Psophocarpus tetragonolobus: An Underused Species with Multiple Potential Uses
Abstract
:1. Introduction
2. Psophocarpus tetragonolobus: Botany, Genetic and Cultivation
2.1. Plant Taxonomy
2.2. Origin and Distribution
2.3. Morphology
2.4. Diversity and Molecular Characterization
2.5. Cultivation
3. Food Utilization
3.1. Consumption and Processing
3.2. Nutrient Composition
3.3. Anti-Nutrient Composition
4. Therapeutic Potential of Psophocarpus tetragonolobus
4.1. Anti-Oxidant Activity of Psophocarpus tetragonolobus
4.2. Anti-Bacterial and Anti-Fungal Properties of Psophocarpus tetragonolobus
4.3. Anti-Proliferative Activity of Psophocarpus tetragonolobus
4.4. Anti-Inflammatory and Anti-Nociceptive Properties of Psophocarpus tetragonolobus
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy. Apotekarsocieteten: Stockholm, Sweden, 1999; pp. 119–123. [Google Scholar]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Farnsworth, N.R.; Loub, W.D. Phytochemists aren’t perfect but almost. J. Pharm. Sci. 1979, 68, A6. [Google Scholar] [CrossRef]
- Hymowitz, T.; Boyd, J. Origin, Ethnobotany and agricultural potential of the winged bean—Psophocarpus tetragonolobus. Econ. Bot. 1977, 31, 180–188. [Google Scholar] [CrossRef]
- Fatihah, H.N.N.; Maxted, N.; Arce, L.R. Cladistic analysis of Psophocarpus Neck DC. (Leguminosae, Papilionoideae) based on morphological characters. S. Afr. J. Bot. 2012, 83, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Verdcourt, B.; Halliday, P. A revision of Psophocarpus (Leguminosae: Papilionoideae: Phaseoleae). Kew Bull. 1978, 33, 191–227. [Google Scholar] [CrossRef]
- Smartt, J. Some observations on the origin and evolution of the winged bean (Psophocarpus tetragonolobus). Euphytica 1980, 29, 121–123. [Google Scholar] [CrossRef]
- National Research Council. Winged Bean: A High-Protein Crop for the Tropics; The National Academies Press: Washington, DC, USA, 1981. [Google Scholar] [CrossRef]
- Said, K.; Nakano, Y.; Uemoto, S. Microstructure of Winged Beans. Food Microstruct. 1983, 2, 175–181. [Google Scholar]
- Schwembera, A.R.; Carrasco, B.; Gepts, P. Unraveling agronomic and genetic aspects of runner bean (Phaseolus coccineus L.). Field Crops Res. 2017, 206, 86–94. [Google Scholar] [CrossRef]
- Galeano, C.H.; Fernandez, A.C.; Franco-Herrera, N.; Cichy, K.A.; McClean, P.E.; Vanderleyden, J.; Blair, M.W. Saturation of anintra-gene pool linkage map: Towards a unified consensus linkagemap for fine mapping and synteny analysis in common bean. PLoS ONE 2011, 6, e28135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Yi, X.; Yang, H.; Zhou, H.; Yu, Y.; Tian, Y.; Lu, X. Genetic diversity evaluation of winged bean (Psophocarpus tetragonolobus (L.) DC.) using inter-simple sequence repeat (ISSR). Genet. Resour. Crop Evol. 2015, 62, 823–828. [Google Scholar] [CrossRef]
- Vatanparast, M.; Shetty, P.; Chopra, R.; Doyle, J.J.; Sathyanarayana, N.; Egan, A.N. Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Sci. Rep. 2016, 6, 29070. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M.A. Transcriptome sequencing and marker development for four underutilized legumes. Appl. Plant Sci. 2015, 3, 1400111. [Google Scholar] [CrossRef] [PubMed]
- Wong, Q.N.; Tanzi, A.S.; Ho, W.K.; Malla, S.; Blythe, M.; Karunaratne, A.; Massawe, F.; Mayes, S. Development of gene based SSR markers in winged bean (Psophocarpus tetragonolobus (L.) DC.) for diversity assessment. Genes 2017, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Goel, R.; Pande, V.; Asif, M.H.; Mohanty, C.S. De novo sequencing and comparative analysis of leaf transcriptomes of diverse condensed tannin-containing lines of underutilized Psophocarpus tetragonolobus (L.) DC. Sci. Rep. 2017, 7, 44733. [Google Scholar] [CrossRef] [Green Version]
