreira, A.J.; Sartorelli, P.; Lopes, N.P.; Floh, E.I.; Handro, W.; Kato, M.J. Phenylpropanoid derivatives and biflavones at different stages of differentiation and development of Araucaria angustifolia. Phytochemistry 2000, 55, 575–580. [Google Scholar] [CrossRef]
  58. Yamamoto, S.; Otto, A.; Simoneit, B.R.T. Lignans in resin of Araucaria angustifolia by gas chromatography/mass spectrometry. J. Mass Spectrom. 2004, 39, 1337–1347. [Google Scholar] [CrossRef]
  59. Garbarino, J.A.; Oyarzún, M.L.; Gambaro, V. Labdane diterpenes from Araucaria araucana. J. Nat. Prod. 1987, 50, 935–936. [Google Scholar] [CrossRef]
  60. Schmeda-Hirschmann, G.; Astudillo, L.; Rodriguez, J.A.; Theoduloz, C.; Yãnez, T. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents. J. Ethnopharmacol. 2005, 10, 271–276. [Google Scholar] [CrossRef]
  61. Schmeda-Hirschmann, G.; Astudillo, L.; Sepúlveda, B.; Rodriguez, J.A.; Theoduloz, C.; Yãnez, T.; Palenzuela, J.A. Gastroprotective effect and cytotoxicity of natural and semisynthetic labdane diterpenes from Araucaria araucana resin. Z. Naturforsch. C 2005, 60, 511–522. [Google Scholar] [CrossRef]
  62. Céspedes, C.L.; Avila, J.G.; García, A.M.; Becerra, J.; Flores, C.; Aqueveque, P.; Bittner, M.; Hoeneisen, M.; Martinez, M.; Silva, M. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z. Naturforsch. C 2006, 61, 35–43. [Google Scholar] [CrossRef]
  63. Pietsch, M.; König, W.A. Enantiomers of sesquiterpene and diterpene hydrocarbons in Araucaria species. Phytochem. Anal. 2000, 11, 99–105. [Google Scholar] [CrossRef]
  64. Parveen, N.; Taufeeq, H.M.; Khan, N.U. Biflavones from the leaves of Araucaria araucana. J. Nat. Prod. 1987, 50, 332–333. [Google Scholar] [CrossRef]
  65. Briggs, L.H.; White, G.W. Constituents of the essential oil of Araucaria araucana. Tetrahedron 1975, 31, 1311–1314. [Google Scholar] [CrossRef]
  66. Hegnauer, R. Chemotaxonomie der Pflanzen. Band 7. Birkhauser; Verlag Publisher: Basel, Switzerland, 1986; pp. 462–554. [Google Scholar]
  67. Cox, R.E.; Yamamoto, S.; Otto, A.; Simoneit, B.R.T. Oxygenated di-and tricyclic diterpenoids of southern hemisphere conifers. Biochem. Syst. Ecol. 2007, 35, 342–362. [Google Scholar] [CrossRef]
  68. Talaat, A.N.; Ebada, S.S.; Labib, R.M.; Esmat, A.; Youssef, F.S.; Singab, A.N. Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. J. Ethnopharmacol. 2018, 226, 44–47. [Google Scholar] [CrossRef] [PubMed]
  69. Ebada, S.S.; Talaat, A.N.; Labib, R.M.; Mándi, A.; Kurtán, T.; Müller, W.E.G.; Sing, A.N.; Proksch, P. Cytotoxic labdane diterpenes and bisflavonoid atropisomers from leaves of Araucaria bidwillii. Tetrahedron 2017, 73, 3048–3055. [Google Scholar] [CrossRef]
  70. Ilyas, N.; Ilyas, M.; Rahman, W.; Okigawa, M.; Kawano, N. Biflavones from the leaves of Araucaria excelsa. Phytochemistry 1978, 17, 987–990. [Google Scholar] [CrossRef]
  71. Suresh, B.; Dhanasekaran, S.; Elango, K.; Sethuraman, M.; Rajan, S. Anti-pyretic activity of some plants in female albino rats: A preliminary report. Anc. Sci. Life 1995, 14, 253–257. [Google Scholar]
  72. Caputo, R.; Mangoni, L.; Monaco, P.; Pelosi, L.; Previtera, L. Neutral diterpenes from Araucaria bidwillii. Phytochemistry 1976, 15, 1401–1402. [Google Scholar] [CrossRef]
  73. Michael, H.N.; Awad, H.M.; El-Sayed, N.H.; Paré, P.W. Chemical and antioxidant investigations: Norfolk pine needles (Araucaria excelsa). Pharma. Biol. 2010, 48, 534–538. [Google Scholar] [CrossRef]
  74. Saranya Devi, K.; Sruthy, P.B.; Anjana, J.C.; Rathinamala, J. Identification of bioactive compounds and toxicity study of Araucaria columnaris bark extract on human embryonic kidney cell line. Asian J. Biotechnol. 2015, 7, 129–136. [Google Scholar] [CrossRef]
  75. Patial, P.K.; Cannoo, D.S. Phytochemical profile, antioxidant potential and DFT study of Araucaria columnaris (G. Forst.) Hook. Branch extracts. Nat. Prod. Res. 2019, in press. [Google Scholar] [CrossRef] [PubMed]
  76. Verma, S.; Mohanta, T.; Revathy, T.; Suthindhiran, K.; Jayasri, M.A. Phytochemical and pharmacological evaluation of selected plants. Am. J. Biochem. Biotechnol. 2013, 9, 291–299. [Google Scholar] [CrossRef] [Green Version]
  77. Pavani, P.S.; Raj, K.P.; Sarany, A.; Kumar, A.R. Phytochemical profile of three selected plants of Araucaria columnaris, Araucaria heterophylla, Ocimum tenuiflorum. Int. Res. J. Pharma. Appl. Sci. 2014, 4, 18–20. [Google Scholar]
  78. Aslam, M.S.; Choudhary, B.A.; Uzair, M.; Ijaz, A.S. Phytochemistry of aerial parts of Araucaria columnaris. J. Appl. Pharmacol. 2014, 6, 114–120. [Google Scholar]
  79. Chen, J.; Chen, J.-J.; Yang, L.-Q.; Hua, L.; Gao, K. Labdane diterpenoids and shikimic acid derivatives from Araucaria cunninghamii. Planta Med. 2011, 77, 485–488. [Google Scholar] [CrossRef] [Green Version]
  80. Chen, J.; Yang, M.L.; Zeng, J.; Gao, K. Antimicrobial activity of Araucaria cunninghamii Sweet and the chemical constituents of its twigs and leaves. Phytochem. Lett. 2013, 6, 41–45. [Google Scholar] [CrossRef]
  81. Verma, R.S.; Padalia, R.C.; Goswami, P.; Verma, S.K.; Chauhan, A.; Darokar, M.P. Chemical composition and antibacterial activity of foliage and resin essential oils of Araucaria cunninghamii Aiton ex D.Don and Araucaria heterophylla (Salisb.) Franco from India. Ind. Crops Prod. 2014, 61, 410–416. [Google Scholar] [CrossRef]
  82. Gautam, V.; Arora, S.; Kapoor, D.; Bhardwaj, R. Free radical scavenging activity and HPLC analysis of Araucaria cunninghamii Aiton ex D. Don leaf extract. J. Stress Physiol. Biochem. 2014, 10, 176–185. [Google Scholar]
  83. Olawore, N.O.; Ogunwande, I.A. Analysis of the leaf oil of Araucaria cunninghamii Sweet. grown in Nigeria. J. Essent. Oil Res. 2005, 17, 459–461. [Google Scholar] [CrossRef]
  84. Matsabisa, M.G.; Chukwuma, C.I.; Ibeji, C.U.; Chaudhary, S.K. Stem bark exudate (resin) of Araucaria cunninghamii Aiton ex D. Don (hoop pine) abates glycation, α-glucosidase and DPP-IV activity and modulates glucose utilization in Chang liver cells and 3T3-L1 adipocytes. South Afr. J. Bot. 2019, 121, 193–199. [Google Scholar] [CrossRef]
  85. Hamed, M.M.; Ghareeb, M.A.; Shafei, A.A.; Abdel-Aziz, M.S.; Tolba, S.S. The in vitro evaluation of antioxidant, anticancer and antimicrobial properties of Araucaria heterophylla grown in Egypt. Pharmacol. Online 2019, 1, 221–235. [Google Scholar]
  86. Abdel-Sattar, E.; Monem, A.R.A.; Ezzat, S.M.; El-Halawany, A.M.; Mouneir, S.M. Chemical and biological investigation of Araucaria heterophylla Salisb. resin. Z. Naturforsch. C 2009, 64, 819–823. [Google Scholar] [CrossRef] [PubMed]
  87. Chen, J.; Lichwa, J.; Ray, C. Essential oils of selected Hawaiian plants and associated litters. J. Essent. Oil Res. 2007, 19, 276–278. [Google Scholar] [CrossRef]
  88. Basyuni, M.; Deni, I.; Slamet, B.; Bimantara, Y.; Hayati, R.; Amelia, R.; Oku, H.; Sagami, H. Polyisoprenoids composition from Araucaria heterophylla and Casuarina equisetifolia leaves. Proc. Int. Conf. Nat. Res. Technol. 2019, 108–111. [Google Scholar] [CrossRef]
  89. Ilyas, M.; Seligmann, O.; Wagner, H. Biflavones from the leaves of Araucaria rulei F. Muell. and a survey on biflavanoids of the Araucaria genus. Z. Naturforsch. C 1977, 32, 206–209. [Google Scholar] [CrossRef]
  90. Andrighetti-Fröhner, C.R.; Sincero, T.C.M.; Silva, A.C.; Savi, L.A.; Gaido, C.M.; Bettega, J.M.R.; Mancini, M.; Almeida, M.T.R.; Barbosa, R.A.; Farias, M.R.; et al. Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest. Fitoterapia 2005, 76, 374–378. [Google Scholar] [CrossRef]
  91. Peralta, R.M.; Koehnlein, E.A.; Oliveira, R.F.; Correa, V.G.; Corrêa, R.C.; Bertonha, L.; Bracht, A.; Ferreira, I.C. Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends Food Sci. Technol. 2016, 54, 85–93. [Google Scholar] [CrossRef] [Green Version]
  92. Dold, A.P.; Coocks, M.L. The medicinal use of some weeds, problems and alien plants in the Grahamstown and Peddie districts of the Eastern cape, South Africa. South Afr. J. Sci. 2000, 96, 467–473. [Google Scholar]
  93. Anderson, E.F. Ethnobotany of hill tribes of Northern Thailand. II. Lahu medicinal plants. Econ. Bot. 1986, 40, 442–450. [Google Scholar] [CrossRef]
  94. Milliken, W. Ethnobotany of the Yali of West Papua; Royal Botanic Garden: Edinburgh, UK, 1994. [Google Scholar]
  95. Bussmann, R.W. Antibacterial activity of northern-peruvian medicinal plants. Arnaldoa 2008, 15, 127–148. [Google Scholar]
  96. Dhanasekaran, S.; Ravishankar, S.; Devi, K.S.; Suresh, B.; Sethuraman, M.; Rajan, S. Pharmacological studies of Araucaria bidwillii Hook. Anc. Sci. Life 1993, 13, 137–142. [Google Scholar] [PubMed]
  97. Nazeer Ahamed, K.F.H.; Kumar, V.; Sundarajan, R.; Mukherjee, K.; Pulok, K. Anti-nociceptive and anti-inflammatory activity of Araucaria bidwillii Hook. Iran. J. Pharmacol. Ther. 2005, 4, 105–109. [Google Scholar]
  98. Nazeer Ahamed, K.F.H.; Kumar, V.; Wahile, A.M.; Mukherjee, K.; Shapa, B.P.; Mukherjee, P.K. Brine shrimp lethality and cytotoxic assay of Araucaria bidwillii Hook in human carcinoma cell lines. Orient. Pharma. Exp. Med. 2005, 5, 21–28. [Google Scholar]
  99. Zaffar, M.; Munis, M.F.H.; Rasul, F.; Masood, S.; Hassan, S.W.; Imran, M.; Nasim, W.; Zakir, A.; Quraishi, U.M.; Chaudhary, H.J. Biological assays of plant extracts from Araucaria columnaris and Cycas revoluta. J. Food Agric. Environ. 2014, 12, 128–131. [Google Scholar]
  100. Joshi, S.; Sati, S.C.; Kumar, P. Antibacterial potential and ethnomedical relevance of Kumaun Himalayan Gymnosperms. J. Phytopharmacol. 2016, 5, 190–200. [Google Scholar]
  101. Sati, S.C.; Joshi, S. Antifungal potential of Araucaria cunninghamii sweet (Araucariaceae) plant extracts. Int. J. Pharmacol. Toxicol. Sci. 2013, 3, 15–21. [Google Scholar]
  102. Mukherjee, P.K.; Nazeer Ahamed, K.F.H.; Kumar, V.; Mukherjee, K.; Houghton, P.J. Protective effect of biflavones from Araucaria bidwillii Hook in rat cerebral ischemia/reperfusion induced oxidative stress. Behaviour. Brain Res. 2007, 178, 221–228. [Google Scholar] [CrossRef]
  103. Dargavel, J. Araucarian Forests; Australia and New Zealand Forest Histories Inc.: Kingston, Australia, ISSN 1832-8156.
  104. Hill, K.D. The Wollemi pine: Discovering a living fossil. Nat. Resour. 1996, 32, 20–25. [Google Scholar]
  105. Jones, W.G.; Hill, K.D.; Allen, J.M. Wollemia nobilis, a new living Australian genus in the Araucariaceae. Telopea 1995, 6, 173–176. [Google Scholar] [CrossRef]
  106. Staniek, A.; Mutendam, R.; Woerdenbag, H.J.; Kayser, O. Essential oil constituents derived from different organs of a Relictual conifer Wollemia nobilis. Biochem. Syst. Ecol. 2010, 38, 131–135. [Google Scholar] [CrossRef]
  107. Gleńsk, M.; Włodarczyk, M.; Stefanowicz, P.; Kucharska, A. Biflavonoids from the Wollemi Pine, Wollemia nobilis (Araucariaceae). Biochem. Syst. Ecol. 2013, 46, 18–21. [Google Scholar] [CrossRef]
  108. Wang, S.; Panter, K.E.; Gardner, D.R.; Evans, R.C.; Bunch, T.D. Effects of the pine needle abortifacient, isocupressic acid, on bovine oocyte maturation and preimplantation embryo development. Anim. Reprod. Sci. 2004, 81, 237–244. [Google Scholar] [CrossRef] [PubMed]
  109. McEvoy, T.G.; Robinson, J.J.; Ashworth, C.J.; Rooke, J.A.; Sinclair, K.D. Feed and forage toxicants affecting embryo survival and fetal development. Theriogenology 2001, 55, 113–129. [Google Scholar] [CrossRef]
  110. Fons, F.; Rapior, S.; Gargadennec, A.; Andary, C.; Bessière, J. Volatile components of Plantago lanceolata (Plantaginaceae). Acta Bot. Gall. 1998, 145, 265–269. [Google Scholar] [CrossRef] [Green Version]
  111. Crockett, S.L. Essential oil and volatile components of the genus Hypericum (Hypericaceae). Nat. Prod. Comm. 2010, 5, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
  112. Rodriguez, S.; Murray, A.P. Volatile components of Discaria americana Gillies & Hook (Rhamnaceae). Nat. Prod. Res. 2008, 22, 253–257. [Google Scholar]
  113. Venditti, A.; Frezza, C.; Salutari, G.; Di Cecco, M.; Ciaschetti, G.; Oliva, A.; De Angelis, M.; Vullo, V.; Sabatino, M.; Garzoli, S.; et al. Composition of the essential oil of Coristospermum cuneifolium and antimicrobial activity evaluation. Planta Med. Int. Open. 2017, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
  114. Venditti, A.; Frezza, C.; Sciubba, F.; Serafini, M.; Bianco, A.; Cianfaglione, K.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Maggi, F. Volatile components, polar constituents and biological activity of tansy daisy (Tanacetum macrophyllum (Waldst. et Kit.) Schultz Bip.). Ind. Crops Prod. 2018, 118, 225–235. [Google Scholar] [CrossRef]
  115. Krauze-Baranowska, M.; Baçzek, T.; Głód, D.; Kaliszan, R.; Wollenweber, E. HPLC separation of O-acylated flavonoids and biflavones from some species of Gymnospermae. Chromatographia 2004, 60, 9–15. [Google Scholar] [CrossRef]
  116. Chinou, I. Labdanes of natural origin-biological activities (1981–2004). Curr. Med. Chem. 2005, 12, 1295–1317. [Google Scholar] [CrossRef]
Figure 1. Images of the organs of Agathis species: A. microstachya trunk (left); A. philippinensis leaves (middle); A. australis leaves and cones (right).
