Verticillium Wilt of Mint in the United States of America
Abstract
:1. Mint Production in the United States
2. Verticillium Wilt of Mint
2.1. Symptoms in Mint
2.2. Economic Impacts
3. The Pathogen: Verticillium dahliae
4. Vegetative Compatibility and Genetic Diversity of V. dahliae Populations from Mint
5. Interactions between V. dahliae and Root Lesion Nematodes in Mint
6. Epidemiology of Verticillium Wilt
7. Integrated Disease Management of Verticillium Wilt
7.1. Exclusion, Avoidance, and Sanitation
7.2. Crop Rotation
7.3. Host Resistance
8. Conclusions and Future Research
Funding
Acknowledgments
Conflicts of Interest
References
- Lawrence, B.M. Mint: The Genus Mentha; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Vining, K.J.; Hummer, K.E.; Bassil, N.V.; Lange, B.M.; Khoury, C.K.; Carver, D. Crop wild relatives as germplasm resource for cultivar improvement in mint (Mentha L.). Front. Plant Sci. 2020, 11, 1217. [Google Scholar] [CrossRef]
- Croteau, R.B.; Davis, E.M.; Ringer, K.L.; Wildung, M.R. (-)-Menthol biosynthesis and molecular genetics. Naturwissenschaften 2005, 92, 562. [Google Scholar] [CrossRef]
- Landing, J.E. American Essence: A History of the Peppermint and Spearmint Industry in the United States; A. M. Todd Foundation: Kalamazoo, MI, USA, 1969. [Google Scholar]
- National Statistics for Mint. USDA National Agricultural Statistics Service; NASS-Quick Stats, USDA National Agricultural Statistics Service: Washington, DC, USA, 2019. Available online: https://data.nal.usda.gov/dataset/nass-quick-stats (accessed on 26 October 2020).
- Nelson, R. Verticillium Wilt of Peppermint; Michigan State College Agricultural Experiment Station: East Lansing, MI, USA, 1950. [Google Scholar]
- Baines, R.C. Verticillium wilt of peppermint and viburnum in Indiana. In The Plant Disease Reporter; Bureau of Plant Industry, U.S. Department of Agriculture: Washington, DC, USA, 1941; Volume 25, p. 274. [Google Scholar]
- Boyle, L.W. Verticillium wilt of mint in Oregon. In The Plant Disease Reporter; Bureau of Plant Industry, U.S. Department of Agriculture: Washington, DC, USA, 1944; Volume 28, p. 1095. [Google Scholar]
- Skotland, C.B.; Menzies, J.D. Two peppermint diseases found in the Yakima Valley of Washington. Plant Dis. Report. 1957, 41, 493. [Google Scholar]
- Albaugh, A.; Eggers, D.; Crowe, F.; Morris, M.; Reerslev, J.; Passmore, K. Pest Management Strategic Plan for Pacific Northwest Mint Production; Summary of a Workshop Held on 30–31 October 2002; Oregon State University: Corvallis, OR, USA, 2002. [Google Scholar]
- Allender, G.; Blad, E.; Bobek, J.; Coussens, H., Jr.; Fervida, J.; Gumz, D.; Gumz, M.; Griffo, J.; Green, R.; Irrer, T.; et al. A Pest Management Strategic Plan for the Indiana, Wisconsin, and Michigan Mint Industries; Compiled at a Workshop Conducted 12 December 2002 in North Judson, Indiana; Southern IPM Center: Raleigh, NC, USA, 2002. [Google Scholar]
- Murray, K.; Walenta, D.L.; Jepson, P.C.; Sandlin, I. Integrated Pest Management Strategic Plan for Oregon, Washington and Idaho Mint Crops; Summary of a workshop held on 8 March 2019, in Portland, Oregon; Oregon State University: Corvallis, OR, USA, 2020. [Google Scholar]
- Marcum, D.B.; Tollerup, K.E.; Davis, R.M.; Lanini, W.T.; Wilson, R.G. UC IPM Pest Management Guidelines: Peppermint; University of California Agriculture and Natural Resources: Davis, CA, USA, 2013. [Google Scholar]
- Farr, D.F.; Rossman, A.Y. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available online: https://nt.ars-grin.gov/fungaldatabases/ (accessed on 22 October 2020).