- Esaka, M.; Teramoto, T. cDNA cloning, gene expression and secretion of chitinase in winged bean. Plant Cell Physiol. 1998, 39, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, C.S.; Verma, S.; Singh, V.; Khan, S.; Gaur, P.; Gupta, P.; Nizar, M.A.; Dikshit, N.; Pattanayak, R.; Shukla, A.; et al. Characterization of winged bean (Psophocarpus tetragonolobus (L.) DC: Based on molecular, chemical and physiological parameters. Am. J. Mol. Biol. 2013, 3, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.; Martin, F.W.; Kleiman, R. Seed protein and oil yields of winged bean, Psophocarpus tetragonolobus in Puerto Rico. Trop. Agric. (Trinidad) 1978, 55, 307. [Google Scholar]
- Yoneyama, T.; Fujita, K.; Yoshida, T.; Matsumoto, T.; Kambayashi, I.; Yazaki, J. Variation in natural abundance of 15N among plant parts and in 15N/14N fractionation during N2 fixation in the legume-rhizobia symbiotic system. Plant Cell Physiol. 1986, 27, 791–799. [Google Scholar] [CrossRef]
- Khan, T.N.; Bohn, J.C.; Stevenson, R.A. Winged bean: Cultivation in Papua New Guinea. World Crop 1977, 29, 208–214. [Google Scholar]
- Khan, T.N. Winged bean production in the tropics. Food Agric. Organ. Plant Prod. Prot. Pap. 1982, 38, 222. [Google Scholar]
- Reddy, P.P. Winged bean, Psophocarpus tetragonolobus. In Plant Protection in Tropical Root and Tuber Crops; Springer India: New Delhi, India, 2015; pp. 293–303. [Google Scholar]
- Sasidharan, S.; Zakaria, Z.; Lachimanan, Y.L.; Sangetha, S.; Suryani, S. Antimicrobial activities of Psophocarpus tetragonolobus (L.) DC extracts. J. Foodborne Path. Dis. 2008, 5, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Fortuner, R.; Fauquet, C.; Lourd, M. Diseases of the winged bean in Ivory Coast. Plant Dis. Rep. 1979, 63, 194–199. [Google Scholar]
- Sri Kantha, S.; Erdman, J.W. The winged bean as an oil and protein source: A review. J. Am. Oil Chem. Soc. 1984, 61, 515–525. [Google Scholar] [CrossRef]
- McKee, R. Plant Inventory No. 86; USDA: Washington, DC, USA, 1928. [Google Scholar]
- Misra, P.S.; Misra, G.; Prakash, D.; Tripathi, R.D.; Chaudhary, A.R.; Mishra, P.N. Assay of some nutritional and anti-nutritional factors in different cultivars of winged bean Psophocarpus tetragonolobus (L.) DC seeds. Plant Foods Hum. Nutr. 1987, 36, 367–371. [Google Scholar] [CrossRef]
- Mohanty, C.S.; Pradhan, R.C.; Singh, V.; Singh, N.; Pattanayak, R.; Prakash, O.; Chanotiya, C.S.; Rout, P.K. Physicochemical analysis of Psophocarpus tetragonolobus (L.) DC seeds with fatty acids and total lipids compositions. J. Food Sci. Technol. 2015, 52, 3660–3670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.D.; Puwastien, P. Effects of germination on the proximate composition and nutritional quality of winged bean (Psophocarpus tetragonolobus) seeds. Food Sci. 1987, 52, 106–108. [Google Scholar] [CrossRef]
- Jaffe, W.G.; Korte, R. Nutritional characteristics of the winged bean in rats. Nutr. Rep. Int. 1976, 4, 449–455. [Google Scholar]
- Varriano-Marston, E.; Beleia, A.; Lai, C.C. Structural characteristics and fatty acid composition of Psophocarpus tetragonolobus seeds. Ann. Bot. 1983, 51, 631–640. [Google Scholar] [CrossRef]
- Khor, H.T.; Tan, N.H.; Wong, K.C. Winged bean seed: Potential food source of the tropics. In Proceedings of the 6th Malaysian Biochemical Society Conference, Kuala Lumpur, Malaya, 22–23 August 1980; pp. 157–162. [Google Scholar]
- Makeri, M.U.; Karim, R.; Adbulkarim, M.S.; Ghazali, H.M.; Miskandar, M.S.; Muhammad, K. Comparative analysis of the physiochemical, thermal, and oxidative properties of winged bean and soybean oils. Int. J. Food Prop. 2016, 19, 2769–2787. [Google Scholar] [CrossRef]
- Kortt, A.A. Purification and properties of the basic lectins from winged bean seed [Psophocarpus tetragonolobus (L.) DC]. Eur. J. Biochem. 1984, 138, 519–525. [Google Scholar] [CrossRef]
