Effects of Maize Straw Incorporation on Soil Water-Soluble Organic Carbon Fluorescence Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Measurement Methods
2.4. Statistical Analysis
3. Results
3.1. Dynamics of WSOC and WSOC/SOC Ratios
3.2. Three-Dimensional Fluorescence Spectra of WSOC
3.3. PARAFAC-Derived Fluorescence Components
3.4. Fluorescence Spectral Characteristics
3.5. Correlation Coefficients
4. Discussion
4.1. Influence of Different Treatments on the WSOC
4.2. Influence of Different Treatments on WSOC Component Fluorescence Indexes
4.3. The Influence of Different Treatments on the WSOC Components
4.4. Comprehensive Utilization of Straw
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, K.; Goh, K.M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Commun. Soil. Sci. Plant Anal. 2003, 34, 2441–2460. [Google Scholar]
- Zibilske, L.M.; Materon, L.A. Biochemical properties of decomposing cotton and corn stem and root residues. Soil. Sci. Soc. Am. J. 2005, 69, 378–386. [Google Scholar] [CrossRef]
- Al Kaisi, M.M.; Yin, X. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef]
- Wu, Z.J.; Zhang, H.J.; Xu, G.S.; Zhang, Y.H.; Liu, C.P. Effect of returning corn straw into soil on soil fertility. Chin. J. Appl. Ecol. 2002, 13, 539–542. [Google Scholar]
- Liu, J.J.; Yan, X.B.; Zhang, M.Y.; Liu, T.S.; Sun, Z.M. Analysis of yield distribution and utilization of crop straw resources in China. J. Agric. Resour. Environ. 2025, 42, 751–760. [Google Scholar]
- Gao, Z.P.; Ni, J.B.; Li, N.N. Research on the quantity and utilization of crop straw resources in China. Res. Agric. Mech. 2022, 44, 1–6+25. [Google Scholar]
- Zou, W.X.; Han, X.Z.; Yan, J.; Chen, X.; Lu, X.C.; Qiu, C.; Hao, X. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 9–18. [Google Scholar]
- Kuang, E.J.; Chi, F.Q.; Zhang, J.M.; Su, Q.; Gao, Z.; Zhu, B. Effects of different tillage methods with organic materials application on main soil properties. Soils Crops 2019, 8, 395–404. [Google Scholar]
- Kuang, E.J.; Xu, M.G.; Colinet, G.; Chi, F.Q.; Su, Q.R.; Zhu, B.G.; Zhang, J.M. Degradation characteristics of maize straw under different buried depths in northeast black soil and their effects on soil carbon and nitrogen. Int. J. Agric. Biol. 2020, 24, 77–84. [Google Scholar]
- Tian, P. Effect of Returning Methods on Maize Straw Decomposition, Soil Physicochemical and Biological Properties. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2020. [Google Scholar]
- Qin, Y.; Li, L.N.; Wu, L.F. Dynamics and Interrelationship of CO2 Emissions and Dissolved Organic Carbon in Soils with Crop Residue Retention Under Different Tillage Practices. J. Agro-Environ. Sci. 2014, 33, 1442–1449. [Google Scholar]
- Lin, B.; Tao, S. Determination of sorption coefficient of water-soluble organic matter in sediment. Sci. Geogr. Sin. 1996, 16, 164–169. [Google Scholar]
- Li, B.B.; Wu, L.F. Concentration and components of dissolved organic carbon in soil profiles after crop residues were incorporated into the topsoil. J. Agro-Environ. Sci. 2019, 38, 1567–1577. [Google Scholar]
- Shi, K.; Xia, X.; Guan, Q.; Shen, F.Y.; Huang, Q.R.; Li, D.M.; Liu, M.Q.; Li, H.X.; Hu, F.; Jiao, J.G. Changes of dissolved organic carbon in paddy soils with different levels of carbon amended with exogenous organic matter based on fluorescence spectrum analysis. J. Soil. Water Conserv. 2016, 30, 227–233. [Google Scholar]