- Rizk, I.M.; Mousa, I.E.; Ammar, M.M.; Abd-ElMaksoud, I. Biological control of fusarium oxysporum and verticillium dahliae by trichoderma harzianum and gliocladium virens of two mint species. Res. J. Appl. Biotechnol. 2017, 3, 24–36. [Google Scholar] [CrossRef]
- Douhan, L.I.; Johnson, D.A. Vegetative compatibility and pathogenicity of Verticillium dahliae from spearmint and peppermint. Plant Dis. 2001, 85, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dung, J.K.; Schroeder, B.K.; Johnson, D.A. Evaluation of Verticillium wilt resistance in Mentha arvensis and M. longifolia genotypes. Plant Dis. 2010, 94, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Horner, C.E. Pathogenicity of Verticillium isolates to peppermint. Phytopathology 1954, 44, 239–242. [Google Scholar]
- Crowe, F.J.; Debons, J.; Farris, N. Peppermint performance and changes in inoculum density of Verticillium dahliae associated with management practices. In Advances in Verticillium Research and Disease Management; Tjamos, E.C., Rowe, R.C., Heale, J.B., Fravel, D.R., Eds.; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2000; pp. 296–300. [Google Scholar]
- Inderbitzin, P.; Bostock, R.M.; Davis, R.M.; Usami, T.; Platt, H.W.; Subbarao, K.V. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS ONE 2011, 6, e28341. [Google Scholar] [CrossRef]
- Wilhelm, S. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 1955, 45, 180–181. [Google Scholar]
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, pathogenicity, and management of Verticillium species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef] [Green Version]
- Lacy, M.L.; Horner, C.E. Behavior of Verticillium dahliae in the rhizosphere and on roots of plants susceptible, resistant, and immune to wilt. Phytopathology 1966, 56, 5–7. [Google Scholar]
- Joaquim, T.R.; Rowe, R.C. Vegetative compatibility and virulence of strains of Verticillium dahliae from soil and potato plants. Phytopathology 1991, 81, 552–558. [Google Scholar] [CrossRef]
- Bhat, R.G.; Subbarao, K.V. Host range specificity in Verticillium dahliae. Phytopathology 1999, 89, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Hayes, R.J.; McHale, L.K.; Vallad, G.E.; Truco, M.J.; Michelmore, R.W.; Klosterman, S.J.; Maruthachalam, K.; Subbarao, K.V. The inheritance of resistance to Verticillium wilt caused by race 1 isolates of Verticillium dahliae in the lettuce cultivar La Brillante. Theor. Appl. Genet. 2011, 123, 509–517. [Google Scholar] [CrossRef]
- Schnathorst, W.C.; Mathre, D.E. Host range and differentiation of a severe form of Verticillium albo-atrum in cotton. Phytopathology 1966, 56, 1155–1161. [Google Scholar]
- Schnathorst, W.C.; Sibbett, G.S. Relation of strains of Verticillium albo-atrum to severity of Verticillium wilt in Gossypium hirsutum and Olea europaea in California. Plant Dis. Rep. 1971, 9, 780–782. [Google Scholar]
- Jiménez-Díaz, R.M.; Mercado-Blanco, J.; Olivares-García, C.; Collado-Romero, M.; Bejarano-Alcázar, J.; Rodríguez-Jurado, D.; Giménez-Jaime, A.; García-Jiménez, J.; Armengol, J. Genetic and virulence diversity in Verticillium dahliae populations infecting artichoke in eastern-central Spain. Phytopathology 2006, 96, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Grogan, R.G.; Ioannou, N.; Schneider, R.W.; Sall, M.A.; Kimble, K.A. Verticillium wilt on resistant tomato cultivars in California: Virulence of isolates from plants and soil and relationship of inoculum density to disease incidence. Phytopathology 1979, 69, 1176–1180. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.A.; Santo, G.S. Development of wilt in mint in response to infection by two pathotypes of Verticillium dahliae and co-infection by Pratylenchus penetrans. Plant Dis. 2001, 85, 1189–1192. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R. The specific pathogenesis of the Verticillium that causes wilt of peppermint. Phytopathology 1947, 37, 17. [Google Scholar]