- Sri Kantha, S.; Hettiarachchy, N.S.; Erdman, J.J.W. Nutrient, antinutrient contents and solubility profiles of nitrogen, phytic acid and selected minerals in winged bean flour. Cereal Chem. 1986, 63, 9–13. [Google Scholar]
- Kortt, A.A.; Strike, P.M.; Jersey, J.D. Amino acid sequence of a crystalline seed albumin (winged bean albumin-1) from Psophocarpus tetragonolobus (L.) DC. Sequence similarity with Kunitz-type seed inhibitors and 7s storage globulins. Eur. J. Biochem. 1989, 181, 403–408. [Google Scholar] [CrossRef]
- Telang, M.A.; Giri, A.P.; Pyati, P.S.; Gupta, V.S.; Tegeder, M.; Franceschi, V.R. Winged bean chymotrypsin inhibitors retard growth of Helicoverpa armigera. Gene 2008, 431, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Giri, A.P.; Gupta, V.S.; Dutta, S.K. Structure-function relationship of a bio-pesticidal trypsin/chymotrypsin inhibitor from winged bean. Int. J. Biol. Macromol. 2017, 96, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Kortt, A.A. Comparative studies on the storage proteins and anti-nutritional factors from seeds of (L.) DC from five south-east Asian countries. Plant Foods Hum. Nutr. 1983, 33, 29–40. [Google Scholar] [CrossRef]
- Srinivas, V.R.; Acharya, S.; Rawat, S.; Sharma, V.; Surolia, A. The primary structure of the acidic lectin from winged bean (Psophocarpus tetragonolobus): Insights in carbohydrate recognition, adenine binding and quaternary association. FEBS Lett. 2000, 474, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Tan, N.H.; Rahim, Z.H.A.; Khor, H.T.; Wong, K.C. Winged bean (Psophocarpus tetragonolobus) tannin level, phytate content and hemagglutinating activity. J. Agric. Food Chem. 1983, 31, 916–917. [Google Scholar] [CrossRef]
- Ray, S.; Tah, J.; Sinhababu, A. Analysis of n-alkanes in leaf epicuticular wax of three cultivars of winged bean Psophocarpus tetragonolobus. Intern. J. Chem. Tech. 2017, 10, 178–185. [Google Scholar]
- Mit, R.; Singh, M. Psophocarpin B1, a storage protein of Psophocarpus tetragonolobus, has chymotrypsin inhibitory activity. Phytochemistry 1988, 27, 31–34. [Google Scholar] [CrossRef]
- Mit, R.; Singh, M. Purification of a storage protein of Psophocarpus tetragonolobus. Phytochemistry 1986, 25, 595–600. [Google Scholar] [CrossRef]
- Manjunath, S.; Madaiah, S. Distribution of lectin activity at different stages in the tissues of winged bean (Psophocarpus tetragonolobus (L.) DC). Plant Sci. 1987, 53, 161–165. [Google Scholar] [CrossRef]
- Kortt, A. Characterization of the acidic lectins from winged bean seed (Psophocarpus tetragonolobus (L.) DC). Arch. Biochem. Biophys. 1985, 236, 544–554. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, Y.; Zhu, Y.; Gao, Y.; Ren, G. Comparisons of phaseolin type and α-amylase inhibitor in common bean (Phaseolus vulgaris L.) in China. Crop J. 2016, 4, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Perry, L.M.; Metzger, J. Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses; MIT Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Nazri, N.A.A.; Ahmat, N.; Adnan, A.; Mohamad, S.A.S.; Ruzaina, S.A.S. In vitro antibacterial and radical scavenging activities of Malaysian table salad. Afr. J. Biotechnol. 2011, 10, 5728–5735. [Google Scholar]
- Khalili, R.M.A.; Shafekh, S.E.; Norhayati, A.H.; Fatahudin, I.M.; Rahimah, R.; Norkamaliah, H.; Azimah, A.N. Total phenolic content and in vitro antioxidant activity of winged bean (Psophocarpus tetragonolobus). Pak. J. Nutr. 2013, 12, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.O.; Jeong, S.; Lee, C. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- De Rigal, D.; Gauillard, F.; Richard-Forget, F. Changes in the carotenoid content of apricot (Prunus armeniaca, var Bergeron) during enzymatic browning: β-carotene inhibition of chlorogenic acid degradation. J. Sci. Food Agric. 2000, 80, 763–768. [Google Scholar] [CrossRef]