- Li, Y.M.; Wang, G.L.; Li, C.Y.; Liu, Z.Y.; Meng, X.H.; Shao, G.Z.; Hu, Y.H. Effects of straw returning on soil WSOC fluorescence characteristics with different tillage methods. Spectrosc. Spectr. Anal. 2020, 4, 1232–1237. [Google Scholar]
- Fan, C.H.; Zhang, Y.C.; He, L.; Wang, J.H. Effect of straw in corporation on three-dimensional fluorescence spectrum of dissolved organic matter in arid loess. Spectrosc. Spectr. Anal. 2013, 7, 1820–1823. [Google Scholar]
- Dong, S.S.; Dou, S. Effect of different ways of corn stover application to soil on composition and structural characteristics of organic carbon in black soil. J. Agro-Environ. Sci. 2017, 36, 322–328. [Google Scholar]
- Praise, S.; Ito, H. Dissolved organic matter characteristics along sabo dammed streams based on ultraviolet visible and fluorescence spectral properties. Environ. Monit. Assess. 2018, 190, 146. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.H.; Zhou, Z.; Hu, D.L.; Wei, H.J.; Li, J.; Dou, W.X.; Ge, H.H. Spectral characteristics analysis of water-soluble organic matter in sludge of sewage treatment plant. Environ. Sci. 2016, 37, 1460–1466. [Google Scholar]
- Wang, J.; Wu, F.C.; Wang, L.Y.; Liao, H.Q.; Li, W. Characterization of dissolved organic matter in surface water by three-dimensional fluorescence spectroscopy and high-performance volumetric exclusion chromatography. Environ. Sci. 2008, 29, 3027–3034. [Google Scholar]
- Zhu, X.F.; Zhang, C.Y.; Hao, Y.J. Effects of corn stover mulch quantity on mid-infrared spectroscopy of soil organic carbon in a no-tillage agricultural ecosystem. Chin. J. Appl. Ecol. 2021, 32, 2685–2692. [Google Scholar]
- Li, S.D.; Jiang, Q.L.; Li, Y.; Wu, Y.L.; Jiang, J.W.; Huang, T.; Yang, H.; Huang, C.C. Spectroscopic characteristics and sources of dissolved organic matter from soils around Dianchi Lake, Kunming. Spectrosc. Spectr. Anal. 2017, 37, 1448–1454. [Google Scholar]
- Li, Y.; Wei, D.; Wang, W.; Jing, L.; Ding, J.L.; Cai, S.S.; Hu, Y.; Bai, Y. Fluorescence spectroscopy characteristics of dissolved organic matter analysis of straw-cow dung fermentation in different proportion. Spectrosc. Spectr. Anal. 2021, 41, 2846–2852. [Google Scholar]
- Miu, C.H.; Lv, Y.Z.; Yu, Y.; Zhao, K. Study on adsorption behavior of dissolved organic matter on to soil with spectroscopic method. Spectrosc. Spectr. Anal. 2021, 40, 3832–3838. [Google Scholar]
- Gao, J.C.; Li, Q.; Zhu, P.; Zhang, X.Z.; Peng, C.; Jiao, Y.F.; Gao, H.J.; Wu, J.N.; Xu, L.Y. Effect of organic substitution chemical fertilizer on color and humic substances of black soil. J. Soil. Water Conserv. 2023, 37, 313–318. [Google Scholar]
- Lu, R.K. Analytic Technique of Soil Agricultural Chemistry; China Agriculture Science and Technique Press: Beijing, China, 2000. [Google Scholar]
- Li, T.K.; Kou, C.L.; Lv, J.L.; Zhang, X.L.; Yang, X.L. Effects of extraction conditions on the test results of soil dissolved organic carbon. Ecol. Environ. Sci. 2017, 26, 1878–1883. [Google Scholar]
- Fellman, J.B.; Hood, E.; Spencer, R.G. Fluorescence spectroscopy opens new windows into dissolved organic ma er dynamics in freshwater ecosystems: A review. Limnol. Ocean. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Ao, J.; Wang, T.; Chang, R. Application of the Three-dimensional Excitation-emission Matrix Fluorescence Spectroscopy in the Analysis Dissolved Organic Ma er Components. Chin. J. Soil. Sci. 2022, 53, 738––746. [Google Scholar]