- Fuentes-Granados, R.G.; Widrlechner, M.P. Evaluation of Agastache and other Lamiaceae species for reaction to Verticillium dahliae. J. Herbs Spices Med. Plants 1996, 3, 3–11. [Google Scholar] [CrossRef]
- Green, R.J. Studies on the host range of the Verticillium that causes wilt of Mentha piperita L. Science 1951, 113, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.J.; Farris, N. Variability in "Verticillium dahliae " and the Verticillium “strain” Issue: Activity of Mint and Non-mint Isolates Inoculated onto Peppermint and Spearmint; Central Oregon Agricultural Research Center 1997 Annual Report; Central Oregon Agricultural Research Center: Madras, OR, USA, 1997; pp. 4–14. [Google Scholar]
- Dung, J.K.; du Toit, L.J.; Johnson, D.A. Verticillium wilt of skullcap and potential for pathogen dissemination via seeds and stems. Plant Dis. 2011, 95, 1147–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dung, J.K.; Peever, T.L.; Johnson, D.A. Verticillium dahliae populations from mint and potato are genetically divergent with predominant haplotypes. Phytopathology 2013, 103, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.L.; Johnson, D.A. Verticillium dahliae infects, alters plant biomass, and produces inoculum on rotation crops. Phytopathology 2016, 106, 602–613. [Google Scholar] [CrossRef] [Green Version]
- Frederick, Z.A.; Cummings, T.F.; Johnson, D.A. Susceptibility of weedy hosts from Pacific Northwest potato production systems to crop-aggressive isolates of Verticillium dahliae. Plant Dis. 2017, 101, 1500–1506. [Google Scholar] [CrossRef]
- Fordyce, C.; Green, R.J. Alteration of pathogenicity of Verticillium albo-atrum var. menthae. Phytopathology 1963, 53, 701–704. [Google Scholar]
- Green, R.J. Alteration of pathogenicity of Verticillium dahliae from Mentha sp. under field conditions. Plant Dis. Report. 1977, 61, 373–374. [Google Scholar]
- Fradin, E.F.; Thomma, B.P.H.J. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef]
- Harrison, J.A.C. Transpiration in potato plants infected with Verticillium spp. Ann. Appl. Biol. 1971, 68, 159–168. [Google Scholar] [CrossRef]
- Street, P.F.S.; Cooper, R.M. Quantitative measurement of vascular flow in petioles of healthy and Verticillium-infected tomato. Plant Pathol. 1984, 33, 483–492. [Google Scholar] [CrossRef]
- Gui, Y.-J.; Chen, J.-Y.; Zhang, D.-D.; Li, N.-Y.; Li, T.-G.; Zhang, W.-Q.; Wang, X.-Y.; Short, D.P.; Li, L.; Guo, W. Verticillium dahliae manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environ. Microbiol. 2017, 19, 1914–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puhalla, J.E. Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopathology 1979, 69, 1186–1189. [Google Scholar] [CrossRef]
- Puhalla, J.E.; Hummel, M. Vegetative compatibility groups within Verticillium dahliae. Phytopathology 1983, 73, 1305–1308. [Google Scholar] [CrossRef]
- Joaquim, T.R.; Rowe, R.C. Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 1990, 80, 1160–1166. [Google Scholar] [CrossRef]
- Leslie, J.F. Fungal vegetative compatibility. Annu. Rev. Phytopathol. 1993, 31, 127–150. [Google Scholar] [CrossRef]
- Chen, W. Vegetative compatibility groups of Verticillium dahliae from ornamental woody plants. Phytopathology 1994, 84, 214–219. [Google Scholar] [CrossRef]
- Elena, K.; Paplomatas, E.J. Vegetative compatibility groups within Verticillium dahliae isolates from different hosts in Greece. Plant Pathol. 1998, 47, 635–640. [Google Scholar] [CrossRef]