Figure 1. Images of the organs of Agathis species: A. microstachya trunk (left); A. philippinensis leaves (middle); A. australis leaves and cones (right).
Plants 09 00888 g001
Figure 2. Images of the organs of Araucaria species: A. araucana tree (left), A. heterophylla leaves (middle), A. columnaris cones (right).
Figure 2. Images of the organs of Araucaria species: A. araucana tree (left), A. heterophylla leaves (middle), A. columnaris cones (right).
Plants 09 00888 g002
Figure 3. Images of the organs of Wollemia nobilis: tree (left), leaves (middle), cones (right).
Figure 3. Images of the organs of Wollemia nobilis: tree (left), leaves (middle), cones (right).
Plants 09 00888 g003
Figure 4. Main essential oil metabolites evidenced in Araucariaceae species—part 1.
Figure 4. Main essential oil metabolites evidenced in Araucariaceae species—part 1.
Plants 09 00888 g004
Figure 5. Main essential oil metabolites evidenced in Araucariaceae species—part 2.
Figure 5. Main essential oil metabolites evidenced in Araucariaceae species—part 2.
Plants 09 00888 g005
Figure 6. Main polar fractions metabolites evidenced in Araucariaceae species.
Figure 6. Main polar fractions metabolites evidenced in Araucariaceae species.
Plants 09 00888 g006
Table 1. Compounds evidenced in Agathis species.
Table 1. Compounds evidenced in Agathis species.
SpeciesCollection SiteOrgans StudiedCompoundStudy MethodsReferences
A. alba (Lam.) Foxw.TaiwanLeavesagathisflavone, 7′’-O-methyl-agathisflavone, 7,7′’-di-O-methyl-agathisflvone, 7,4′’’-di-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7,7′’-di-O-methyl-cupressuflavone, bilobetin, plus other biflavonoids not characterizedSE, CC, αD, IR, UV, NMR[6]
n.r.7-O-methyl-agathisflavone, 7,4′’’-di-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7,7′’-di-O-methyl-cupressuflavoneSE, CC, TLC, MP, NMR, MS[7]
A. atropurpurea HylandAustraliaLeavesα-pinene, α-fenchene, camphene, β-pinene, sabinene, myrcene, α-terpinene, limonene, β-phellandrene, γ-terpinene, terpinolene, α-cubebene, bicycloelemene, α-copaene, α-gurjunene, β-cubebene, β-ylangene, β-caryophyllene, germacrene D, δ-cadinene, bicyclogermacrene, epi-cubenol, globulol, viridiflorol, spathulenol, alkyl chain (C20H32), luxuriadiene, phyllocladene, 16-kaureneSD, GLC, GC-MS, [α]D, NMR[8]
New Zealandagathisflavone, 7′’-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, 7,4′,7′’-tri-O-methyl-agathisflavone, 7,4′,7′’-tri-O-methyl-cupressuflavone SE, CC, TLC, LC, NMR, MS[9]
AustraliaResintricyclene, camphene, dehydro-1,8-cineol, limonene, γ-terpinene, terpinolene, m-cymenene, 1,3,8-p-menthatriene, 1-octen-3-yl acetate, 1,5,8-p-menthatriene, cis-β-terpineol, α-terpineol, dihydro-carveol, carvone, bornyl acetate, 2,5-dimethoxy-p-cymene, β-bisaboleneHD, GC-MS[10]
A. australis
(D. Don) Lindl.
AustraliaLeavestryciclene, α-pinene, camphene, limonene, α-cubebene, bicycloelemene, α-copaene, β-bourbonene, α-gurjunene, β-cubebene, β-ylangene, β-copaene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, alkyl chains (C15H24), viridiflorene, germacrene D, δ-cadinene, bicyclogermacrene, calacorene, palustrol, cubenol, epi-cubenol, globulol, viridiflorol, alkyl chain (C15H24O), spathulenol, T-cadinol, T-muurolol, α-cadinol, hibaene, alkyl chain (C20H32), sclarene, luxuriadiene, 16-kaurene, alkyl chain (C20H34O)SD, GLC, GC-MS, [α]D, NMR[8]
New Zealandagathisflavone, 7′’-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, 7,4′,7′’-tri-O-methyl-agathisflavone, 7,4′,7′’-tri-O-methyl-cupressuflavone, 7,4′,7′’,4′’,-tetra-O-methyl-agathisflavone, 7,4′, 7′’,4′’-tetra-O-methyl-cupressuflavoneSE, CC, TLC, LC, NMR, MS[9]
A. borneensis Warb.MalaysiaLeaves1,2,4a,5,6,8a-hexahydro-1-isopropyl-4,7-dimethyl-naphthalene, 1,4-pentadien-3-ol, 1-iodo-2-methylundecane, 2(1H)-phenanthrenone, 2,4,6-trimethyl-octane, abietate, androstenone, bicetyl, 4-methylene-2,8,8-trimethyl-2-vinyl-bicyclo [5.2.0]nonane, caryophyllene oxide, copaene, dodecane, farnesane, heptacosane, methyl-isobutyrate, naphthalene, n-heptadecane, n-hexacosane, n-octacosane, nor-pristane, n-pentacosane, n-pentadecane, n-pentadecanoic acid, n-tetradecane, octane, 2,3,3-trimethyl-octane, octyl ether, palmitic acid, trans-phytol, α-cubenene, β-caryophylleneSE, GC-FID, GC-MS[11]
Stem barkfarnesol, 1,2,4a,5,6,8a-hexahydro-1-isopropyl-4,7-dimethyl-naphthalene, 1,5,9,9-tetramethyl-1,4,7-cycloundecatriene, 4,4,5-trimethyl-2-hexene,3-ethyl-2,7-dimethyl octane, 6-dimethylcyclohexene, 8a(2H)-phenanthrenol, 8-methylene, bicetyl, 4,11,11-trimethyl-8-methylene-bicyclo[7.2.0]undec-4-(Z)-ene, cetane, copaene, cyclohexene, eicosane, germacrene D, heptacosane, 3-ethyl-3-methyl-heptane, icosane, naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-(1α,4aα)-naphthalene, n-docosane, n-heptadecane, n-hexacosane, n-nonadecane, n-octacosane, nor-pristane, n-pentacosane, n-pentadecane, n-tetratriacontane, n-triacontane, octadecane, octadecyl iodide, sorbaldehyde, thiophene, untriacontane, α-caryophyllene, α-cubenene, β-caryophyllene, β-cubebene, methyl-β-D-mannofuranoside, δ-cadinene
A. dammara
(Lamb.) Rich. and A.Rich.
ChinaLeavesα-tricyclene, α-pinene, camphene, sabinene, β-pinene, β-myrcene, α-phellandrene, (+)-4-carene, o-cymene, limonene, γ-terpinene,terpinolene,terpinen-4-ol, α-terpineol, α-copaene, germacrene D, β-bisabolene, δ-cadinene, α-bisabololHD, GC-FID, GC-MS[12]
Philippinesalkaloids, anthraquinones, tannins, flavonoids, saponins, phenolics (exact compounds not specified)Phytochemical screening[13]
A. lanceolata Warb.New CaledoniaResin19-noranticopalic acid, agatholic acid, sandaracopimaradienol, methyl-sandaracopimarateSE, CC, [α]D, IR, NMR, MS[14,15]
A. macrophylla (Lindl.) Mast.AustraliaLeavesα-pinene, myrcene, limonene, p-cymene, α-cubebene, bicycloelemene, α-copaene, β-bourbonene, β-cubebene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, humulene, alkyl chains (C15H24),
germacrene D, α-muurolene, δ-cadinene, calamenene, p-cymen-8-ol, calacorene, palustrol, cariophyllene oxide, epi-cubenol, spathulenol, 5,15-rosadiene, luxuriadiene,16-kaurene
SD, GLC, GC-MS, [α]D, NMR[8]
ChinaAerial parts(4S,5R,9S,10R)-methyl-19-hydroxy-15,16-dinorlabda-8(17),11-E-dien-13-oxo-18-oate, (4R,5R,9R,10R,13S)-13-hydroxypodocarp-8(14)-en-19-oic acid, (4R,5R,9R,10R,13R)-13-hydroxypodocarp-8(14)-en-19-oic acid, 15-nor-14-oxolabda-8(17),12E-dien-19-oicacid, 13-oxo-podocarp-8(14)-en-19-oic acid, 13-oxo-podocarp-8(14)-en-19-oate, 16-hydroxy-8(17),13-labdadien-15,16-olid-19-oic acid, 15ξ-hydroxy-pinusolidic acid, lambertianic acid, methyl lambertianate, pinusolidic acid, pinusolide, angustanoic acid F, 8,11,13-abietatrien-15-olSE, CC, pTLC, HPLC, [α]D, CD, UV, IR, NMR, HRMS, XR[16]
Leaves and branches7α,15α-dihydroxystigmast-4-en-3-one, 3β,22,23-trihydroxystigmast-5-en-7-one,
3β-hydroxystigmast-6-one, β-sitosterol, 4(15)-eudesmene-1β,6α-diol, 3β-hydroxymegastigman-5-en-9-O-β-D-glucopyranoside, corchoionoside C, (6S,9R)-roseoside, 2α,3β-dihydroxyurs-12-en-28-oic acid, 2α,3β,19α-trihydroxyurs-12-en-28-oic acid, 2α,3α,19α-trihydroxyurs-12-en-28-oic acid, 4′,4′’’,7,7′’-tetra-O-methyl-agathisflavone, amentoflavone, 4′,4′’’-di-O-methyl-upressuflavone, quercetin, catechol
SE, CC, TLC, HPLC, [α]D, NMR, HRMS [17]
FijiLeaves3α-hydroxy-(13S)-l6-nor-pimar-7-en-l5-oic acid, (13S)-pimar-7-en-3α,15,16-triol, kaur-16-en-3α,l3-diol, kauran-3α,l3,16a-triol, agatharesinol, sitosterol, abietic acid, agathic acidSE, CC, [α]D, IR, NMR, MS[18]
Resinabietic acid, agathic acidSE, CC, IR, NMR, MS[19]
A. microstachya J.F.Bailey and C.T.WhiteAustraliaLeavesα-pinene, α-fenchene, camphene, β-pinene, sabinene, myrcene, α-terpinene, limonene, β-phellandrene, γ-terpinene, p-cymene, terpinolene, α-cubebene, δ-elemene, bicycloelemene, α-copaene, α-gurjunene, β-cubebene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, allo-aromadendrene, γ-elemene, humulene, viridiflorene, α-terpineol, germacrene D, bicyclogermacrene, α-muurolene, δ-cadinene, calamenene, palustrol, caryophyllene oxide, cubenol, epi-cubenol, globulol, viridiflorol, spathulenol, T-cadinol, T-muurolol, α-cadinol, δ-cadinol, alkyl chains (C20H32), phyllocladene, 16-kaureneSD, GLC, GC-MS, [α]D, NMR[8]
Resinneo-abietic acid, cis-communic acid, trans-communic acid, methyl abietate, methyl sandaracopimarate,
agathic acid, methyl-15-hydroxy-abietate, methyl-15-hydroxy-dehydroabietate
SE, CC, [α]D, IR, UV, NMR, MS[20]
A. moorei (Lindl.) Mast.AustraliaLeavesα-pinene, myrcene, limonene, p-cymene, α-cubebene, α-copaene, β-bourbonene, α-gurjunene, β-cubebene, β-ylangene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, viridiflorene, alkyl chains (C15H24), germacrene D, α-muurolene, δ-cadinene, calamenene, calacorene, caryophyllene oxide, globulol, viridiflorol, spathulenol, T-cadinol, T-muurolol, α-cadinol, δ-cadinol, alkyl chains (C20H32), 5,15-rosadiene, 16-kaureneSD, GLC, GC-MS, [α]D, NMR[8]
A. ovata (C.Moore ex Vieill.) Warb.AustraliaLeaveslimonene, α-cubebene, α-copaene, β-bourbonene, β-caryophyllene, humulene, viridiflorene, alkyl chains (C15H24), germacrene D, δ-cadinene, calamenene, alkyl chain (C15H24O), caryophyllene oxide, spathulenol, hibaene, alkyl chains (C20H32), sclarene, phyllocladeneSD, GLC, GC-MS, [α]D, NMR[8]
New Zealandagathisflavone, 7′’-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, 7,4′,7′’-tri-O-methyl-agathisflavone, 7,4′,7′’-tri-O-methyl-cupressuflavone, 7,4′,7′’,4′’’-tetra-O-methyl-agathisflavone, 7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavoneSE, CC, TLC, LC, NMR, MS[9]
A. philippinensis WarbPhilippinesExudatetricyclene, α-pinene, α-thujene, α-fenchene, camphene, β-pinene, sabinene, limonene, γ-terpinene, (E)-β-ocimene, p-cymene, terpinolene, 6-methyl-5-hepten-2-one, fenchone, cis-sabinene hydrate, α-copaene, dihydro-α-terpineol, terpinen-4-ol, trans-pinocarveol, β-terpineol, neral, α-terpineol, carvone, trans-piperitol, trans-p-mentha-1(7),8-dien-2-ol, trans-p-mentha-1,8-dien-6-ol, p-cymen-8-ol, cis-p-mentha-1,8-dien-6-ol, cis-p-mentha-1(7),8-dien-2-ol, limonen-10-ol, plus one not fully characterizedHD, GC, GC-MS[21]
A. robusta (C. Moore ex F. Muell.) F.M. BaileyAustraliaLeavesα-pinene, α-thujene, β-pinene, limonene, 1,8-cineol, p-cymene, α-cubebene, α-copaene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, alkyl chain (C15H24), viridiflorene, germacrene D, α-muurolene, δ-cadinene, caryophyllene oxide, p-cymen-8-ol, globulol, viridiflorol, spathulenol, rimueneSD, GLC, GC-MS, [α]D, NMR[8]
New Zealandagathisflavone, 7′’-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavoneSE, CC, TLC, LC, NMR, MS[9]
Italyagathisflavone, 7′’-O-methyl-agathisflavone, cupressuflavone, rutin, shikimic acid, (2S)-1,2-di-O-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]-3-O-β-D-alactopyranosyl glycerolSE, CC, NMR, MS[22]
United Kingdomglycosides, tannins, flavonoids, saponins, carbohydrates, fixed oil, mucilage (exact compounds not specified)Phytochemical screening[23]
Indiaα-thujene, α-pinene, camphene, β-pinene, 2-pentyl-furan, α-terpinene, p-cymene, limonene, methyl-chavicol, δ-elemene, α-cubebene, α-copaene, β-bourbonene, β-elemene, (E)-caryophyllene, (E)-α-ionone, cis-thujopsene, β-copaene, aromadendrene,(Z)-β-farnesene, α-humulene, allo-aromadendrene, 9-epi-(E)-caryophyllene, β-chamigrene, γ-muurolene, β-selinene, α-selinene, α-muurolene, γ-cadinene, epi-α-selinene, trans-calamenene, occidentalol, germacrene B, α-cedrene epoxide, spathulenol, caryophyllene oxide, β-copaen-4-α-ol, carotol, humulene epoxide II, intermedeol, occidentalol acetate, 10-nor-calamenen-10-one, rimueneHD, GC-FID, GC-MS[24]
Resinα-thujene, α-pinene, camphene, thuja-2,4(10)-diene, sabinene, β-pinene, p-cymene, limonene, p-mentha-3,8-diene, p-cymenene, trans-sabinene hydrate, 1,3,8-p-menthatriene, α-campholenal, trans-sabinol, (E)-myroxide, trans-β-terpineol, pinocarvone, borneol, terpinen-4-ol, p-cymen-8-ol, myrtenol, verbenone, trans-carveol, carvone, trans-sabinene hydrate acetate, iso-bornyl acetate, bornyl acetate, trans-pinocarvyl acetate, dihydro-carvyl acetate, cis-pinocarvyl acetate, myrtenyl acetate, α-terpinyl acetate, aromadendrene, δ-cadineneHD, GC-FID, GC-MS[24]
United Kingdom (purchased)Seedsoleic acid, cis-vaccenic acid, linoleic acid, α-linolenic acid, bishomolinoleic acid, bishomo-α-linolenic acid, arachidonic acid, 1,5,8,11,14,17-eicosapentaenoic acid, plus other not specifiedSE, GLC-MS, HPLC[25]
Legend: [α]D = Specific Rotation; CC = Column Chromatography; CD = Circular Dichroism; GC-FID = Gas Chromatography coupled to Flame Ionization Detector; GC-MS = Gas Chromatography coupled to Mass Spectrometry; GLC = Gas Liquid Chromatography; GLC-MS = Gas Liquid Chromatography coupled to Mass Spectrometry; HD = HydroDistillation; HPLC = High Performance Liquid Chromatography; HRMS = High Resolution Mass Spectrometry; IR = InfraRed Spectroscopy; LC = Liquid Chromatography; MP = Melting Point; MS = Mass Spectrometry; n.r. = not reported; NMR = Nuclear Magnetic Resonance; pTLC = preparative Thin Layer Chromatography; SD = Solvent Distillation; SE = Solvent Extraction; TLC = Thin Layer Chromatography; UV = UltaViolet Spectroscopy; XR = X-ray Spectroscopy.