- Che, Y.J.; Gu, S.Y.; Wang, Z.Y.; Bai, X.Y.; Feng, J.Y.; Zhang, W.J.; Li, Y.H. Analysis of DOC fluorescence spectral structure of black soil in different regions under conservation tillage. Chin. J. Eco-Agric. 2024, 32, 1544–1555. [Google Scholar]
- Ohno, T. Fluorescence Inner-Filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic ma er fluorescence with parallel factor analysis: A tutorial. Limnol. Ocean. 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- He, L.R. Summary of soil water soluble organic carbon research. Shandong Ind. Technol. 2019, 15, 246. [Google Scholar]
- Ni, J.Z.; Xu, J.M.; Xie, Z.M.; Wang, D.J. Study on the content and composition characteristics of soil water-soluble organic carbon under different fertilizer treatments. Acta Pedol. Sin. 2003, 40, 724–730. [Google Scholar]
- Xiong, L.; Yang, Y.S.; Zhu, J.M.; Si, Y.T.; Wan, J.J.; Xie, J.S. Transport characteristics of dissolved organic carbon in different soil horizons in natural Castanopsis carlesii forest. Acta Ecol. Sin. 2015, 35, 5711–5720. [Google Scholar]
- Sui, P.X.; Wang, H.; Ren, Y.; Liu, X.D.; Yuan, Y.; Liu, W.R.; Li, M.S.; Luo, Y.; Zheng, J.Y. Response of black soil organic carbon pool to long-term tillage and its evolution characteristics. Environ. Sci. 2025, 1–16. [Google Scholar]
- Liang, Y.; Cai, H.G.; Yang, L.; Cheng, S.; Zhang, S.M.; Yuan, J.C.; Liu, J.Z.; Liu, S.T.; Ren, J. Effects of maize stovers returning by mulching or deep tillage on soil organic carbon sequestration in Mollisol. Trans. Chin. Soc. Agric. Eng. 2021, 37, 133–140. [Google Scholar]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, G.H.; Li, T.L.; Jiang, L.W.; Wang, J.H.; Song, H.M.; Yuan, M.X.; Yang, L.F.; Wang, H.Y. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the loess plateau. Trans. Chin. Soc. Agric. Eng. 2022, 38, 123–132. [Google Scholar]
- Li, J.; Sheng, H.; Zhou, P.; Zhang, Y.Z. Soil profile distribution of labile organic carbon fractions in three types of hilly woodland soils in eastern Hunan province. Ecol. Environ. Sci. 2013, 22, 1780–1784. [Google Scholar]
- Li, M.T.; Zhao, X.M.; Yan, L.; Zhao, L.P.; Wang, J.H. Three-dimensional fluorescence characteristics of water extractable organic matter in maize growing black soil profile in northeast China. J. Irrig. Drain. 2014, 33, 71–75. [Google Scholar]
- Peng, X.H.; Zhang, B.; Zhao, Q.G. A review on relationship between soil organic carbon pools and soil structure stability. J. Soil. 2008, 41, 618–623. [Google Scholar]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Ohno, T.; Chorover, J.; Omoike, A.; Hunt, J. Molecular weight and humification index as predictors of adsorption for plant and manure derived dissolved organic matter to Goethite. Eur. J. Soil. Sci. 2007, 58, 125–132. [Google Scholar] [CrossRef]
- Chai, X.L.; Liu, G.X.; Zhao, X.; Hao, Y.X.; Zhao, Y.C. Fluorescence excitation-emission matrix combined with regional integration analysis to characterize the composition and transformation of humic and fulvic acids from landfill at different stabilization stages. Waste Manag. 2012, 32, 438–447. [Google Scholar]