- Strausbaugh, C.A.; Schroth, M.N.; Weinhold, A.R.; Hancock, J.G. Assessment of vegetative compatibility of Verticillium dahliae tester strains and isolates from California potatoes. Phytopathology 1992, 82, 61–68. [Google Scholar] [CrossRef]
- Omer, M.A.; Johnson, D.A.; Douhan, L.I.; Hamm, P.B.; Rowe, R.C. Detection, quantification, and vegetative compatibility of Verticillium dahliae in potato and mint production soils in the Columbia Basin of Oregon and Washington. Plant Dis. 2008, 92, 1127–1131. [Google Scholar] [CrossRef]
- Korolev, N.; Katan, J.; Katan, T. Vegetative compatibility groups of Verticillium dahliae in Israel: Their distribution and association with pathogenicity. Phytopathology 2000, 90, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Collado-Romero, M.; Mercado-Blanco, J.; Olivares-García, C.; Jiménez-Díaz, R.M. Phylogenetic analysis of Verticillium dahliae vegetative compatibility groups. Phytopathology 2008, 98, 1019–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Gasco, M.d.M.; Malcolm, G.M.; Berbegal, M.; Armengol, J.; Jiménez-Díaz, R.M. Complex molecular relationship between vegetative compatibility groups (VCGs) in Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology 2013, 104, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dung, J.K.; Knaus, B.J.; Fellows, H.L.; Grünwald, N.J.; Vining, K.J. Genetic diversity of Verticillium dahliae isolates from mint detected with genotyping by sequencing. Phytopathology 2019, 109, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.-M.; Vallad, G.E.; Wu, B.M.; Subbarao, K.V. Phylogenetic analyses of phytopathogenic isolates of Verticillium spp. Phytopathology 2006, 96, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milgroom, M.G.; Jiménez-Gasco, M.d.M.; García, C.O.; Drott, M.T.; Jiménez-Díaz, R.M. Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing. PLoS ONE 2014, 9, e106740. [Google Scholar] [CrossRef] [Green Version]
- Rafiei, V.; Banihashemi, Z.; Jiménez-Díaz, R.M.; Navas-Cortés, J.A.; Landa, B.B.; Jiménez-Gasco, M.M.; Turgeon, B.G.; Milgroom, M.G. Comparison of genotyping by sequencing and microsatellite markers for unravelling population structure in the clonal fungus Verticillium dahliae. Plant Pathol. 2018, 67, 76–86. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Dung, J.K.S.; Johnson, D.A. From pathogen to endophyte: An endophytic population of Verticillium dahliae evolved from a sympatric pathogenic population. New Phytol. 2019, 222, 497–510. [Google Scholar] [CrossRef]
- Atallah, Z.K.; Maruthachalam, K.; Du Toit, L.; Koike, S.T.; Davis, R.M.; Klosterman, S.J.; Hayes, R.J.; Subbarao, K.V. Population analyses of the vascular plant pathogen Verticillium dahliae detect recombination and transcontinental gene flow. Fungal Genet. Biol. 2010, 47, 416–422. [Google Scholar] [CrossRef]
- Wheeler, D.L.; Johnson, D.A. Does coinoculation with different Verticillium dahliae genotypes affect the host or fungus? Phytopathology 2019, 109, 780–786. [Google Scholar] [CrossRef]
- Collado-Romero, M.; Jiménez-Díaz, R.M.; Mercado-Blanco, J. DNA sequence analysis of conserved genes reveals hybridization events that increase genetic diversity in Verticillium dahliae. Fungal Biol. 2010, 114, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Inderbitzin, P.; Davis, R.M.; Bostock, R.M.; Subbarao, K.V. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS ONE 2011, 6, e18260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoli, C.A.N.; Carder, J.H.; Barbara, D.J. Restriction fragment length polymorphisms (RFLPs) and the relationships of some host-adapted isolates of Verticillium dahliae. Plant Pathol. 1994, 43, 33–40. [Google Scholar] [CrossRef]