Table 2. Compounds evidenced in Araucaria species.
Table 2. Compounds evidenced in Araucaria species.
SpeciesCollection SiteOrgans StudiedCompoundStudy MethodsReferences
A. angustifolia (Bertol.) KuntzeAustraliaLeavesα-pinene, β-pinene, myrcene, limonene, p-cymene, bicycloelemene, α-copaene, β-bourbonene, β-copaene, β-elemene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, alkyl chains, viridiflorene, germacrene D, bicyclogermacrene, δ-cadinene, palustrol, globulol, viridiflorol, spathulenol, α-cadinol, hibaene, 15-kaurene, phyllocladeneSD, GLC, GC-MS, [α]D, NMR[8]
BrazilBarkβ-sitosterol, eudesmin, sugiol, agathic acid, agatholic acid, imbricatolic acidSE, CC, [α]D, MP, IR, NMR, MS[44]
Bractscatechin, epi-catechin, apigenin, quercetinSE, HPLC-DAD[45]
Dead bark(−)-epi-afzelechin protocatechuate, (−)-epi-afzelechin p-hydroxybenzoate, quercetin, (−)-epi-catechin, benzoic acid, p-hydroxybenzoic acid, protocatechuic acidSE, CC, LC, [α]D, NMR, MS[46]
Cooked seedsphenolics (exact compounds not specified), glucose, fructose, sucrosePhytochemical screening[47]
Female strobilidodecanoic acid, hexadecanoic acid, 1,3,4,5-tetrahydroxy-cyclohexane-carboxylic acid, 3-O-methyl-D-chiroinositol, 4-nitrophenyl-β-D-glucopyranoside, 4′-methoxy-tectorigenin 3-glucoside-dihydro-quercetin, 7,4′,7′’,4′-tetra-O-methyl-amentoflavone SE, MSn[48]
catechin, epi-catechin, rutinSE, HPLC-UV[49]
Knotseudesmin, seco-isolariciresinol, lariciresinol, isolariciresinol, isolariciresinol-4′-methyl etherSE, CC, [α]D, MP, NMR[50,51]
Needlesamentoflavone, ginkgetin, plus other not specifiedSE, HPLC-MS[52,53]
Resinpinoresinol, pinoresinol monomethyl ether, eudesmin, hinokiresinol, isolariciresinol, (−)seco-isolariciresinolSE, CC, TLC, MP, [α]D, IR, UV, NMR, MS[54]
Seedsprodelphinidin B, protocatechuic acid, ferulic acid hexoside, catechin,(−)-epi-catechin, eriodictyol-O-hexoside, quercetin-3-O-glucoside, plus other not specifiedSE, HPLC-DAD-MS[55]
Whole plantbilobetin, 7′’-O-methyl-robustaflavone, cupressuflavoneSE, TLC, CC, UV, HPLC, NMR[56]
Whole plant
(Cells)
octadecyl-(E)-p-coumarate, octadecyl-(Z)-p-coumarate, octadecyl-(E)-ferulate, octadecyl-(Z)-ferulate, 7,4′,7′’-tri-O-methyl-amentoflavone, 7,4′,4′’’-tri-O-methyl-amentoflavone, 4′,4′’’-di-O-methyl-amentoflavone, cabreuvin, irisolidone, pinoresinol, eudesmin, lariciresinol, trans-communic acidSE, CC, pTLC, IR, NMR, MS[57]
ChileResinseco-isolariciresinol, seco-isolariciresinol-4-methyl ether-9′-acetate, seco-isolariciresinol-9′-acetate, seco-isolariciresinol-4-methyl ether-9,9′-diacetate, seco-isolariciresinol-9,9′-diacetate, shonanin, lariciresinol, lariciresinol-4′-methyl ether, lariciresinol-4-methyl ether, lariciresinol-4,4′-dimethyl ether-9-acetate, lariciresinol-4-methyl ether-9-acetate, lariciresinol-9-acetate, 5-methoxy-lariciresinol-9-acetate, 5′-methoxy-lariciresinol-9-acetate, 7′-hydroxy-lariciresinol, 7′-methoxy-lariciresinol, 7′-methoxy-lariciresinol-9-acetate, 7′-hydroxy-lariciresinol-9-acetate, pinoresinol, epi-pinoresinol, eudesmin, pinoresinol monomethyl ether, 5-methoxy-eudesmin, 5-methoxy-pinoresinol, isolariciresinol, isolariciresinol-acetate, hinokiresinol, nyasol, 4-hydroxy-benzaldehyde, hydroquinone, p-coumaric acid, ferruginolSE, GC-MS[58]
A. araucana
(Molina) K.Koch
ChileResinimbricatolic acid, imbricatadiol,15-hydroxy-imbricatolal, 15-hydroxy-imbrcatolic acid, 15-acetoxy-imbricatolic acid, 15-acetoxy-imbricatolal, 15-formiloxy-imbricatolal, 15-acetoxylabd-8(17)-en-19-ol, 15,19-diacetoxylabd-8(17)-en, labd-8(17)-en-15,19-dial, 19-hydroxylabd-8(17)-en-15-oic acid, junicedric acid, sandaracopimaric acid, agatholic acidSE, CC, TLC,
[α]D, NMR, MS
[59,60,61]
Woodseco-isolariciresinol, pinoresinol, eudesmin, lariciresinol, lariciresinol-4-methyl etherSE, CC, TLC, HPLC, GLC, GC-MS, MP, NMR[62]
GermanyLeaves(−)-α-copaene, (−)-16-kaurene, (−)-δ-cadinene, (+)-15-beyerene, (−)-β-caryophyllene, (−)-trachylobane, (−)-16-atisirene, (−)-rosa-5,15-diene, (−)-13-epi-manoyl-oxide, (−)-sclareneSD, GC, GC-MS, TLC, [α]D, NMR [63]
India7-O-methyl-agathisflavone, 7”-O-methyl-amentoflavone, 7,7”-di-O-methyl-cupressoflavoneSE, MP, TLC, NMR[64]
New ZealandBranchesgeraniolene, limonene, γ-cadinene, (−)-α-cadinol, hibaene, (−)-trachylobane, (−)-kaurene, (−)-atisireneSE, GLC, TLC, [α]D, IR, NMR, MS[65]
n.a.n.a.geraniolone, limonene, (−)-trachylobane, (−)-kaurene, (−)-atisirene, hibaene, (−)-iso-kaurene, (−)-iso-atisirenen.a.[66]
A. bidwilli Hook.AustraliaLeavesα-pinene, β-pinene, myrcene, limonene, p-cymene, α-cubebene, α-copaene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, viridiflorene, germacrene D, bicyclogermacrene, δ-cadinene, caryophyllene oxide, cubenol, globulol, viridiflorol, spathulenol,
hibaene, 16-kaurene, alkyl chains (C20H32)
SD, GLC, GC-MS, [α]D, NMR[8]
Resinlabda-8(20),13-dien-15-oic acid, labda-8(20), 13-dien-15,19-dioic acid, kolavenic acidSE, GC-MS[67]
EgyptLeaves4′,7′’-di-O-methyl-agathisflavone,7-O-methyl-6-hydroxy-apigenin, 4′,4′’-di-O-methyl-amentoflavoneSE, HPLC-UV[68]
7-hydroxy-labda-8(17),13(16),14-trien-19-yl-(E)-coumarate, 7-hydroxy-labda-8(17),13(16),14-trien-19-yl-(Z)-coumarate, 7-hydroxy-labda-8(17),13(16),14-trien-19-yl-7′-O-methyl-(E)-coumarate, 7-hydroxy-labda-8(17),13(16),14-trien-19-yl-7′-O-methyl-(Z)-coumarate, 7-oxocallitrisic acid, 2-O-acetyl-11-keto-boswellic acid, β-sitosterol-3-O-glucopyranoside, phloretic acid, 7,4′,7′’-tri-O-methyl-agathisflavone, 7,4′,7′’-tri-O-methyl-cupressuflavoneSE, CC, HPLC, [α]D, UV, ECD, NMR, HR-MS[69]
GermanyLeavesα-cubene, (−)-16-kaurene, β-cubebene, Z-biformene, E-biformene, sclarene, α-copaene, germacrene D, (−)-7,13-abietadine, δ-cadineneSD, GC, GC-MS, TLC, [α]D, NMR[63]
IndiaLeavesagathisflavone, cupressuflavone, amentoflavone, 7-O-mcthyl-agathistlavone, bilobetin, hinokiflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-mcthyl-cupressuflavone, plus other biflavonoids not characterizedSE, CC, [α]D, IR, UV, NMR[6]
agathisflavone, amentoflavone, cupressuflavone, 7-O-methyl-agathisflavone, bilobetin, 7-O-methyl-cupressuflavone, hinokiflavone, 7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, plus other biflavonoids not characterizedSE, CC, TLC, IR, UV, NMR, MS[70]
Oleoresinditerpenes, flavonoids (exact compounds not specified)Phytochemical screening[71]
ItalyOleoresinmethyl ent-8β-hydroxy-labd-E-l3-en-15-oate, ent-8β,15-labd-E-13-ene-diol, methyl ent-8α-hydroxy-labd-E-l3-en-15-oate, ent-l5-acetoxy-labda-8,E-13-diene, ent-labda-8,E-13-dien-15-olSE, CC, MP, [α]D, IR, NMR, MS[72]
A. columnaris (G.Forst.) Hook.AustraliaLeavesβ-pinene, 1,8-cineol,α-cubebene, bicycloelemene, α-copaene, β-bourbonene, β-cubebene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, viridiflorene, germacrene D, bicyclogermacrene, α-muurolene, δ-cadinene, calamenene, calacorene, palustrol, cariophyllene oxide, cubenol, epi-cubenol, globulol, viridiflorol, spathulenol, T-cadinol, hibaene, sclarene, luxuriadiene, 16-kaurene, alkyl chainsSD, GLC, GC-MS, [α]D, NMR[8]
EgyptNeedlestaxifolin, taxifolin-3-O-glucopyranoside, orientin, vitexin, iso-orientin, iso-vitexin, gallic acidSE, CC, TLC HPLC, UV, NMR, MS[73]
IndiaBarkbenzoic acid, 1H-N-hydrxynaphth(2,3)imidazole-6,7-dicarboximide, 3-4-methoxyphenyl-2-propenoic acid, 4-[[[[(1,2-dichloroethylidene) amino]oxy]carbonyl]amino]-methyl ester benzoic acid, tert-butoxy 2 ethoxyethane, 1H-N-hydroxynaphth(2,3-d)imidazole-6,7-dicarboximide, 6-methoxy-2-methyl-2-phenyl-2H-1-benzopyran, 2,3-di-amino-2-methylpropanoic acid, 2,4-dimethyl-furanSE, TLC, GC-MS[74]
Branchesmyricetin, catechin, rutin, quercetin, luteolin, chlorogenic acid, ferulic acid, gallic acid, vanillic acidUS, HPLC-MS[75]
manool, N,N-bis(2-hydroxyethyl)dodecanamide, palmitic acid, cariophyllene, 1,7,7-trimethyl-3-phenethylidenebicyclo[2.2.1]heptan-2-one, 9-octadecenoic acid, cedr-8-en-15-ol, kaur-16-en-19-ol, 1,3-bis-(2-cyclopropyl,2-methylcyclopropyl)-but-2-en-1-one, methyl-(Z)-5,11,14,17-eicosatetraenoate, methyl-communate, abietic acid, agathic acid dimethyl ester, docosyl acetate, stigmastan-3,5-diene, 1-heptacosanol, tricosyl acetate, β-sitosterol, β-sitosterol acetateSE, GC-MS[75]
Leavessaponins, tannins, phenols, flavonoids phytosteroids (exact compounds not specified)Phytochemical screening[76]
agathisflavone, amentoflavone, cupressuflavone, 7-O-methyl-agathisflavone, hinokiflavone, 7′’-O-methyl-amentoflavone, 7,4′’’-di-O-methyl-agathisflavone,7,7′’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-amentoflavone, 7,7′’,4′’’-tri-O-methyl-agathisflavone, 7,4′,7′’-tri-O-methyl-amentoflavone, 7,4′,7′’,4′’’-tetra-O-methyl-amentoflavone, 7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavone, plus other biflavonoids not characterizedSE, CC, TLC, IR, UV, NMR, MS[70]
Whole plantsaponins, antraquinones, terpenes, flavonoids, carbohydrates, proteins (exact compounds not specified)Phytochemical screening[77]
Pakistan (purchased from ornamental shop)Aerial partstannins, flavonoids (exact compounds not specified)Phytochemical screening[78]
A. cunninghamii MudieAustraliaLeavesα-pinene, β-pinene, sabinene, myrcene, limonene, 1,8-cineol, p-cymene, α-copaene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, α-terpineol, germacrene D, bicyclogermacrene, δ-cadinene, p-cymen-8-ol, calacorene, palustrol, cariophyllene oxide, globulol, viridiflorol, spathulenol, hibaene, 15-kaurene, 16-kaurene, alkyl chainsSD, GLC, GC-MS, [α]D, NMR[8]
ChinaAerial partsent-19-(Z)-coumaroyloxy-labda-8(17),13(16),14-triene, ent-19-(E)-coumaroyloxy-labda-8(17),13(16),14-triene, shikimic acid n-butyl ester, 5-(E)-coumaroyloxy-quinic acid n-butyl ester, 5-(Z)-coumaroyloxyquinic acid n-butyl ester, labda-8(14),15(16)-dien-3β-olSE, CC, [α]D, IR, UV, NMR, MS[79]
ChinaTwigs and leaves4-n-butoxylphenylpropanetriol, 5-p-cis-coumaroyl-quinic acid, 5-p-trans-coumaroyl-quinic acid, quinic acid, (6R,9S)-3-oxo-α-ionol-9-O-β-D-glucopyranoside, (6S,9S)-roseoside, 5,5′’-dihydroxy-7,4′,7′’,4′’’-tetra-O-methyl-biflavone, 7,4′,7′’-tri-O-methyl-cupressuflavoneSE, CC, TLC, LC, [α]D, IR, UV, NMR, HRMS[80]
IndiaFresh foliagen-nonane, tricyclene, α-thujene, α-pinene, α-fenchene, sabinene, β-pinene,