- Yu, G.H.; Wu, M.J.; Luo, Y.H.; Yang, X.M.; Ran, W.; Shen, Q.R. Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity. Waste Manag. 2011, 31, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Cai, S.; Li, Y.; Jin, L.; Wang, W.; Li, Y.M.; Bai, Y.; Yu, H. The response of water-soluble organic carbon to organic material applications in black soil. Sci. Agric. Sin. 2020, 53, 1180–1188. [Google Scholar]
- Senesi, N.; Miano, T.M.; Provenzano, M.R.; Brunetti, G. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil. Sci. 1991, 152, 259–271. [Google Scholar] [CrossRef]
- Zhi, G.Z. Research progress and application of three dimensional fluorescence spectra technique in water environment. Sichuan Environ. 2021, 40, 257–261. [Google Scholar]
- Coble, P.G. Marine Optical Biogeochemistry: The chemistry of ocean color. chemical reviews. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef]
- Parlanti, E.; Worz, E.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool of estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar]
- Corvasce, M.; Zsolnay, A.; Orazio, V.D.; Lopez, R.; Miano, T.M. Characterization of water extractable organic matter in a deep soil profile. Chemosphere 2006, 62, 1583–1590. [Google Scholar] [CrossRef]
- Li, J.T.; Zhong, X.L.; Liu, Q.; Zhang, B.; Zhao, Q.G. Effects of long-term application of livestock manures on soil biochemical quality indicators. Soils 2010, 42, 526–535. [Google Scholar]
- Duong, T.T.T.; Baumann, K.; Marschner, P. Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil. Biol. Biochem. 2009, 41, 1475–1482. [Google Scholar] [CrossRef]
- Xie, J.; Dong, A.Q.; Liu, J.; Su, J.P.; Hu, P.; Xu, C.X.; Chen, J.R.; Wu, Q.T. Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium. Environ. Sci. Pollut. Res. 2019, 26, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.D.; Huang, J.P.; Hong, H.S.; Xu, J.; Deng, X. Parallel factor analysis and tracer characteristics of 3d fluorescence spectra of dissolved organic matter in river mouth area. Environ. Sci. 2010, 31, 1419–1427. [Google Scholar]
- Wang, S.Y. Studies on Microbial Metabolites and Biodiversity Under Poor Nutrition Conditions. Master Thesis, Tianjin University, Tianjin, China, 2009. [Google Scholar]
- Reader, H.E.; Stedmon, C.A.; Nielsen, N.J.; Kritzberg, E.S. Mass and UV-Visible Spectral Fingerprints of Dissolved Organic 576 Matter: Sources and Reactivity. Front. Mar. Sci. 2015, 2, 88. [Google Scholar] [CrossRef]
- Li, M.T.; Wang, J.H.; Zhao, L.P. Composition and structural characteristics of water-soluble organic compounds in soil of 578 maize high yield field. J. Northeast. For. Univ. 2013, 41, 88–92. [Google Scholar]
- Meng, Q.Y.; Zou, H.T.; Han, Y.Y.; Zhang, C.F. Effects of straw application rates on soil aggregates, soil organic carbon content and 584 maize yield. Trans. CSAE 2019, 35, 119–125. [Google Scholar]
- Nielsen, P. Coastal and Estuarine Processes; World Scientific Publishing Company: Singapore, 2009. [Google Scholar]
- Su, Y.; Yu, M.; Xi, H.; Lv, J.L.; Ma, Z.H.; Kou, C.L.; Shen, A. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci. Rep. 2020, 10, 6360. [Google Scholar] [CrossRef]
- Naser, H.M.; Nagata, O.; Tamura, S.; Hatano, R. Methane emissions from five paddy fields with different amounts of 589 rice straw application in central Hokkaido, Japan. Soil. Sci. Plant Nutr. 2007, 53, 95–101. [Google Scholar] [CrossRef]