- Pinkerton, J.N. Relationship of Pratylenchus penetrans (Cobb, 1917) Population Density and Yield of Peppermint, Mentha piperita L. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 5 August 1983. [Google Scholar]
- Agrios, G.N. Plant Pathology, 5th ed.; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Wheeler, D.L.; Scott, J.; Dung, J.K.S.; Johnson, D.A. Evidence of a trans-kingdom plant disease complex between a fungus and plant-parasitic nematodes. PLoS ONE 2019, 14, e0211508. [Google Scholar] [CrossRef] [PubMed]
- Bergeson, G.B. Influence of Pratylenchus penetrans alone and in combination with Verticillium albo-atrum on growth of peppermint. Phytopathology 1963, 53, 1164–1166. [Google Scholar]
- Santo, G.S.; Skotland, C.B. Interaction of Pratylenchus penetrans and Verticillium dahliae on Scotch spearmint in microplots. J. Nematol. 1986, 18, 631. [Google Scholar]
- Botseas, D.D.; Rowe, R.C. Development of potato early dying in response to infection by two pathotypes of Verticillium dahliae and co-infection by Pratylenchus penetrans. Phytopathology 1994, 84, 275–282. [Google Scholar] [CrossRef]
- Faulkner, L.R.; Bolander, W.J. Interaction of Verticillium dahliae and Pratylenchus minyus in Verticillium wilt of peppermint: Effect of soil temperature. Phytopathology 1969, 59, 868–870. [Google Scholar]
- Faulkner, L.R.; Skotland, C.B. Interactions of Verticillium dahliae and Pratylenchus minyus in Verticillium wilt of peppermint. Phytopathology 1965, 55, 583–586. [Google Scholar]
- Faulkner, L.R.; Bolander, W.J.; Skotland, C.B. Interaction of Verticillium dahliae and Pratylenchus minyus in Verticillium wilt of peppermint: Influence of the nematode as determined by a double root technique. Phytopathology 1970, 60, 100–103. [Google Scholar] [CrossRef]
- Bowers, J.H.; Nameth, S.T.; Riedel, R.M.; Rowe, R.C. Infection and colonization of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology 1996, 86, 614–621. [Google Scholar] [CrossRef]
- Mountain, W.B.; Mckeen, C.D. Effect of Verticillium dahliae on the population of Pratylenchus penetrans. Nematologica 1962, 7, 261–266. [Google Scholar]
- Schnathorst, W.C. Life cycle and epidemiology of Verticillium. In Fungal Wilt Diseases of Plants; Mace, M.E., Bell, A.A., Beckman, C.H., Eds.; Academic: New York, NY, USA, 1981; pp. 81–111. [Google Scholar]
- Green, R.J.; Erickson, S.T. Mint Farming, U.S. Department of Agriculture Agricultural Research Service and Purdue University Agricultural Experiment Station Agricultural Information Bulletin No. 212; U.S. Department of Agriculture: Washington, DC, USA, 1960.
- Menzies, J.D.; Griebel, G.E. Survival and saprophytic growth of Verticillium dahliae in uncropped soil. Phytopathology 1967, 57, 703–709. [Google Scholar]
- Martinson, C.A.; Horner, C.E. Colonization of plant debris in soil by Verticillium dahliae. Phytopathology 1964, 54, 900. [Google Scholar]
- Lacy, M.L.; Horner, C.E. Verticillium wilt of mint: Interactions of inoculum density and host resistance. Phytopathology 1965, 55, 1176–1178. [Google Scholar]
- Schreiber, L.R.; Green, R.J. Comparative survival of mycelium, conidia, and microsclerotia of Verticillium albo-atrum in mineral soil. Phytopathology 1962, 52, 288–289. [Google Scholar]
- Green, R.J. Survival and inoculum potential of conidia and microsclerotia of Verticillium albo-atrum in soil. Phytopathology 1969, 59, 874–876. [Google Scholar]
- Johnson, D.A.; Zhang, H.; Alldredge, J.R. Spatial pattern of Verticillium wilt in commercial mint fields. Plant Dis. 2006, 90, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Usami, T.; Itoh, M.; Amemiya, Y. Asexual fungus Verticillium dahliae is potentially heterothallic. J. Gen. Plant Pathol. 2009, 75, 422–427. [Google Scholar] [CrossRef]