α-phellandrene, α-terpinene, p-cymene, limonene, (Z)-β-ocimene, (E)-β-ocimene, γ-terpinene, terpinolene, n-undecane, terpinen-4-ol, myrtenol, n-tridecane, α-copaene, β-panasinsene, (E)-caryophyllene, β-copaene, aromadendrene, α-humulene, (E)-β-farnesene, allo-aromadendrene, germacrene D, α-amorphene, β-selinene, bicyclogermacrene, occidentalol, longipinanol, spathulenol, caryophyllene oxide, humulene epoxide II, α-muurolol, occidentalol acetate, cis-thujopsenal, epi-cyclocolorenone, hibaene, pimaradiene, dolabradiene, 15-kaurene, luxuriadiene, phyllocladene, 16-kaurene, abietatriene, laurenan-2-one, dehydro-abeitol, diterpenes
HD, GC-FID, GC-MS[81]
Senescent foliagen-nonane, tricyclene, α-thujene, α-pinene, α-fenchene, camphene, sabinene, β-pinene, α-phellandrene, δ-3-carene, α-terpinene, p-cymene, limonene, 1,8-cineol, (Z)-β-ocimene, (E)-β-ocimene, γ-terpinene, acetophenone, terpinolene, n-undecane, 3-octanol acetate, terpinen-4-ol, hexyl butanoate, myrtenol, (3Z)-hexenyl-2-methyl butanoate, hexyl iso-valerate, 1-tridecene, n-tridecane, α-copaene, (3Z)-hexenyl hexanoate, sativene, (E)-caryophyllene, β-copaene, aromadendrene, α-humulene, (E)-β-farnesene, allo-aromadendrene, germacrene D, β-selinene, bicyclogermacrene, occidentalol, longipinanol, spathulenol, caryophyllene oxide, viridiflorol, humulene epoxide II, 1,7-di-epi-α-cedrenal, α-muurolol, 14-hydroxy-(Z)-caryophyllene, 14-hydroxy-9-epi-(E)-caryophyllene, occidentalol acetate, cis-thujopsenal, epi-cyclocolorenone, hibaene, pimaradiene, dolabradiene, 15-kaurene, luxuriadiene, phyllocladene, 16-kaurene, abietatriene, sandaracopimarinol, dehydro-abeitol, diterpenes
Resin oiln-nonane, α-pinene, sabinene, β-pinene, 6-methyl-5-hepten-2-one, 3-octanol, p-cymene, limonene, 1,8-cineol, (Z)-β-ocimene, γ-terpinene, terpinolene, n-undecane,1-octen-3-yl-acetate, 3-octanol acetate, (3Z)-hexenyl-butanoate, hexyl butanoate, myrtenol, (3Z)-hexenyl-2-methyl butanoate, hexyl iso-valerate, 1-tridecene, n-tridecane, α-copaene, (3Z)-hexenyl hexanoate, β-panasinsene, sativene,(E)-caryophyllene, β-copaene, aromadendrene, α-humulene, (E)-β-farnesene, allo-aromadendrene, germacrene D, α-amorphene, β-selinene, bicyclogermacrene, occidentalol, longipinanol, spathulenol, caryophyllene oxide, globulol, viridiflorol, humulene epoxide II, 1,7-di-epi-α-cedrenal, α-muurolol, 14-hydroxy-(Z)-caryophyllene, 14-hydroxy-9-epi-(E)-caryophyllene, occidentalol acetate, 5-neo-cedranol, cis-thujopsenal, cyclocolorenone, squamulosone, epi-cyclocolorenone, hibaene, pimaradiene, dolabradiene, 15-kaurene, luxuriadiene, phyllocladene, abietatriene, laurenan-2-one, sandaracopimarinol, dehydro-abeitol, diterpenes, sesquiterpenoids
Leavesumbelliferone, quercetin, kaempferol, catechin, epi-catechin, chlorogenic acid, gallic acid, caffeic acid, ellagic acid SE, HPLC[82]
7-O-methyl-agathisflavone, 7′’-O-methyl-amentoflavone, hinokiflavone, 7,4′’’-di-O-methyl-agathisflavone, 7,4′-di-O-methyl-amentoflavone, 7,7′’-di-O-methyl-cupressuflavone, kayaflavone, 7, 4′,7′’-tri-O-methyl-cupressuflavone, 7,4′,7′’,4′’’-tetra-O-methyl-amentoflavone, 7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavone, plus other biflanoids not characterizedSE, CC, TLC, IR, UV, NMR, MS[70]
NigeriaLeavesnonane, β-calacorene, tricyclene, spathulenol, α-pinene, caryophyllene oxide, camphene, campherenone, sabinene, humulene epoxide II, β-pinene, T-muurolol, 2-pentyl-furan, ar-turmerone, α-phellandrene, shyobunol, δ-3-carene, beyerene, α-terpinene, kaurene, phyllocladene, (Z)-β-ocimene, laurenene, γ-terpinene, α-thujone, undecane, α-campholenal, δ-terpineol, terpinen-4-ol, menthol, verbenone, p-mentha-1,4-dien-7-ol, trans-carveol, myrtenol, α-cubebene, α-copaene, β-elemene, β-caryophyllene, aromadendrene, sesquisabinene B, α-humulene, allo-aromadendrene, γ-muurolene, germacrene D, β-selinene, bicyclogermacrene, γ-cadinene, δ-cadineneHD, GC, GC-MS[83]
South AfricaStem bark resinpalmitic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, ethyl heptadecanoate, di-isooctyl adipate, arachidonic acid, cholesterol, O-ethyl-hydroxylamine, 3-trimethylsilyloxypropyl hexadecanoate, 9-octadecenoic acid methyl ester, docosahexaenoic acid, L-valine-N-[N-[N2,N6-bis-(1-oxodecyl)-L-lysyl]glycyl]-methyl ester, eicosamethyl-cyclodecasiloxane, 1,1-diethoxy-nonane, ethyl 9-octadecenoate, cyclononasiloxaneSE, GC-MS[84]
phenolics (exact compounds not specified)Phytochemical screening
A. heterophylla
(Salisb.) Franco
AustraliaLeavesα-pinene, camphene, β-pinene, sabinene, myrcene, α-terpinene, limonene, γ-terpinene, p-cymene, terpinolene, α-cubebene, α-copaene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, viridiflorene, germacrene D, bicyclogermacrene, δ-cadinene, cariophyllene oxide, phyllocladene, 16-kaurene, alkyl chainsSD, GLC, GC-MS, [α]D, NMR[8]
EgyptLeavesflavonoids, phenolics (exact compounds not specified)Phytochemical screening[85]
Resin from the stemslabda-8(17),14-diene, 13-epi-cupressic acid, 13-O-acetyl-13-epi-cupressic acidSE, CC, TLC, NMR[86]
GermanyLeaves(−)-α-copaene, (−)-16-kaurene, (−)-germacrene D, sclarene, (−)-β-caryophyllene, 16-phyllocladene, epi-zonarene, (−)-sandaracopimaradiene, (−)-8(14),15-pimaradiene, dolabradiene, 9-epi-sclareneSD, GC, GC-MS, TLC, [α]D NMR[63]
HawaiiLeavesα-pinene, camphene, β-pinene, limonene, α-terpineol, β-caryophylleneHD, GC-FID, GC-MS[87]
IndiaFoliagen-nonane, α-pinene, camphene, sabinene, p-cymene, limonene, γ-terpinene, terpinolene, n-undecane, α-copaene, β-bourbonene, (E)-caryophyllene, β-copaene, α-humulene, (E)-β-farnesene, γ-gurjunene, germacrene D, α-amorphene, viridiflorene, α-muurolene, γ-cadinene, δ-cadinene, spathulenol, globulol, viridiflorol, β-oplopenone, epi-α-cadinol, α-muurolol, α-cadinol, cubitene, laurenene, rimuene, epi-laurenene, iso-pimara-9(11),15-diene, hibaene, ent-rosa-5,15-diene, pimaradiene, (3Z)-cembrene A, sandaracopimara-8(14),15-diene, dolabradiene, sclarene, 15-kaurene, luxuriadiene, phyllocladene, 16-kaurene, abietatriene, 13-epi-manool, abietadiene, phyllocladanol, diterpenesHD, GC-FID, GC-MS[81]
Resin oiln-undecane,1-octen-3-yl-acetate, α-cubebene, α-ylangene, α-copaene, β-bourbonene, iso-longifolene, β-elemene, (E)-caryophyllene, β-copaene, α-trans-bergamotene, α-guaiene, α-humulene, β-santalene, allo-aromadendrene, γ-gurjunene, germacrene D, aristolochene, trans-muurola-4(14),5-diene, α-muurolene, viridiflorene, δ-amorphene, γ-cadinene, δ-cadinene, α-cadinene, α-calacorene, germacrene B, (E)-nerolidol, spathulenol, β-oplopenone, epi-α-cedrenal, α-muurolol, pimaradiene, sandaracopimara-8(14),15-diene, manool oxide, sandaracopimarinol, diterpenes
Whole plantsaponins, antraquinones, terpenes, flavonoids, carbohydrates, proteins, (exact compounds not specified)Phytochemical screening[77]
IndonesiaLeavespolyisoprenoids (exact compounds not specified)2D-TLC screening[88]
A. hunsteinii K.Schum.AustraliaLeavesα-pinene, camphene, β-pinene, sabinene, myrcene, limonene, β-phellandrene, 1,8-cineol, p-cymene, terpinolene, α-cubebene, α-copaene, β-bourbebene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, humulene, viridiflorene, germacrene D, bicyclogermacrene, α-muurolene, calamenene, calacorene, methyl-eugenol, ledol, cubenol, epi-cubenol, globulol, viridiflorol, spathulenol, T-cadinol, T-muurolol, sclareneSD, GLC, GC-MS, [α]D, NMR[8]
A. luxurians (Brongn. and Gris) de Laub.AustraliaLeavesα-pinene, β-pinene, limonene, p-cymene, α-cubebene, bicycloelemene, α-copaene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, viridiflorene, germacrene D, bicyclogermacrene, δ-cadinene, calamenene, palustrol, cariophyllene oxide, cubenol, epi-cubenol, globulol, viridiflorol, spathulenol, 5,15-rosadiene, luxuriadiene, 16-kaurene, alkyl chainsSD, GLC, GC-MS, [α]D, NMR[8]
A. montana Brongn. and GrisAustraliaLeavesα-pinene, β-pinene, myrcene, limonene, p-cymene, α-cubebene, α-copaene, β-bourbonene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, viridiflorene, α-terpineol, bicyclogermacrene, α-muurolene, δ-cadinene, cariophyllene oxide, globulol, viridiflorol, spathulenol, 5,15-rosadiene, luxuriadiene, phyllocladene, 16-kaurene, alkyl chainsSD, GLC, GC-MS, [α]D, NMR[8]
A. muelleri (Carrière) Brongn. and GrisAustraliaLeavesmyrcene, limonene, p-cymene, bycicloelemene, α-copaene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, germacrene D, bicyclogermacrene, δ-cadinene, cariophyllene oxide, globulol, viridiflorol, spathulenol, 5,15-rosadiene, sclarene, luxuriadiene, phyllocladene, 15-kaurene, alkyl chain (C20H32)SD, GLC, GC-MS, [α]D, NMR[8]
A. rulei F.Muell.IndiaLeavesamentoflavone, cupressuflavone, agathisflavone, robustaflavone, 7-O-methyl-agathisflavone, 7,4′’’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, 7,7′’,4′’’’-tri-O-methyl-cupressuflavone, 7,4′,7′’,4′’’-tetra-O-methyl-amentoflavone, 7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavoneSE, TLC, [α]D, MP, NMR[89]
A. scopulorum de Laub.AustraliaLeavesα-pinene, β-pinene, myrcene, α-cubebene, δ-elemene, α-copaene, β-bourbonene, β-ylangene, β-elemene, β-caryophyllene, aromadendrene, γ-elemene, allo-aromadendrene, humulene, viridiflorene, germacrene D, bicyclogermacrene, α-muurolene, δ-cadinene, calamenene, calacorene, cariophyllene oxide, epi-globulol, ledol, cubenol, epi-cubenol, globulol, viridiflorol, spathulenol, T-cadinol, 5,15-rosadiene, sclarene, luxuriadiene, 16-phyllocladanol, alkyl chainsSD, GLC, GC-MS, [α]D, NMR[8]
Legend: 2D-TLC: Bidimensional Thin Layer Chromatography; [α]D = Specific Rotation; CC = Column Chromatography; CD = Circular Dichrosim; ECD = Electron Capture Dissociation; GC-FID = Gas Chromatography coupled to Flame Ionization Detector; GC-MS = Gas Chromatography coupled to Mass Spectrometry; GLC = Gas Liquid Chromatography; GLC-MS = Gas Liquid Chromatography coupled to Mass Spectrometry; HD = HydroDistillation; HPLC = High Performance Liquid Chromatography; HPLC-DAD: High Performance Liquid Chromatography coupled to a Diode Array Detector; HPLC-DAD-MS = High Performance Liquid Chromatography coupled to a Diode Array Detector and Mass Spectrometry; HPLC-UV = High Performance Liquid Chromatography coupled to a UltraViolet Detector; HRMS = High Resolution Mass Spectrometry; IR = InfraRed Spectroscopy; LC = Liquid Chromatography; MP = Melting Point; MS = Mass Spectrometry; MSn = Tandem Mass Spectrometry; n.a. = datum not accessible; NMR = Nuclear Magnetic Resonance; pTLC = preparative Thin Layer Chromatography; SD = Solvent Distillation; SE = Solvent Extraction; TLC = Thin Layer Chromatography; US = UltraSonication; UV = UltraViolet Spectroscopy; XR = X-ray Spectroscopy.