| SOC g·kg−1 | Total Nitrogen (TN) g·kg−1 | Total Phosphorus (TP) g·kg−1 | Total Potassium (TK)g·kg−1 | pH (H2O) | Available Nitrogen (AN) mg·kg−1 | Available Phosphorus (AP) mg·kg−1 | Available Potassium (AK) mg·kg−1 |
|---|---|---|---|---|---|---|---|
| 18.53 | 2.40 | 2.0 | 21.34 | 6.62 | 103.1 | 70.8 | 167.7 |
| Fluorescence Region | Types of Substances | Ex (nm) | Ex (nm) |
|---|---|---|---|
| I | Tyrosine-like protein | 200–250 | 250–330 |
| II | Tryptophan-like protein | 200–250 | 330–380 |
| III | Fulvic acid-like | 200–250 | 380–550 |
| IV | Soluble microbial metabolites | 250–490 | 250–380 |
| V | Humic-like | 250–490 | 380–550 |
| Treatments | I Tyrosine-Like Protein | II Tryptophan-Like Protein | III Fulvic Acid-Like | IV Soluble Microbial Metabolites | V Humic Acid-Like |
|---|---|---|---|---|---|
| S-1 | 0.84 ± 0.12 b | 7.46 ± 1.69 a | 19.53 ± 1.37 a | 17.86 ± 4.94 a | 54.30 ± 5.16 a |
| S-2 | 0.94 ± 0.07 ab | 6.50 ± 0.65 a | 20.60 ± 0.80 a | 14.68 ± 1.75 a | 57.28 ± 1.66 a |
| S-3 | 1.02 ± 0.12 ab | 6.96 ± 0.20 a | 20.73 ± 0.81 a | 14.93 ± 1.44 a | 56.36 ± 0.73 a |
| NS | 1.06 ± 0.03 a | 6.58 ± 0.44 a | 19.44 ± 0.24 a | 16.09 ± 1.35 a | 56.83 ± 1.56 a |
| Treatment | HA (×103) | SM (×103) | Total Intensity (×103) | Relative Abundance (%) | |
|---|---|---|---|---|---|
| HA | SM | ||||
| S-1 | 1.88 ± 0.03 a | 1.92 ± 0.06 a | 3.8 | 49.53 | 50.47 |
| S-2 | 1.73 ± 0.06 ab | 1.72 ± 0.37 a | 3.4 | 50.44 | 49.56 |
| S-3 | 1.59 ± 0.10 bc | 1.63 ± 0.34 a | 3.2 | 49.64 | 50.36 |
| NS | 1.49 ± 0.10 c | 1.66 ± 0.21 a | 3.1 | 47.41 | 52.59 |
| Treatment | FI | BIX | HIX |
|---|---|---|---|
| S-1 | 1.65 ± 0.01 b | 0.90 ± 0.10 a | 0.64 ± 0.05 b |
| S-2 | 1.59 ± 0.02 c | 0.93 ± 0.10 a | 0.74 ± 0.03 a |
| S-3 | 1.61 ± 0.01 c | 0.95 ± 0.07 a | 0.72 ± 0.02 ab |
| NS | 1.69 ± 0.02 a | 0.95 ± 0.07 a | 0.71 ± 0.02 ab |
| Total Amount of Straw Input in Five Years /kg·ha−1 | Total Amount of Straw Carbon Input in Five Years/kg·ha−1 | Carbon Sequestration Rate /% | Carbon Sequestration Efficiency | |
|---|---|---|---|---|
| S-1 | 71,102 ± 1083 | 1513.2 ± 23.1 | 89.35 | 0.30 |
| S-2 | 43,960 ± 816 | 920.8 ± 17.1 | 178.35 | 0.58 |
| S-3 | 28,896 ± 392 | 546.7 ± 7.4 | 12.73 | 0.05 |
| NS | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kuang, E.; Zhang, J.; Colinet, G.; Zhu, P.; Zhu, B.; Sun, L.; Hao, X.; Zhu, Y.; Yuan, J.; Liu, L.; et al. Effects of Maize Straw Incorporation on Soil Water-Soluble Organic Carbon Fluorescence Characteristics. Plants 2026, 15, 4. https://doi.org/10.3390/plants15010004
Kuang E, Zhang J, Colinet G, Zhu P, Zhu B, Sun L, Hao X, Zhu Y, Yuan J, Liu L, et al. Effects of Maize Straw Incorporation on Soil Water-Soluble Organic Carbon Fluorescence Characteristics. Plants. 2026; 15(1):4. https://doi.org/10.3390/plants15010004
Chicago/Turabian StyleKuang, Enjun, Jiuming Zhang, Gilles Colinet, Ping Zhu, Baoguo Zhu, Lei Sun, Xiaoyu Hao, Yingxue Zhu, Jiahui Yuan, Lin Liu, and et al. 2026. "Effects of Maize Straw Incorporation on Soil Water-Soluble Organic Carbon Fluorescence Characteristics" Plants 15, no. 1: 4. https://doi.org/10.3390/plants15010004
APA StyleKuang, E., Zhang, J., Colinet, G., Zhu, P., Zhu, B., Sun, L., Hao, X., Zhu, Y., Yuan, J., Liu, L., & Ji, J. (2026). Effects of Maize Straw Incorporation on Soil Water-Soluble Organic Carbon Fluorescence Characteristics. Plants, 15(1), 4. https://doi.org/10.3390/plants15010004