- Kronstad, J.W.; Staben, C. Mating type in filamentous fungi. Annu. Rev. Genet. 1997, 31, 245–276. [Google Scholar] [CrossRef] [Green Version]
- Usami, T.; Itoh, M.; Amemiya, Y. Mating type gene MAT1-2-1 is common among Japanese isolates of Verticillium dahliae. Physiol. Mol. Plant Pathol. 2008, 73, 133–137. [Google Scholar] [CrossRef]
- Short, D.P.G.; Gurung, S.; Hu, X.; Inderbitzin, P.; Subbarao, K.V. Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae. PLoS ONE 2014, 9, e112145. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.L.; Noe, J.P. The spatial analysis of soilborne pathogens and root diseases. Annu. Rev. Phytopathol. 1985, 23, 129–148. [Google Scholar] [CrossRef]
- Easton, G.D.; Nagle, M.E.; Bailey, D.L. Method of estimating Verticillium albo-atrum propagules in field soil and irrigation waste water. Phytopathology 1969, 59, 1171–1172. [Google Scholar]
- Dung, J.K.; Hamm, P.B.; Eggers, J.E.; Johnson, D.A. Incidence and impact of Verticillium dahliae in soil associated with certified potato seed lots. Phytopathology 2013, 103, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Pscheidt, J.W.; Ocamb, C.M. (Eds.) Pacific Northwest Plant Disease Management Handbook; Oregon State University: Corvallis, OR, USA, 2020. [Google Scholar]
- Hamm, P.; Ingham, R.; Eggers, J. In crop use of Telone II for the control/management of Verticillium wilt and/or nematodes impacting mint. In Progress Report to the Oregon Mint Commission and Mint Industry Research Council 2009/2010; Mint Industry Research Council: Salem, OR, USA, 2011. [Google Scholar]
- McIntyre, J.L.; Horner, C.E.; CE, H. Inactivation of Verticillium dahliae in peppermint stems by propane gas flaming. Phytopathology 1973, 63, 172–175. [Google Scholar] [CrossRef]
- Green, R.J. “Deep plowing” for controlling Verticillium wilt of mint in muck soils. Phytopathology 1958, 48, 575–577. [Google Scholar]
- Horner, C.E.; Dooley, H.L. Propane flaming kills Verticillium dahliae in peppermint stubble. Plant Dis. Report. 1965, 49, 581–582. [Google Scholar]
- Butler, M.; Crowe, F.; Gregg, D.; Hagman, M. Survival of Verticillium Wilt in Peppermint Stems Following Propane Flaming at Various Ground Speeds, 1995; Central Oregon Agricultural Research Center 1995 Annual Report; Central Oregon Agricultural Research Center: Madras, OR, USA, 1995; pp. 38–39. [Google Scholar]
- Wu, B.M. Evaluate Site-Specific Flaming for the Management of Verticillium Wilt in Peppermint; Central Oregon Agricultural Research Center 2012 Annual Report; Central Oregon Agricultural Research Center: Madras, OR, USA, 2012; pp. 34–41. [Google Scholar]
- Green, R.J. Control of Verticillium wilt of peppermint by crop rotation sequences. In The Plant Disease Reporter; Bureau of Plant Industry, U.S. Department of Agriculture: Washington, DC, USA, 1967; Volume 51, pp. 449–453. [Google Scholar]
- Lloyd, M.G.; McRoberts, N.; Gordon, T.R. Cryptic infection and systemic colonization of leguminous crops by Verticillium dahliae, the cause of Verticillium wilt. Plant Dis. 2019, 103, 3166–3171. [Google Scholar] [CrossRef]
- Martinson, C.A.; Horner, C.E. Importance of nonhosts in maintaining inoculum potential of Verticillium. Phytopathology 1962, 52, 742. [Google Scholar]
- Crowe, F.; Parks, R.; Powelson, M.; Johnson, K.; Ciuffetti, L. Investigation on Strain Behavior of Verticillium Dahliae on Mint and Other Crops, 1999; Central Oregon Agricultural Research Center 1999 Annual Report; Central Oregon Agricultural Research Center: Madras, OR, USA, 1999; p. 50. [Google Scholar]