Table 3. Compounds evidenced in Wollemia nobilis.
Table 3. Compounds evidenced in Wollemia nobilis.
Collection siteOrgans StudiedCompoundsStudy MethodsReferences
Australia (Wollemi National Park)Leavesα-pinene, camphene, β-pinene, sabinene, myrcene, terpinene, limonene, β-phellandrene, 1,8-cineol, γ-terpinene, p-cymene, terpinolene, α-copaene, β-caryophyllene, aromadendrene, allo-aromadendrene, humulene, germacrene D, bicyclogermacrene, δ-cadinene, globulol, viridiflorol, spathulenol, hibaene, 15-kaurene, 16-kaurene, alkyl chain (C15H24)SD, GLC, GC-MS, [α]D, NMR[8]
Belgium (Arboretum Kalmthou)Leavesβ-pinene, β-myrcene, 3-methylene-1,7-octadiene, octen-1-ol acetate, 6-camphenol, (E)-3(10)-caren-4-ol,verbenol, 6,6-dimethyl-2-methylene-bicyclo[2.2.1]-heptan-3-one, Z-β-terpineol, 2-acetyl-2-carene, myrtenol, verbenone, (E)-3(10)-caren-2-ol,carvone, 2,2-dimethylvaleroyl chloride, bergamol, (Z)-2-decenal, bornyl acetate, p-mentha-6,8-dien-2-ol acetate, p-menth-8-en-2-ol acetate, 7,11-dimethyl-3-methylene-1,6,10-dodecatriene, cyclobuta[1,2:3,4]dicyclopentenedecahydro-3a-methyl-6-methylene-1-(1-methylethyl)-[1S-(1.α,3a.α,3b.β,6a.β,6b.α)], β-cis-ocimene, germacrene D, germacrene B, filipendulal, (iso)-aromadendrene epoxide, phylocald-15-ene, kaur-16-ene, [1ar-(1a.α,4.β,4a.β,7.α,7a.β,7b.α]-decahydro-1,1,4,7-tetramethyl-1H-cycloprop[e]azulen-4-ol,aromadendrene (2)-oxide, α-cadinol, (iso)-geraniol, trans-longipinocarveol, trans-Z-α-bisabolene epoxide, tetrahydrogeranyl acetate,sandaracopimar-15-en-8.b.-yl-acetate, 4β,17-(acetoxy)-kauran-18-alHD, GC-MS[106]
Twigsβ-pinene, β-myrcene, 3-methylene-1,7-octadiene, δ-carene, octen-1-ol acetate, 6-camphenol, (E)-3(10)-caren-4-ol,verbenol, Z-β-terpineol, 8-oxo-cis-ocimene, myrtenol, 2,2-dimethylvaleroyl chloride, bergamol, bornyl acetate, p-mentha-6,8-dien-2-ol acetate, p-menth-8-en-2-olacetate, cyclobuta[1,2:3,4]dicyclopentenedecahydro-3a-methyl-6-methylene-1-(1-methylethyl)-[1S-(1.α,3a.α,3b.β,6a.β,6b.α)], sativene, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl) cyclohexane, 7,11-dimethyl-3-methylene-1,6,10-dodecatriene, β-cis-ocimene, germacrene D, germacrene B, α-muurolene, spathulenol, filipendulal, (iso)-aromadendrene epoxide, [1ar-(1a.α,4.β,4a.β,7.α,7a.β,7b.α]-decahydro-1,1,4,7-tetramethyl-1H-cycloprop[e]azulen-4-ol,aromadendrene (2)-oxide, α-cadinol, trans-longipinocarveol, caryophyllene oxide, trans-Z-α-bisabolene epoxide, tetrahydrogeranyl acetate, sandaracopimar-15-en-8.b.-yl-acetate, phylocald-15-ene, kaur-16-ene, 4β,17-(acetoxy)-kauran-18-al, kaur-16-en-18-oic acid methyl ester
Italy (Botanical garden of Rome)Leavespheophorbide a, isocupressic acid, acetyl-isocupressic acid, sandaracopimaric acid, agathic acid, 7,4′,4′’’-tri-O-methyl-agathisflavone, 7,4′,7′’,4′’’-tetra-O-methyl-agathisflavone, caffeic acid, shikimic acidSE, CC, NMR, MS[32]
Half-matured female conesacetyl-isocupressic acid, methyl-(E)-communate, sandaracopimaric acid, wollemol, 7′’-O-methyl-agathisflavone, 7,4′’’-di-O-methyl-agathisflavone, shikimic acid, quinic acid, glucose, sucrose, raffinose, D-lactic acid, succinic acid, alanineSE, CC, NMR, MS[33]
Male reproduction organstri-linolenoyl-sn-glycerol, 1,2-di-palmitoleoyl-3-myristoyl-sn-glycerol, 6′-O-acetyl-pina-2-ene-4,10-diol-10-O-β-D-glucopyranoside, isocupressic acid, acetyl-isocupressic acid, agathic acid, sandaracopimaric acid, 7,4′,7′’,4′’’-tetra-O-methyl-robustaflavone, 7-O-methyl-agathisflavone, 7,4′’’-di-O-methyl-agathisflavone, 7,4′,4′’’-tri-O-methyl-agathisflavone, 7,4′,7′’,4′’’-tetra-O-methyl-agathisflavone, 7,7′’,4′’’-tri-O-methyl-amentoflavone, shikimic acid, quinic acid, D-lactic acid, glucose, sucrose, pinitol, alanine[29]
Unripe female cones2α-hydroxy-8(14),15-sandaracopimaradien-18-oic acid, wollemolide, 15-formyloxy-imbricatolicacid, 15-formyloxy-imbricatolal, agathisflavone, cupressuflavone, 7′’-O-methyl-agathisflavone, 7-O-methyl-cupressuflavone, dactylifric acid, shikimic acid, caffeic acid, protocatechuic acid[31]
Male coneswollemolide, isocupressic acid, acetyl-isocupressic acid, methyl (E)-communate, sandaracopimaric acid, wollemol, 4′-O-methyl-scutellarein, 7-4′’’-dimethoxy-agathisflavone, shikimic acid, glucose, sucrose, arginineSE, CC, UHPLC-HRMS, NMR, MS[28,30]
Poland
(purchased from a Company)
Twigs7-O-methyl-agathisflavone, 7,4′’’-di-O-methyl-agathisflavone, 7,7′’-di-O-methyl-cupressuflavone, 7,7′’,4′’’-tri-O-methyl-agathisflavone, 7,4′,7′’-tri-O-methyl-cupressuflavone, 7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavone, 7,4′,7′’,4′’’-tetra-O-methyl-amentoflavoneSE, HPLC, TLC, NMR, HRMS[107]
Legend: [α]D = Specific Rotation; CC = Column Chromatography; GC-MS = Gas Chromatography coupled to Mass Spectrometry; GLC = Gas Liquid Chromatography; HD = HydroDistillation; HPLC = High Performance Liquid Chromatography; HRMS = High Resolution Mass Spectrometry; MS = Mass Spectrometry; NMR = Nuclear Magnetic Resonance; SD = Solvent Distillation; SE = Solvent Extraction; TLC = Thin Layer Chromatography; UHPLC-HRMS = Ultra High Performance Liquid Chromatography coupled to High Resolution Mass Spectrometry.
Table 4. Occurrence of essential oil metabolites in Araucariaceae species.
Table 4. Occurrence of essential oil metabolites in Araucariaceae species.
CompoundOccurrence in the FamilyReferences
1,1-diethoxy-nonaneAraucaria cunninghamii[84]
1,2,4a,5,6,8a-hexahydro-1-
isopropyl-4,7-dimethyl-naphthalene
Agathis borneensis[11]
1,2,3,4,4a,5,6,8aoctahydro-7-methyl-4-methylene-1-
(1-methylethyl)-(1α,4aα)-naphthalene
Agathis borneensis[11]
1,3,8-p-menthatrieneAgathis robusta, Agathis atropurpurea[10,24]
1,3-bis-(2-cyclopropyl,2-methylcyclopropyl)-but-2-en-1-oneAraucaria columnaris[75]
1,4-pentadien-3-olAgathis borneensis[11]
1,5,8-p-menthatrieneAgathis atropurpurea[10]
1,5,9,9-tetramethyl-1,4,7-cycloundecatrieneAgathis borneensis[11]
1,7,7-trimethyl-3-phenethylidenebicyclo[2.2.1]heptan-2-oneAraucaria columnaris[75]
1,7-di-epi-α-cedrenalAraucaria cunninghamii[81]
1H-N-hydrxynaphth(2,3)imidazole-6,7-dicarboximideAraucaria columnaris[74]
1H-N-hydroxynaphth(2,3-d)imidazole-6,7-dicarboximideAraucaria columnaris[74]
1,8-cineolAgathis robusta, Araucaria columnaris, Araucaria cunninghamii, Araucaria hunsteinii, Wollemia nobilis[8,81]
1-ethenyl-1-methyl-2,4-bis(1-methylethenyl) cyclohexaneWollemia nobilis[106]
1-heptacosanolAraucaria columnaris[75]
1-iodo-2-methylundecaneAgathis borneensis[11]
1-octen-3-yl acetateAgathis atropurpurea, Araucaria cunninghamii, Araucaria heterophylla[10,81]
1-trideceneAraucaria cunninghamii[81]
2(1H)-phenanthrenoneAgathis borneensis[11]
2,2-dimethyl-valeroyl chlorideWollemia nobilis[106]
2,3-di-amino-2-methylpropanoic acidAraucaria columnaris[74]
2,4-dimethyl-furanAraucaria columnaris[74]
2,3,3-trimethyl-octaneAgathis borneensis[11]
2,4,6-trimethyl-octaneAgathis borneensis[11]
2,5-dimethoxy-p-cymeneAgathis atropurpurea[10]
2-acetyl-2-careneWollemia nobilis[106]
2-pentyl-furanAgathis robusta, Araucaria cunninghamii[24,83]
3-4-methoxyphenyl-2-propenoic acidAraucaria columnaris[74]
3-ethyl-3-methyl-heptaneAgathis borneensis[11]
3-methylene-1,7-octadieneWollemia nobilis[106]
3-octanolAraucaria cunninghamii[81]
3-octanol acetateAraucaria cunninghamii[81]
3-trimethylsilyloxypropyl hexadecanoateAraucaria cunninghamii[84]
(3Z)-cembrene AAraucaria heterophylla[81]
(3Z)-hexenyl-2-methyl butanoateAraucaria cunninghamii[81]
(3Z)-hexenyl-butanoateAraucaria cunninghamii[81]
(3Z)-hexenyl hexanoateAraucaria cunninghamii[81]
4,4,5-trimethyl-2-hexene,3-ethyl-2,7-dimethyl octaneAgathis borneensis[11]
4,11,11-trimethyl-8-methylene-bicyclo[7.2.0]undec-4-(Z)-eneAgathis borneensis[11]
4β,17-(acetoxy)-kauran-18-alWollemia nobilis[106]
4-[[[[(1,2-dichloroethylidene) amino]oxy]carbonyl]amino]-methyl ester benzoic acidAraucaria columnaris[74]
4-methylene-2,8,8-trimethyl-2-vinyl-bicyclo[5.2.0]nonaneAgathis borneensis[11]
5,15-rosadieneAgathis macrophylla, Agathis moorei, Araucaria luxurians, Araucaria montana, Araucaria muelleri, Araucaria scopulorum[8]
5-neo-cedranolAraucaria cunninghamii[81]
6-camphenolWollemia nobilis[106]
6-dimethylcyclohexeneAgathis borneensis[11]
6,6-dimethyl-2-methylene-bicyclo[2.2.1]-heptan-3-oneWollemia nobilis[106]
6-methoxy-2-methyl-2-phenyl-2H-1-benzopyranAraucaria columnaris[74]
6-methyl-5-hepten-2-oneAgathis philippinensis, Araucaria cunninghamii[21,81]
7,11-dimethyl-3-methylene-1,6,10-dodecatrieneWollemia nobilis[106]
8a(2H)-phenanthrenolAgathis borneensis[11]
8-methyleneAgathis borneensis[11]
8-oxo-cis-ocimeneWollemia nobilis[106]
9-epi-(E)-caryophylleneAgathis robusta[24]
9-epi-sclareneAraucaria heterophylla[63]
9-octadecenoic acidAraucaria columnaris[75]
9-octadecenoic acid methyl esterAraucaria cunninghamii[84]
10-nor-calamenen-10-oneAgathis robusta[24]
13-epi-manoolAraucaria heterophylla[81]
14-hydroxy-(Z)-caryophylleneAraucaria cunninghamii[81]
14-hydroxy-9-epi-(E)-caryophylleneAraucaria cunninghamii[81]
15-kaureneAraucaria angustifolia, Araucaria cunninghamii, Araucaria heterophylla, Araucaria muelleri,
Wollemia nobilis
[8,81]
15-phylocaldeneWollemia nobilis[106]
16-kaureneAgathis australis, Agathis atropurpurea, Agathis macrophylla, Agathis microstachya, Agathis moorei, Araucaria bidwilli, Araucaria columnaris, Araucaria cunninghamii,
Araucaria heterophylla, Araucaria luxurians, Araucaria montana, Wollemia nobilis
[8,81,106]
16-phyllocladanolAraucaria scopulorum[8]
16-phyllocladeneAraucaria heterophylla[63]
(+)-4-careneAgathis dammara[12]
(+)-15-beyereneAraucaria araucana[63]
(−)-7,13-abietadineAraucaria bidwilli[63]
(−)-8(14),15-pimaradieneAraucaria heterophylla[63]
(−)-13-epi-manoyl-oxideAraucaria araucana[63]
(−)-16-atisireneAraucaria araucana[63]
(−)-16-kaureneAraucaria araucana, Araucaria bidwilli,
Araucaria heterophylla
[63]
(−)-α-cadinolAraucaria araucana[65]
(−)-α-copaeneAraucaria araucana, Araucaria heterophylla[63]
(−)-β-caryophylleneAraucaria araucana, Araucaria heterophylla[63]
(−)-δ-cadineneAraucaria araucana[63]
(−)-atisireneAraucaria araucana[65,66]
(−)-germacrene DAraucaria heterophylla[63]
(−)-iso-atisireneAraucaria araucana[66]
(−)-iso-kaureneAraucaria araucana[66]
(−)-kaureneAraucaria araucana[65,66]
(−)-rosa-5,15-dieneAraucaria araucana[63]
(−)-sandaracopimaradieneAraucaria heterophylla[63]
(−)-sclareneAraucaria araucana[63]
(−)-trachylobaneAraucaria araucana[63,65,66]
[1ar-(1a.α,4.β,4a.β,7.α,7a.β,7b.α]-decahydro-1,1,4,7-tetramethyl-1H-cycloprop[e]azulen-4-olWollemia nobilis[106]
α-amorpheneAraucaria cunninghamii, Araucaria heterophylla[81]
α-bisabololAgathis dammara[12]
α-cadineneAraucaria heterophylla[81]
α-cadinolAgathis australis, Agathis microstachya, Agathis moorei, Araucaria angustifolia, Araucaria heterophylla,
Wollemia nobilis
[8,81,106]
α-calacoreneAraucaria heterophylla[81]
α-campholenalAgathis robusta, Araucaria cunninghamii[24,83]
α-caryophylleneAgathis borneensis[11]
α-cedrene epoxideAgathis robusta[24]
α-copaeneAgathis australis, Agathis atropurpurea,
Agathis dammara, Agathis macrophylla, Agathis microstachya, Agathis moorei, Agathis ovata, Agathis philippinensis, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli, Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians, Araucaria montana, Araucaria muelleri, Araucaria scopulorum, Wollemia nobilis
[8,12,21,24,63,81,83]
α-cubebeneAgathis australis, Agathis atropurpurea, Agathis borneensis, Agathis macrophylla, Agathis microstachya, Agathis moorei, Agathis ovata, Agathis robusta, Araucaria bidwilli, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians,
Araucaria montana, Araucaria scopulorum
[8,11,24,81,83]
α-cubeneAraucaria bidwilli[63]
α-fencheneAgathis atropurpurea, Agathis microstachya,