- Macheix, J.J. Fruit Phenolic; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Umamaheswari, M.; Chatterjee, T.K. In Vitro Antioxidant Activities of the Fractions of Coccinia Grandis L. Leaf Extract. Afr. J. Tradit. Compl. Altern. Med. 2008, 5, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef]
- Olaiya, C.O.; Soetan, K.O.; Esan, A.M. The role of nutraceuticals, functional foods and value-added food products in the prevention and treatment of chronic diseases. Afr. J. Food Sci. 2016, 10, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Olaiya, C.O.; Soetan, K.O.; Karigidi, K.O. Evaluation of in vitro antioxidant capacities of six accessions of winged beans (Psophocarpus tetragonolobus). EC Nutr. 2018, 13, 589–595. [Google Scholar]
- Sasidharan, S.; Zuraini, Z.; Yoga Latha, L.; Suryani, S. Fungicidal Effect and Oral Acute Toxicity of Psophocarpus tetragonolobus. Root Extract. Pharm. Biol. 2008, 46, 261–265. [Google Scholar] [CrossRef]
- Manosroia, A.; Akazawab, H.; Akihisae, T.; Jantrawuta, P.; Kitdamrongthama, W.; Manosroig, W.; Manosroia, J. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database “MANOSROI III”. J. Ethnopharm. 2015, 161, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Radziejewska, I.; Borzym-Kluczyk, M.; Leszczyńska, K.; Wosek, J.; Bielawska, A. Lotus tetragonolobus and Maackiaamurensis lectins influence phospho-I k B a, IL-8, Lewis b and H type 1 glycoforms levels in H. pylori infected CRL-1739 gastric cancer cells. J. Adv. Med. Sci. 2018, 63, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Mohtar, W.; Hamid, W.A.; Abd-Aziz, S.; Muhamad, S.K.; Saari, N. Preparation of bioactive peptide with high angiotensin converting enzyme inhibitory activity from winged bean [Psophocarpus tetragonolobus (L.) DC.] seed. J. Food Sci. Technol. 2013, 51, 3658–3668. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Padzil, A.M.; Ahmad, S.; Abdullah, N.R.; Saad, W.Z.; Maziah, M.; Sulaiman, M.R.; Israf, D.A.; Shaari, K.; Lajis, N.H. Evaluation of anti-inflammatory, antioxidant and antinociceptive activities of six Malaysian medicinal plants. J. Med. Plants Res. 2011, 5, 5555–5563. [Google Scholar] [CrossRef]
- Egan, A.N.; Vatanparast, M.; Cagle, W. Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny. Mol. Phylogenetics Evol. 2015, 104, 44–59. [Google Scholar] [CrossRef] [Green Version]
Subkingdom: | Tracheobionta |
Super division: | Spermatophyta |
Division: | Mangoliophyta |
Class: | Mangoliopsyda |
Subclass: | Rosidea |
Order: | Fabales |
Family: | Fabaceae |
Subfamily: | Papilionoideae |
Tribe: | Phaseoleae |
Genus: | Psophocarpus |
Species: | P. tetragonolobus |
Metabolites | Activity | Plant Part | Country | References |
---|---|---|---|---|
Phytate | Anti-nutritional factors, affinity for specific blood cell antigens | Seed | Malaysia | [36,42] |
Tannin | Nonspecific enzymes inhibitors, hemagglutinin activity | Seed | Malaysia | [42] |
Psophocarpin | Chemotrypsin inhibitory activity | Seed, pods | India | [44,45] |
Lectin | Hemagglutinin activity | Mainly in seed, roots | India | [35,46,47] |
Albumin 1 (WBA-1) | Kunitz-type trypsin inhibitors | Seed | Malaysia | [37] |
Phaseolin | α-amylase inhibitor | Seed | Malaysia | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassal, H.; Merah, O.; Ali, A.M.; Hijazi, A.; El Omar, F. Psophocarpus tetragonolobus: An Underused Species with Multiple Potential Uses. Plants 2020, 9, 1730. https://doi.org/10.3390/plants9121730
Bassal H, Merah O, Ali AM, Hijazi A, El Omar F. Psophocarpus tetragonolobus: An Underused Species with Multiple Potential Uses. Plants. 2020; 9(12):1730. https://doi.org/10.3390/plants9121730
Chicago/Turabian StyleBassal, Hussein, Othmane Merah, Aqeel M. Ali, Akram Hijazi, and Fawaz El Omar. 2020. "Psophocarpus tetragonolobus: An Underused Species with Multiple Potential Uses" Plants 9, no. 12: 1730. https://doi.org/10.3390/plants9121730