- Larkin, R.P. Green manures and plant disease management. CAB Rev. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Davis, J.R.; Huisman, O.C.; Westermann, D.T.; Hafez, S.L.; Everson, D.O.; Sorensen, L.H.; Schneider, A.T. Effects of green manures on Verticillium wilt of potato. Phytopathology 1996, 86, 444–453. [Google Scholar] [CrossRef]
- Subbarao, K.V.; Hubbard, J.C.; Koike, S.T. Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Dis. 1999, 83, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.R.; Huisman, O.C.; Everson, D.O.; Nolte, P.; Sorenson, L.H.; Schneider, A.T. The suppression of Verticillium wilt of potato using corn as a green manure crop. Am. J. Potato Res. 2010, 87, 195–208. [Google Scholar] [CrossRef]
- Mayton, H.S.; Olivier, C.; Vaughn, S.F.; Loria, R. Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 1996, 86, 267–271. [Google Scholar] [CrossRef]
- Inderbitzin, P.; Ward, J.; Barbella, A.; Solares, N.; Izyumin, D.; Burman, P.; Chellemi, D.O.; Subbarao, K.V. Soil microbiomes associated with Verticillium wilt-suppressive broccoli and chitin amendments are enriched with potential biocontrol agents. Phytopathology 2017, 108, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, R.P.; Honeycutt, C.W.; Olanya, O.M. Management of Verticillium wilt of potato with disease-suppressive green manures and as affected by previous cropping history. Plant Dis. 2011, 95, 568–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochiai, N.; Powelson, M.L.; Crowe, F.J.; Dick, R.P. Green manure effects on soil quality in relation to suppression of Verticillium wilt of potatoes. Biol. Fertil. Soils 2008, 44, 1013–1023. [Google Scholar] [CrossRef]
- Inderbitzin, P.; Christopoulou, M.; Lavelle, D.; Reyes-Chin-Wo, S.; Michelmore, R.W.; Subbarao, K.V.; Simko, I. The LsVe1L allele provides a molecular marker for resistance to Verticillium dahliae race 1 in lettuce. BMC Plant Biol. 2019, 19, 305. [Google Scholar] [CrossRef]
- Kawchuk, L.M.; Hachey, J.; Lynch, D.R.; Kulcsar, F.; Van Rooijen, G.; Waterer, D.R.; Robertson, A.; Kokko, E.; Byers, R.; Howard, R.J. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 6511–6515. [Google Scholar] [CrossRef] [Green Version]
- Schaible, L.; Cannon, O.S.; Waddoups, V. Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 1951, 41, 986–990. [Google Scholar]
- Brandt, W.H.; Lacy, M.L.; Horner, C.E. Distribution of Verticillium in stems of resistant and susceptible species of mint. Phytopathology 1984, 74, 587–591. [Google Scholar] [CrossRef]
- Berry, S.Z.; Thomas, C.A. Influence of soil, temperature, isolates, and method of inoculation on resistance of mint to Verticillium wilt. Phytopathology 1961, 51, 169–174. [Google Scholar]
- Horner, C.E.; Melouk, H.A. Screening, selection and evaluation of irradiation-induced mutants of spearmint for resistance to Verticillium wilt. In Proceedings of the Symposium on the Use of Induced Mutations for Improving Disease Resistance in Crop Plants, Vienna, Austria, 31 January 1977; International Atomic Energy Agency: Vienna, Austria, 1977. [Google Scholar]
- Berry, S.L. Determination of levels of Verticillium wilt resistance in mint. Phytopathology 1960, 50, 569. [Google Scholar]
- Vining, K.; Davis, T. Isolation of a Ve homolog, mVe1, and its relationship to Verticillium wilt resistance in Mentha longifolia (L.) Huds. Mol. Genet. Genom. 2009, 282, 173–184. [Google Scholar] [CrossRef]
- Vining, K.J.; Zhang, Q.; Smith, C.A.; Davis, T.M. Identification of resistance gene analogs and Verticillium wilt resistance-like sequences in Mentha longifolia. J. Am. Soc. Hortic. Sci. 2007, 132, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.A.; Cummings, T.F. Evaluation of mint mutants, hybrids, and fertile clones for resistance to Verticillium dahliae. Plant Dis. 2000, 84, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.A.; Baker, R.; Boydston, R.A. Field evaluation of mutant and hybrid lines of mint for resistance to Verticillium wilt and yield. Crop Prot. 2013, 43, 1–6. [Google Scholar] [CrossRef]