Agathis philippinensis, Araucaria cunninghamii
[8,21,81]
α-guaieneAraucaria heterophylla[81]
α-gurjuneneAgathis australis, Agathis atropurpurea, Agathis microstachya, Agathis moorei[8]
α-humuleneAgathis robusta, Araucaria cunninghamii[24,81]
α-muurololAraucaria cunninghamii[81]
α-muuroleneAgathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis robusta, Araucaria columnaris, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria montana, Araucaria scopulorum,
Wollemia nobilis
[8,24,81,106]
α-phellandreneAgathis dammara, Araucaria cunninghamii,[12,81]
α-pineneAgathis australis, Agathis atropurpurea,
Agathis dammara, Agathis macrophylla, Agathis microstachya, Agathis moorei, Agathis philippinensis, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians, Araucaria montana, Araucaria scopulorum,
Wollemia nobilis
[8,12,21,24,81,83,87]
α-humuleneAraucaria cunninghamii, Araucaria heterophylla[81,83]
α-muurololAraucaria cunninghamii, Araucaria heterophylla[81]
α-phellandreneAraucaria cunninghamii[83]
α-selineneAgathis robusta[24]
α-terpineneAgathis atropurpurea, Agathis microstachya, Agathis robusta, Araucaria cunninghamii, Araucaria heterophylla[8,24,81,83]
α-terpineolAgathis atropurpurea, Agathis dammara,
Agathis microstachya, Agathis philippinensis,
Araucaria cunninghamii, Araucaria heterophylla,
Araucaria montana
[8,10,12,21,87]
α-terpinyl acetateAgathis robusta[24]
α-thujeneAgathis philippinensis, Agathis robusta,
Araucaria cunninghamii
[8,21,24,81]
α-thujoneAraucaria cunninghamii[83]
α-trans-bergamoteneAraucaria heterophylla[81]
α-tricycleneAgathis dammara[12]
α-ylangeneAraucaria heterophylla[81]
β-bisaboleneAgathis atropurpurea, Agathis dammara[10,12]
β-bourbebeneAraucaria hunsteinii[8]
β-bourboneneAgathis australis, Agathis macrophylla, Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia, Araucaria columnaris, Araucaria heterophylla,
Araucaria montana, Araucaria scopulorum
[8,24,81]
β-calacoreneAraucaria cunninghamii[83]
β-caryophylleneAgathis australis, Agathis atropurpurea,
Agathis borneensis, Agathis macrophylla,
Agathis microstachya, Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia,
Araucaria bidwilli, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians,
Araucaria montana, Araucaria muelleri,
Araucaria scopulorum, Wollemia nobilis
[8,11,83,87]
β-chamigreneAgathis robusta[24]
β-copaen-4-α-olAgathis robusta[24]
β-copaeneAgathis australis, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli, Araucaria cunninghamii,
Araucaria heterophylla
[8,24,81]
β-cis-ocimeneWollemia nobilis[106]
β-cubebeneAgathis australis, Agathis atropurpurea,
Agathis borneensis, Agathis macrophylla,
Agathis microstachya, Agathis moorei,
Araucaria bidwilli, Araucaria columnaris
[8,11,63]
β-elemeneAgathis macrophylla, Agathis microstachya,
Araucaria angustifolia, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria muelleri,
Araucaria scopulorum
[8,81,83]
β-myrceneAgathis dammara, Agathis robusta, Wollemia nobilis[12,24,106]
β-ocimeneAraucaria cunninghamii[81]
β-oplopenoneAraucaria heterophylla[81]
β-panasinseneAraucaria cunninghamii[81]
β-phellandreneAgathis atropurpurea, Agathis microstachya,
Araucaria hunsteinii, Wollemia nobilis
[8]
β-pineneAgathis atropurpurea, Agathis dammara,
Agathis microstachya, Agathis philippinensis,
Agathis robusta, Araucaria angustifolia,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria scopulorum, Wollemia nobilis
[8,12,21,24,81,83,87,106]
β-santaleneAraucaria heterophylla[81]
β-selineneAgathis robusta, Araucaria cunninghamii[24,81,83]
β-terpineolAgathis philippinensis[21]
β-ylangeneAgathis australis, Agathis atropurpurea,
Agathis macrophylla, Agathis microstachya,
Agathis moorei, Araucaria columnaris,
Araucaria cunninghamii, Araucaria hunsteinii, Araucaria muelleri, Araucaria scopulorum
[8]
γ-cadineneAgathis robusta, Araucaria araucana,
Araucaria cunninghamii, Araucaria heterophylla
[24,65,81,83]
γ-elemeneAgathis microstachya, Araucaria scopulorum[8]
γ-gurjuneneAraucaria heterophylla[81]
γ-muuroleneAgathis robusta, Araucaria cunninghamii[24,83]
γ-terpineneAgathis atropurpurea, Agathis dammara,
Agathis microstachya, Agathis philippinensis,
Araucaria cunninghamii, Araucaria heterophylla, Wollemia nobilis
[8,10,12,21,81,83]
δ-3-careneAraucaria cunninghamii[81,83]
δ-amorpheneAraucaria heterophylla[81]
δ-cadineneAgathis australis, Agathis atropurpurea,
Agathis borneensis, Agathis dammara,
Agathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria luxurians,
Araucaria montana, Araucaria muelleri,
Araucaria scopulorum, Wollemia nobilis
[8,11,12,24,63,81,83]
δ-cadinolAgathis microstachya, Agathis moorei[8]
δ-careneWollemia nobilis[106]
δ-elemeneAgathis robusta, Araucaria scopulorum[8,24]
δ-terpineolAraucaria cunninghamii[83]
abietadieneAraucaria heterophylla[81]
abietateAgathis borneensis[11]
abietatrieneAraucaria cunninghamii, Araucaria heterophylla[81]
acetophenoneAraucaria cunninghamii[81]
alkyl chainsAgathis australis, Agathis atropurpurea,
Agathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria luxurians,
Araucaria montana, Araucaria muelleri,
Araucaria scopulorum, Wollemia nobilis
[8]
allo-aromadendreneAgathis australis, Agathis microstachya, Agathis moorei, Agathis robusta, Araucaria angustifolia,
Araucaria bidwilli, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum,
Wollemia nobilis
[8,24,81,83]
androstenoneAgathis borneensis[11]
ar-turmeroneAraucaria cunninghamii[83]
arachidonic acidAraucaria cunninghamii[84]
aristolocheneAraucaria heterophylla[81]
aromadendreneAgathis australis, Agathis macrophylla,
Agathis microstachya, Agathis moorei, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum,
Wollemia nobilis
[8,24,81,83]
aromadendrene (2)-oxideWollemia nobilis[106]
benzoic acidAraucaria columnaris[74]
bergamolWollemia nobilis[106]
beyereneAraucaria cunninghamii[83]
bicycloelemeneAgathis australis, Agathis atropurpurea,
Agathis macrophylla, Agathis microstachya,
Araucaria angustifolia, Araucaria columnaris,
Araucaria luxurians, Araucaria muelleri
[8]
bicyclogermacreneAgathis australis, Agathis atropurpurea,
Agathis microstachya, Araucaria angustifolia,
Araucaria bidwilli, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians,
Araucaria montana, Araucaria muelleri,
Araucaria scopulorum, Wollemia nobilis
[8,81,83]
borneolAgathis robusta[24]
bornyl acetateAgathis robusta[24]
bicetylAgathis borneensis[11]
bornyl acetateAgathis atropurpurea,
Wollemia nobilis
[10,106]
calacoreneAgathis australis, Agathis macrophylla, Agathis moorei, Araucaria columnaris, Araucaria cunninghamii, Araucaria hunsteinii, Araucaria scopulorum[8]
calameneneAgathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis ovata, Araucaria columnaris, Araucaria hunsteinii, Araucaria luxurians,
Araucaria scopulorum
[8]
campheneAgathis atropurpurea, Agathis australis,
Agathis dammara, Agathis microstachya,
Agathis philippinensis, Agathis robusta, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Wollemia nobilis
[8,10,12,21,24,81,83,87]
campherenoneAraucaria cunninghamii[83]
carotolAgathis robusta[24]
carvoneAgathis atropurpurea, Agathis philippinensis,
Agathis robusta, Wollemia nobilis
[10,21,24,106]
cariophylleneAraucaria columnaris[75]
caryophyllene oxideAgathis borneensis, Agathis macrophylla,
Agathis microstachya, Agathis moorei, Agathis ovata, Agathis robusta, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria luxurians,
Araucaria montana, Araucaria muelleri,
Araucaria scopulorum, Wollemia nobilis
[8,11,24,81,83,106]
cedr-8-en-15-olAraucaria columnaris[75]
cetaneAgathis borneensis[11]
cholesterolAraucaria cunninghamii[84]
cis-β-terpineolAgathis atropurpurea[10]
cis-p-mentha-1,8-dien-6-olAgathis philippinensis[21]
cis-p-mentha-1(7),8-dien-2-olAgathis philippinensis[21]
cis-pinocarvyl acetateAgathis robusta[24]
cis-sabinene hydrateAgathis philippinensis[21]
cis-thujopsenalAraucaria cunninghamii[81]
cis-thujopseneAgathis robusta[24]
copaeneAgathis borneensis[11]
cubenolAgathis australis, Agathis microstachya,
Araucaria bidwilli, Araucaria columnaris, Araucaria hunsteinii, Araucaria luxurians,
Araucaria scopulorum
[8]
cubiteneAraucaria heterophylla[81]
cyclobuta[1,2:3,4]dicyclopentene decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-[1S-(1.α,3a.α,3b.β,6a.β,6b.α)]Wollemia nobilis[106]
cyclocolorenoneAraucaria cunninghamii[81]
cyclohexeneAgathis borneensis[11]
cyclononasiloxaneAraucaria cunninghamii[84]
dehydro-1,8-cineolAgathis atropurpurea[10]
dihydro-α-terpineolAgathis philippinensis[21]
dehydro-abeitolAraucaria cunninghamii[81]
dihydro-carveolAgathis atropurpurea[10]
dihydro-carvyl acetateAgathis robusta[24]
dodecaneAgathis borneensis[11]
di-isooctyl adipateAraucaria cunninghamii[84]
docosahexaenoic acidAraucaria cunninghamii[84]
docosyl acetateAraucaria columnaris[75]
dolabradieneAraucaria cunninghamii, Araucaria heterophylla[63,81]
(E)-β-farneseneAraucaria cunninghamii, Araucaria heterophylla[81]
(E)-β-ocimeneAgathis philippinensis, Araucaria cunninghamii[21,81]
(E)-3(10)-caren-2-olWollemia nobilis[106]
(E)-3(10)-caren-4-olWollemia nobilis[106]
(E)-α-iononeAgathis robusta[24]
E-biformeneAraucaria bidwilli[63]
(E)-caryophylleneAgathis robusta, Araucaria cunninghamii,
Araucaria heterophylla
[24,81]
(E)-myroxideAgathis robusta[24]
(E)-nerolidolAraucaria heterophylla[81]
(E)-9-octadecenoic acid ethyl esterAraucaria cunninghamii[84]
eicosamethyl-cyclodecasiloxaneAraucaria cunninghamii[84]
eicosaneAgathis borneensis[11]
ent-rosa-5,15-dieneAraucaria heterophylla[81]
epi-α-cadinolAraucaria heterophylla[81]
epi-α-cedrenalAraucaria heterophylla[81]
epi-α-selineneAgathis robusta[24]
epi-cubenolAgathis australis, Agathis atropurpurea,
Agathis macrophylla, Agathis microstachya,
Araucaria columnaris, Araucaria hunsteinii,
Araucaria luxurians, Araucaria scopulorum
[8]
epi-cyclocolorenoneAraucaria cunninghamii[81]
epi-globulolAraucaria scopulorum[8]
epi-laureneneAraucaria heterophylla[81]
epi-zonareneAraucaria heterophylla[63]
ethyl 9-octadecenoateAraucaria cunninghamii[84]
ethyl heptadecanoateAraucaria cunninghamii[84]
farnesaneAgathis borneensis[11]
farnesolAgathis borneensis[11]
fenchoneAgathis philippinensis[21]
filipendulalWollemia nobilis[106]
geranioleneAraucaria araucana[65,66]
germacrene BAgathis robusta, Araucaria heterophylla,
Wollemia nobilis
[24,81,106]
germacrene DAgathis australis, Agathis atropurpurea,
Agathis borneensis, Agathis dammara,
Agathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria muelleri,
Araucaria scopulorum, Wollemia nobilis
[8,11,12,63,81,83,106]
globulolAgathis australis, Agathis atropurpurea,
Agathis microstachya, Agathis moorei, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum,
Wollemia nobilis
[8,81]
heptacosaneAgathis borneensis[11]
hexyl butanoateAraucaria cunninghamii[81]
hexyl iso-valerateAraucaria cunninghamii[81]
hibaeneAgathis australis, Agathis ovata, Araucaria angustifolia, Araucaria araucana, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Wollemia nobilis
[8,65,66,81]
humuleneAgathis australis, Agathis macrophylla,
Agathis microstachya, Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia,
Araucaria bidwilli, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians,
Araucaria montana, Araucaria muelleri,
Araucaria scopulorum,
Wollemia nobilis
[8]
humulene epoxide IIAgathis robusta, Araucaria cunninghamii[24,81,83]
icosaneAgathis borneensis[11]
intermedeolAgathis robusta[24]
iso-aromadendrene epoxideWollemia nobilis[106]
iso-bornyl acetateAgathis robusta[24]
iso-geraniolWollemia nobilis[106]
iso-longifoleneAraucaria heterophylla[81]
iso-pimara-9(11),15-dieneAraucaria heterophylla[81]
kaur-16-en-18-oic acid methyl esterWollemia nobilis[106]
kaur-16-en-19-olAraucaria columnaris[75]
kaureneAraucaria cunninghamii[83]
L-valine-N-[N-[N2,N6-bis-(1-oxodecyl)-L-lysyl]glycyl]-methyl esterAraucaria cunninghamii[84]
laurenan-2-oneAraucaria cunninghamii[81]
laureneneAraucaria cunninghamii, Araucaria heterophylla[81,83]
ledolAraucaria hunsteinii, Araucaria scopulorum[8]
limonen-10-olAgathis philippinensis[21]
limoneneAgathis australis, Agathis atropurpurea,
Agathis dammara, Agathis macrophylla,
Agathis microstachya, Agathis moorei, Agathis ovata, Agathis philippinensis, Agathis robusta,
Araucaria angustifolia, Araucaria araucana,
Araucaria bidwilli, Araucaria cunninghamii,
Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Wollemia nobilis
[8,10,11,12,21,65,81,87]
longipinanolAraucaria cunninghamii[81]
luxuriadieneAgathis australis, Agathis atropurpurea,
Agathis macrophylla, Araucaria columnaris,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum
[8,81]
m-cymeneneAgathis atropurpurea[10]
manoolAraucaria columnaris[75]
manool oxideAraucaria heterophylla[81]
mentholAraucaria cunninghamii[83]
methyl-β-D-mannofuranosideAgathis borneensis[11]
methyl-chavicolAgathis robusta[24]
methyl-eugenolAraucaria hunsteinii[8]
methyl-isobutyrateAgathis borneensis[11]
methyl-(Z)-5,11,14,17-eicosatetraenoateAraucaria columnaris[75]
myrceneAgathis atropurpurea, Agathis macrophylla,
Agathis microstachya, Agathis moorei,
Araucaria angustifolia, Araucaria bidwilli,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum,
Wollemia nobilis
[8]
myrtenolAgathis robusta, Araucaria cunninghamii,
Wollemia nobilis
[24,81,83,106]
myrtenyl acetateAgathis robusta[24]
N,N-bis(2-hydroxyethyl)dodecanamideAraucaria columnaris[75]
n-docosaneAgathis borneensis[11]
n-heptadecaneAgathis borneensis[11]
n-hexacosaneAgathis borneensis[11]
n-nonadecaneAgathis borneensis[11]
n-nonaneAraucaria cunninghamii, Araucaria heterophylla[11]
n-octacosaneAgathis borneensis[11]
n-pentacosaneAgathis borneensis[11]
n-pentadecaneAgathis borneensis[11]
n-pentadecanoic acidAgathis borneensis[11]
n-tetradecaneAgathis borneensis[11]
n-tetratriacontaneAgathis borneensis[11]
n-triacontaneAgathis borneensis[11]
n-tridecaneAraucaria cunninghamii[11]
n-undecaneAraucaria cunninghamii, Araucaria heterophylla[11]
naphthaleneAgathis borneensis[11]
neralAgathis philippinensis[21]
nonaneAraucaria cunninghamii[83]
nor-pristaneAgathis borneensis[11]
o-cymeneAgathis dammara[12]
O-ethyl-hydroxylamineAraucaria cunninghamii[84]
occidentalolAgathis robusta, Araucaria cunninghamii[24,81]
occidentalol acetateAgathis robusta, Araucaria cunninghamii[24,81]
octadecaneAgathis borneensis[11]
octadecyl iodideAgathis borneensis[11]
octaneAgathis borneensis[11]
octen-1-ol acetateWollemia nobilis[106]
octyl etherAgathis borneensis[11]
p-cymen-8-olAgathis macrophylla, Agathis robusta,
Agathis philippinensis, Araucaria cunninghamii
[8,21,24]
p-cymeneAgathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis philippinensis, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Araucaria luxurians,
Araucaria montana, Araucaria muelleri, Wollemia nobilis
[8,21,24,81]
p-cymeneneAgathis robusta[24]
p-menth-8-en-2-ol acetateWollemia nobilis[106]
p-mentha-1,4-dien-7-olAraucaria cunninghamii[83]
p-mentha-3,8-dieneAgathis robusta[24]
p-mentha-6,8-dien-2-ol acetateWollemia nobilis[106]
palmitic acidAgathis borneensis, Araucaria columnaris[11,75]
palmitic acid ethyl esterAraucaria
cunninghamii
[84]
palustrolAgathis australis, Agathis macrophylla,
Agathis microstachya, Araucaria angustifolia,
Araucaria columnaris, Araucaria cunninghamii, Araucaria luxurians
[8]
phyllocladanolAraucaria heterophylla[81]
phyllocladeneAgathis atropurpurea, Agathis microstachya,
Agathis ovata, Araucaria angustifolia,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria montana, Araucaria muelleri
[8,81,83]
pimaradieneAraucaria cunninghamii, Araucaria heterophylla[81]
pinocarvoneAgathis robusta[24]
rimueneAgathis robusta, Araucaria heterophylla[8,24,81]
sabineneAgathis atropurpurea, Agathis dammara,
Agathis microstachya, Agathis philippinensis,
Agathis robusta, Araucaria cunninghamii,
Araucaria heterophylla, Araucaria hunsteinii,
Wollemia nobilis
[8,12,21,24,81,83]
sandaracopimara-8(14),15-dieneAraucaria heterophylla[81]
sandaracopimar-15-en-8.b.-yl acetateWollemia nobilis[106]
sandaracopimarinolAraucaria cunninghamii, Araucaria heterophylla[81]
sativeneAraucaria cunninghamii,
Wollemia nobilis
[81,106]
sclareneAgathis australis, Agathis ovata, Araucaria bidwilli, Araucaria columnaris, Araucaria heterophylla, Araucaria hunsteinii, Araucaria muelleri,
Araucaria scopulorum
[8,63,81]
sesquisabinene BAraucaria cunninghamii[83]
shyobunolAraucaria cunninghamii[83]
sorbaldehydeAgathis borneensis[11]
squamulosoneAraucaria cunninghamii[81]
spathulenolAgathis australis, Agathis atropurpurea,
Agathis macrophylla, Agathis microstachya,
Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum,
Wollemia nobilis
[8,24,81,83,106]
T-cadinolAgathis australis, Agathis microstachya, Agathis moorei, Araucaria columnaris, Araucaria hunsteinii,
Araucaria scopulorum
[8]
T-muurololAgathis australis, Agathis microstachya, Agathis moorei, Araucaria cunninghamii, Araucaria hunsteinii[8,83]
T(Z)-β-ocimeneAraucaria cunninghamii[83]
terpinen-4-olAgathis dammara, Agathis philippinensis,
Agathis robusta, Araucaria cunninghamii
[12,21,24,81,83]
terpineneWollemia nobilis[8]
terpinoleneAgathis atropurpurea, Agathis dammara,
Agathis microstachya, Agathis philippinensis,
Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii, Wollemia nobilis
[8,10,12,21,81]
tert-butoxy 2 ethoxyethaneAraucaria columnaris[74]
tetrahydro-geranyl acetateWollemia nobilis[106]
thiopheneAgathis borneensis[11]
thuja-2,4(10)-dieneAgathis robusta[24]
trans-β-terpineolAgathis robusta[24]
trans-calameneneAgathis robusta[24]
trans-carveolAgathis robusta, Araucaria cunninghamii[24,83]
trans-phytolAgathis borneensis[11]
trans-longipinocarveolWollemia nobilis[106]
trans-muurola-4(14),5-dieneAraucaria heterophylla[81]
trans-p-mentha-1(7),8-dien-2-olAgathis philippinensis[21]
trans-p-mentha-1,8-dien-6-olAgathis philippinensis[21]
trans-pinocarveolAgathis philippinensis[21]
trans-pinocarvyl acetateAgathis robusta[24]
trans-piperitolAgathis philippinensis[21]
trans-sabinene hydrateAgathis robusta[24]
trans-sabinene hydrate acetateAgathis robusta[24]
trans-sabinolAgathis robusta[24]
trans-Z-α-bisabolene epoxideWollemia nobilis[106]
tricosyl acetateAraucaria columnaris[75]
tricycleneAgathis australis, Agathis atropurpurea,
Agathis philippinensis, Araucaria cunninghamii
[8,10,21,81,83]
undecaneAraucaria cunninghamii[83]
untriacontaneAgathis borneensis[11]
verbenolWollemia nobilis[106]
verbenoneAgathis robusta, Araucaria cunninghamii,
Wollemia nobilis
[24,83,106]
viridifloreneAgathis australis, Agathis microstachya, Agathis moorei, Agathis ovata, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli, Araucaria columnaris,
Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria scopulorum
[8,81]
viridiflorolAgathis australis, Agathis atropurpurea,
Agathis microstachya, Agathis moorei, Agathis robusta, Araucaria angustifolia, Araucaria bidwilli,
Araucaria columnaris, Araucaria cunninghamii, Araucaria heterophylla, Araucaria hunsteinii,
Araucaria luxurians, Araucaria montana,
Araucaria muelleri, Araucaria scopulorum,
Wollemia nobilis
[8,81]
(Z)-2-decenalWollemia nobilis[106]
(Z)-β-farneseneAgathis robusta[24]
(Z)-β-ocimeneAraucaria cunninghamii[81]
Z-β-terpineolWollemia nobilis[106]
Z-biformeneAraucaria bidwilli[63]
Table 5. Occurrence of polar fraction metabolites in Araucariaceae species.
Table 5. Occurrence of polar fraction metabolites in Araucariaceae species.
CompoundOccurrence in the GeneraReferences
1,2-di-palmitoleoyl-3-myristoyl-sn-glycerolWollemia
nobilis
[29]
1,3,4,5-tetrahydroxy-cyclohexane-carboxylic acidAraucaria angustifolia[48]
1,5,8,11,14,17-eicosapentaenoicacidAgathis robusta[25]
2α,3α,19α-trihydroxyurs-12-en-28-oic acidAgathis macrophylla[17]
2α,3β,19α-trihydroxyurs-12-en-28-oic acidAgathis macrophylla[17]
2α,3β-
dihydroxyurs-12-en-28-oic acid
Agathis macrophylla[17]
2α-hydroxy-8(14),15-sandaracopimaradien-18-oic acidWollemia nobilis[31]
(2S)-1,2-di-O-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]-3-O-β-D-
galactopyranosyl glycerol
Agathis robusta[22]
2-O-acetyl-11-keto-boswellic acidAraucaria bidwilli[69]
3α-hydroxy-(13S)-l6-nor-pimar-7-en-l5-oic acidAgathis macrophylla[18]
3β,22,23-
trihydroxystigmast-5-en-7-one
Agathis macrophylla[17]
3β-hydroxymegastigman-5-en-9-O-β-D-glucopyranosideAgathis macrophylla[17]
3β-hydroxystigmast-6-oneAgathis macrophylla[17]
3-O-methyl-D-chiroinositolAraucaria angustifolia[48]
3-glucoside-dihydro-quercetinAraucaria angustifolia[48]
4(15)-eudesmene-1β,6α-diolAgathis macrophylla[17]
4′-O-methyl-scutellareinWollemia nobilis[30]
(4S,5R,9S,10R)-methyl-19-hydroxy-15,16-dinorlabda-8(17),11-E-dien-13-oxo-18-oateAgathis macrophylla[16]
(4R,5R,9R,10R,13R)-13-hydroxypodocarp-8(14)-en-19-oic acidAgathis macrophylla[16]
(4R,5R,9R,10R,13S)-13-hydroxypodocarp-8(14)-en-19-oic acidAgathis macrophylla[16]
4-hydroxy-benzaldehydeAraucaria angustifolia[58]
4-nitrophenyl-β-D-glucopyranosideAraucaria angustifolia[48]
4′-methoxy-tectorigeninAraucaria angustifolia[48]
4-n-butoxylphenylpropanetriolAraucaria columnaris[80]
5-(E)-coumaroyloxy-quinic acid n-butyl esterAraucaria cunninghamii[79]
5-(Z)-coumaroyloxyquinic acid n-butyl esterAraucaria cunninghamii[79]
5-methoxy-lariciresinol-9-acetateAraucaria angustifolia[58]
5′-methoxy-lariciresinol-9-acetateAraucaria angustifolia[58]
5-methoxy-pinoresinolAraucaria angustifolia[58]
5-methoxy-eudesminAraucaria angustifolia[58]
5-p-cis-coumaroyl-quinic acidAraucaria columnaris[80]
5-p-trans-coumaroyl-quinic acidAraucaria columnaris[80]
6′-O-acetyl-pina-2-ene-4,10-diol-10-O-β-D-glucopyranosideWollemia nobilis[29]
(6R,9S)-3-oxo-α-ionol-9-O-β-D-glucopyranosideAraucaria columnaris[80]
(6S,9R)-roseosideAgathis macrophylla[17]
(6S,9S)-roseosideAraucaria columnaris[80]
7α,15α-dihydroxystigmast-4-en-3-oneAgathis macrophylla[17]
7-hydroxy-labda-8(17),13(16),14-trien-19-yl-7′-O-methyl-(E)-
coumarate
Araucaria bidwilli[69]
7-hydroxy-labda-8(17),13(16),14-trien-19-yl-7′-O-methyl-(Z)-
coumarate
Araucaria bidwilli[69]
7-hydroxy-labda-8(17),13(16),14-trien-19-yl-(E)-coumarateAraucaria bidwilli[69]
7-hydroxy-labda-8(17),13(16),14-trien-19-yl-(Z)-coumarateAraucaria bidwilli[69]
7′-hydroxy-lariciresinolAraucaria angustifolia[58]
7′-hydroxy-lariciresinol-9-acetateAraucaria angustifolia[58]
7′-methoxy-lariciresinolAraucaria angustifolia[58]
7′-methoxy-lariciresinol-9-acetateAraucaria angustifolia[58]
7-oxocallitrisic acidAraucaria bidwilli[69]
7-O-methyl-agathisflavoneAgathis alba, Araucaria araucana, Araucaria bidwilli, Araucaria columnaris, Araucaria cunninghamii,
Araucaria rulei, Wollemia nobilis
[6,7,29,64,70,89,107]
7”-O-methyl-amentoflavoneAraucaria araucana, Araucaria columnaris,
Araucaria cunninghamii,
[64,70]
7-O-methyl-cupressuflavoneAgathis alba, Agathis atropurpurea,
Agathis australis, Agathis ovata, Agathis robusta, Araucaria bidwilli, Wollemia nobilis
[6,7,9,31,70]
7′’-O-methyl-agathisflavoneAgathis alba, Agathis atropurpurea, Agathis australis, Agathis ovata, Agathis robusta, Wollemia nobilis[6,9,22,31,33]
7′’-O-methyl-robustaflavoneAraucaria angustifolia[56]
4′,7′’-di-O-methyl-agathisflavoneAraucaria bidwilli[68]
4′,4′’-di-O-methyl-amentoflavoneAraucaria bidwilli[68]
4′,4′’’-di-O-methyl-amentoflavoneAraucaria angustifolia[57]
4′,4′’’-di-O-methyl-cupressuflavoneAgathis macrophylla[17]
7,4′-di-O-methyl-amentoflavoneAraucaria cunninghamii[70]