- Vining, K.J.; Johnson, S.R.; Ahkami, A.; Lange, I.; Parrish, A.N.; Trapp, S.C.; Croteau, R.B.; Straub, S.C.; Pandelova, I.; Lange, B.M. Draft genome sequence of Mentha longifolia and development of resources for mint cultivar improvement. Mol. Plant 2017, 10, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Dung, J.K.S. Relative Roles of Tuber-and Soilborne Inoculum in Verticillium Wilt of Potato and Quantification of Resistance in Mint. Master’s Thesis, Washington State University, Pullman, WA, USA, 2009. [Google Scholar]
- Murray, M.J.; Todd, W.A. Registration of Todd’s Mitcham peppermint. Crop Sci. 1972, 12, 128. [Google Scholar] [CrossRef]
- Todd, W.A.; Green, R.J.; Horner, C.E. Registration of Murray Mitcham Peppermint. Crop Sci. 1977, 17, 188. [Google Scholar] [CrossRef]
- Vining, K.J.; Zhang, Q.; Tucker, A.O.; Smith, C.; Davis, T.M. Mentha longifolia (L.) L.: A model species for mint genetic research. Hort. Sci. 2005, 40, 1225–1229. [Google Scholar] [CrossRef]
- Vining, K.J.; Pandelova, I.; Hummer, K.; Bassil, N.; Contreras, R.; Neill, K.; Chen, H.; Parrish, A.N.; Lange, B.M. Genetic diversity survey of Mentha aquatica L. and Mentha suaveolens Ehrh., mint crop ancestors. Genet. Resour. Crop Evol. 2019, 66, 825–845. [Google Scholar] [CrossRef]
- Davis, J.R.; Huisman, O.C.; Everson, D.O.; Nolte, P.; Sorensen, L.H.; Schneider, A.T. Ecological relationships of Verticillium wilt suppression of potato by green manures. Am. J. Potato Res. 2010, 87, 315–326. [Google Scholar] [CrossRef]
- Expósito, R.G.; de Bruijn, I.; Postma, J.; Raaijmakers, J.M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol. 2017, 8, 2529. [Google Scholar] [CrossRef]
- Siegel-Hertz, K.; Edel-Hermann, V.; Chapelle, E.; Terrat, S.; Raaijmakers, J.M.; Steinberg, C. Comparative microbiome analysis of a Fusarium wilt suppressive soil and a Fusarium wilt conducive soil from the Châteaurenard region. Front. Microbiol. 2018, 9, 568. [Google Scholar] [CrossRef]
- Toyota, K.; Shirai, S. Growing interest in microbiome research unraveling disease suppressive soils against plant pathogens. Microbes Environ. 2018, 33, 345–347. [Google Scholar] [CrossRef] [Green Version]
- Deketelaere, S.; Tyvaert, L.; França, S.C.; Höfte, M. Desirable traits of a good biocontrol agent against Verticillium wilt. Front. Microbiol. 2017, 8, 1186. [Google Scholar] [CrossRef] [Green Version]
- Klosterman, S.J.; Subbarao, K.V.; Kang, S.; Veronese, P.; Gold, S.E.; Thomma, B.P.H.J.; Chen, Z.; Henrissat, B.; Lee, Y.-H.; Park, J.; et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 2011, 7, e1002137. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Dai, J.; Qin, J.; Shang, W.; Chen, J.; Zhang, L.; Dai, X.; Klosterman, S.J.; Xu, X.; Subbarao, K.V. Genome sequences of Verticillium dahliae defoliating strain XJ592 and nondefoliating strain XJ511. Mol. Plant. Microbe Interact. 2020, 33, 565–568. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dung, J.K.S. Verticillium Wilt of Mint in the United States of America. Plants 2020, 9, 1602. https://doi.org/10.3390/plants9111602
Dung JKS. Verticillium Wilt of Mint in the United States of America. Plants. 2020; 9(11):1602. https://doi.org/10.3390/plants9111602
Chicago/Turabian StyleDung, Jeremiah K. S. 2020. "Verticillium Wilt of Mint in the United States of America" Plants 9, no. 11: 1602. https://doi.org/10.3390/plants9111602
APA StyleDung, J. K. S. (2020). Verticillium Wilt of Mint in the United States of America. Plants, 9(11), 1602. https://doi.org/10.3390/plants9111602