7,4′’’-di-O-methyl-agathisflavoneAgathis alba, Araucaria columnaris,
Araucaria cunninghamii, Araucaria rulei,
Wollemia nobilis
[7,28,29,33,70,89,107]
7,7′’-di-O-methyl-agathisflavoneAgathis alba, Agathis atropurpurea, Agathis australis, Agathis robusta, Agathis ovata, Araucaria bidwilli, Araucaria columnaris[6,9,70]
7,7′’-di-O-methyl-amentoflavoneAraucaria columnaris[70]
7,7′’-di-O-methyl-cupressuflavoneAgathis alba, Agathis atropurpurea, Agathis australis, Agathis ovata, Agathis robusta, Araucaria araucana, Araucaria bidwilli, Araucaria cunninghamii,
Araucaria rulei, Wollemia nobilis
[6,7,9,64,70,89,107]
7,4′,7′’-tri-O-methyl-agathisflavoneAgathis atropurpurea, Agathis australis, Agathis ovata, Araucaria bidwilli[9,69]
7,4′,4′’’-tri-O-methyl-amentoflavoneAraucaria angustifolia[57]
7,4′,4′’’-tri-O-methyl-agathisflavoneWollemia nobilis[29,32,107]
7,4′,7′’-tri-O-methyl-cupressuflavoneAgathis atropurpurea, Agathis australis,
Agathis ovata, Araucaria columnaris,
Araucaria cunninghamii, Wollemia nobilis
[9,69,70,80,107]
7,7′’,4′’’-tri-O-methyl-agathisflavoneAraucaria columnaris[70]
7,7′’,4′’’’-tri-O-methyl-cupressuflavoneAraucaria rulei[89]
7, 4′,7′’-tri-O-methyl-amentoflavoneAraucaria angustifolia, Araucaria columnaris[57,70]
7,7′’,4′’’-tri-O-methyl-amentoflavoneWollemia nobilis[29]
7,4′,7′’,4′’’-tetra-O-methyl-agathisflavoneAgathis australis, Agathis macrophylla, Agathis ovata, Wollemia nobilis[9,17,107]
7,4′,7′’,4′’’-tetra-O-methyl-amentoflavoneAraucaria angustifolia, Araucaria columnaris,
Araucaria cunninghamii, Araucaria rulei,
Wollemia nobilis
[48,70,89,107]
7,4′,7′’,4′’’-tetra-O-methyl-cupressuflavoneAgathis australis, Agathis ovata, Araucaria columnaris, Araucaria cunninghamii, Araucaria rulei,
Wollemia nobilis
[9,70,89,107]
7,4′,7′’,4′’’-tetra-O-methyl-robustaflavoneWollemia nobilis[29]
7-O-methyl-6-hydroxy-apigeninAraucaria bidwilli[68]
8,11,13-abietatrien-15-olAgathis macrophylla[16]
(13S)-pimar-7-en-3α,15,16-triolAgathis macrophylla[18]
13-epi-cupressic acidAraucaria heterophylla[86]
13-O-acetyl-13-epi-cupressic acidAraucaria heterophylla[86]
13-oxo-podocarp-8(14)-en-19-oateAgathis macrophylla[16]
15,19-diacetoxylabd-8(17)-enAraucaria araucana[61]
15ξ-hydroxy-pinusolidic acidAgathis macrophylla[16]
15-acetoxylabd-8(17)-en-19-olAraucaria araucana[61]
15-acetoxy-imbricatolalAraucaria araucana[59,61]
15-acetoxy-
imbricatolic acid
Araucaria araucana[59,60,61]
15-formyloxy-imbricatolalAraucaria araucana, Wollemia nobilis[31,59]
15-formyloxy-imbricatolicacidWollemia nobilis[31]
15-hydroxy-imbricatolalAraucaria araucana[59,60,61]
15-hydroxy-imbricatolic
acid
Araucaria araucana[59]
15-nor-14-oxolabda-8(17),12E-dien-19-oicacid, 13-oxo-podocarp-8(14)-en-19-oic acidAgathis macrophylla[16]
16-hydroxy-8(17),13-labdadien-15,16-olid-19-oic acidAgathis macrophylla[16]
19-hydroxylabd-8(17)-en-15-oic acidAraucaria araucana[61]
19-noranticopalic acidAgathis lanceolata[14]
α-linolenic acidAgathis robusta[25]
(−)-epi-afzelechin p-hydroxybenzoateAraucaria angustifolia[46]
(−)-epi-afzelechin protocatechuateAraucaria angustifolia[46]
(−)-epi-catechinAraucaria angustifolia[46,55]
(−)seco-isolariciresinolAraucaria angustifolia[54]
β-sitosterolAgathis macrophylla, Araucaria angustifolia,
Araucaria columnaris
[17,44,75]
β-sitosterol-3-O-glucopyranosideAraucaria bidwilli[69]
β-sitosterol acetateAraucaria columnaris[75]
abietic acidAraucaria columnaris, Agathis macrophylla[18,19,75]
acetyl-isocupressic acidWollemia nobilis[28,29,30,32,33]
agatharesinolAgathis macrophylla[18]
agathic acidAgathis macrophylla, Agathis microstachya,
Araucaria angustifolia, Wollemia nobilis
[18,19,20,29,32,44]
agathic acid dimethyl esterAraucaria columnaris[75]
agathisflavoneAgathis alba, Agathis atropurpurea, Agathis australis, Agathis ovata, Agathis robusta, Araucaria bidwilli, Araucaria columnaris, Araucaria rulei, Wollemia nobilis[6,9,22,31,70,89]
agatholic acidAgathis lanceolata, Araucaria angustifolia,
Araucaria araucana
[15,44,61]
alanineWollemia nobilis[29,33]
amentoflavoneAgathis macrophylla, Araucaria angustifolia,
Araucaria bidwilli, Araucaria columnaris, Araucaria rulei
[6,17,52,53,70,89]
angustanoic acid FAgathis macrophylla[16]
apigeninAraucaria angustifolia[45]
arachidonic acidAgathis robusta[25]
arginineWollemia nobilis[28]
benzoic acidAraucaria angustifolia[46]
bilobetinAgathis alba, Araucaria angustifolia, Araucaria bidwilli[6,56,70]
bishomolinoleic acidAgathis robusta[25]
bishomo-α-linolenic acidAgathis robusta[25]
cabreuvinAraucaria angustifolia[57]
caffeic acidAraucaria cunninghamii, Wollemia nobilis[31,32,82]
catechinAraucaria angustifolia, Araucaria columnaris,
Araucaria cunninghamii
[45,49,55,75,82]
catecholAgathis macrophylla[17]
cis-communic acidAgathis microstachya[20]
cis-vaccenic acidAgathis robusta[25]
chlorogenic acidAraucaria columnaris, Araucaria cunninghamii[75,82]
corchoionoside CAgathis macrophylla[17]
cupressuflavoneAgathis robusta, Araucaria angustifolia,
Araucaria bidwilli, Araucaria columnaris,
Araucaria rulei, Wollemia nobilis
[6,22,31,56,70,89]
D-lactic acidWollemia nobilis[29,33]
dactylifric acidWollemia nobilis[31]
dodecanoic acidAraucaria angustifolia[48]
ellagic acidAraucaria cunninghamii[82]
ent-8β,15-labd-E-13-ene-diolAraucaria bidwilli[72]
ent-l5-acetoxy-labda-8,E-13-dieneAraucaria bidwilli[72]
ent-19-(E)-coumaroyloxy-labda-8(17),13(16),14-trieneAraucaria cunninghamii[79]
ent-19-(Z)-coumaroyloxy-labda-8(17),13(16),14-trieneAraucaria cunninghamii[79]
ent-labda-8,E-13-dien-15-olAraucaria bidwilli[72]
epi-catechinAraucaria angustifolia, Araucaria cunninghamii[45,49,82]
epi-pinoresinolAraucaria angustifolia[58]
eriodictyol-O-hexosideAraucaria angustifolia[55]
eudesminAraucaria angustifolia, Araucaria araucana[44,50,51,54,57,58,62]
ferruginolAraucaria angustifolia[58]
ferulic acidAraucaria columnaris[75]
ferulic acid hexosideAraucaria angustifolia[55]
gallic acidAraucaria columnaris, Araucaria cunninghamii[73,75,82]
ginkgetinAraucaria angustifolia[52,53]
glucoseWollemia nobilis[28,29,30,33]
hexadecanoic acidAraucaria angustifolia[48]
hinokiflavoneAraucaria bidwilli, Araucaria columnaris,
Araucaria cunninghamii
[6,70]
hinokiresinolAraucaria angustifolia[54,58]
hydroquinoneAraucaria angustifolia[58]
imbricatolic acidAraucaria angustifolia, Araucaria araucana[44,60,61]
irisolidoneAraucaria angustifolia[57]
iso-orientinAraucaria columnaris[73]
iso-vitexinAraucaria columnaris[73]
isocupressic acidWollemia nobilis[28,29,32]
isolariciresinolAraucaria angustifolia[50,51,54,58]
isolariciresinol-4′-methyl etherAraucaria angustifolia[50,51]
isolariciresinol-acetateAraucaria angustifolia[58]
junicedric acidAraucaria araucana[61]
kaempferolAraucaria cunninghamii[82]
kaur-16-en-3α,l3-diolAgathis macrophylla[18]
kauran-3α,l3,16a-triolAgathis macrophylla[18]
kayaflavoneAraucaria cunninghamii[70]
kolavenic acidAraucaria bidwilli[67]
labda-8(14),15(16)-dien-3β-olAraucaria cunninghamii[79]
labda-8(17),14-dieneAraucaria heterophylla[86]
labd-8(17)-en-15,19-dialAraucaria araucana[61]
labda-8(20),13-dien-15-oic acidAraucaria bidwilli[67]
labda-8(20), 13-dien-15,19-dioic acidAraucaria bidwilli[67]
lambertianic acidAgathis macrophylla[16]
lariciresinolAraucaria angustifolia, Araucaria araucana[50,51,57,58,62]
lariciresinol-4,4′-dimethyl ether-9-acetateAraucaria angustifolia[58]
lariciresinol-4-methyl etherAraucaria angustifolia, Araucaria araucana[58,62]
lariciresinol-4′-methyl etherAraucaria angustifolia[58]
lariciresinol-4-methyl ether-9-acetateAraucaria angustifolia[58]
lariciresinol-9-acetateAraucaria angustifolia[58]
linoleic acidAgathis robusta[25]
luteolinAraucaria columnaris[75]
methyl ent-8α-hydroxy-labd-E-l3-en-15-oateAraucaria bidwilli[72]
methyl ent-8β-hydroxy-labd-E-l3-en-15-oateAraucaria bidwilli[72]
methyl-15-hydroxy-abietateAgathis microstachya[20]
methyl-15-hydroxy-dehydroabietateAgathis microstachya[20]
methyl-communateAraucaria columnaris[75]
methyl-(E)-communateWollemia nobilis[28,33]
methyl abietateAgathis microstachya[20]
methyl lambertianateAgathis macrophylla[16]
methyl sandaracopimarateAgathis lanceolata, Agathis microstachya[15,20]
myricetinAraucaria columnaris[75]
nyasolAraucaria angustifolia[58]
neo-abietic acidAgathis microstachya[20]
octadecyl-(E)-ferulateAraucaria angustifolia[57]
octadecyl-(Z)-ferulateAraucaria angustifolia[57]
octadecyl-(E)-p-coumarateAraucaria angustifolia[57]
octadecyl-(Z)-p-coumarateAraucaria angustifolia[57]
oleic acidAgathis robusta[25]
orientinAraucaria columnaris[73]
p-coumaric acidAraucaria angustifolia[58]
p-hydroxybenzoic acidAraucaria angustifolia[46]
pheophorbide aWollemia nobilis[32]
phloretic acidAraucaria bidwilli[69]
pinitolWollemia nobilis[29]
pinoresinolAraucaria angustifolia, Araucaria araucana[54,57,58,62]
pinoresinol monomethyl etherAraucaria angustifolia[54,58]
pinusolideAgathis macrophylla[16]
pinusolidic acidAgathis macrophylla[16]
prodelphinidin BAraucaria angustifolia[55]
protocatechuic acidAraucaria angustifolia, Wollemia nobilis[31,46,55]
quercetinAgathis macrophylla, Araucaria angustifolia,
Araucaria columnaris, Araucaria cunninghamii
[17,45,46,75,82]
quercetin-3-O-glucosideAraucaria angustifolia[55]
quinic acidAraucaria columnaris, Wollemia nobilis[29,33,80]
raffinoseWollemia nobilis[33]
robustaflavoneAraucaria rulei[89]
rutinAraucaria angustifolia, Agathis robusta,
Araucaria columnaris
[22,49,75]
sandaracopimaradienolAgathis lanceolata[15]
sandaracopimaric acidAraucaria araucana, Wollemia nobilis[28,29,30,32,33,61]
seco-isolariciresinolAraucaria angustifolia, Araucaria araucana[50,51,58,62]
seco-isolariciresinol-4-methyl ether-9′-acetateAraucaria angustifolia[58]
seco-isolariciresinol-4-methyl ether-9,9′-diacetateAraucaria angustifolia[58]
seco-isolariciresinol-9′-acetateAraucaria angustifolia[58]
seco-isolariciresinol-9,9′-diacetateAraucaria angustifolia[58]
shikimic acidAgathis robusta, Wollemia nobilis[22,28,29,30,32,33]
shikimic acid n-butyl esterAraucaria cunninghamii[79]
shonaninAraucaria angustifolia[58]
sitosterolAgathis macrophylla[18]
stigmastan-3,5-dieneAraucaria columnaris[75]
succinic acidWollemia nobilis[33]
sucroseWollemia nobilis[28,29,33]
sugiolAraucaria angustifolia[44]
taxifolinAraucaria columnaris[73]
taxifolin-3-O-glucopyranosideAraucaria columnaris[73]
tri-linolenoyl-sn-glycerolWollemia nobilis[29]
trans-communic acidAgathis microstachya, Araucaria angustifolia[20,57]
umbelliferoneAraucaria cunninghamii[82]
vanillic acidAraucaria columnaris[75]
vitexinAraucaria columnaris[73]
wollemolWollemia nobilis[28,33]
wollemolideWollemia nobilis[30,31]

Share and Cite

MDPI and ACS Style

Frezza, C.; Venditti, A.; De Vita, D.; Toniolo, C.; Franceschin, M.; Ventrone, A.; Tomassini, L.; Foddai, S.; Guiso, M.; Nicoletti, M.; et al. Phytochemistry, Chemotaxonomy, and Biological Activities of the Araucariaceae Family—A Review. Plants 2020, 9, 888. https://doi.org/10.3390/plants9070888

AMA Style

Frezza C, Venditti A, De Vita D, Toniolo C, Franceschin M, Ventrone A, Tomassini L, Foddai S, Guiso M, Nicoletti M, et al. Phytochemistry, Chemotaxonomy, and Biological Activities of the Araucariaceae Family—A Review. Plants. 2020; 9(7):888. https://doi.org/10.3390/plants9070888

Chicago/Turabian Style

Frezza, Claudio, Alessandro Venditti, Daniela De Vita, Chiara Toniolo, Marco Franceschin, Antonio Ventrone, Lamberto Tomassini, Sebastiano Foddai, Marcella Guiso, Marcello Nicoletti, and et al. 2020. "Phytochemistry, Chemotaxonomy, and Biological Activities of the Araucariaceae Family—A Review" Plants 9, no. 7: 888. https://doi.org/10.3390/plants9070888

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop