Seasonal Variation in Root Morphological Traits and Non-Structural Carbohydrates of Pinus yunnanensis Seedlings Across Different Seedling Orders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Zone
2.2. Source of Sapling Materials
2.3. Field Deployment and Seedling Grading
2.4. Analysis and Measurement
2.4.1. Growth Measurement
2.4.2. Individual Biomass Measurement
2.4.3. Soil Chemical Characteristics Measurement
2.4.4. Root System Measurement
2.4.5. Measurement of Soluble Sugar and Starch Content
2.4.6. Measurements of Root Morphological Traits
2.4.7. Statistical Analysis
3. Results
3.1. Soil Chemical Characteristics of Different Seedling Orders
3.2. Allocation of Biomass to Different Organs Among Different Seedling Orders
3.3. Root Morphological Traits Observed Among Different Seedling Orders
3.4. Seasonal Variation of Root Morphological Traits Among Different Seedling Orders
3.5. Allocation of NSC Concentration to Different Organs of Seedlings Among Three Orders
3.6. Seasonal Variation of NSC Concentration in Different Organs Among Different Seedling Orders
3.7. Relationship Among the Individual Biomass, Root Morphology, and NSC Concentration of Three Seedling Orders
4. Discussion
4.1. Relationship Between Biomass Allocation and Root Morphology of Different Seedling Orders
4.2. Effects of Different Seedling Orders on NSC
4.3. Linking the Root Morphological Traits to the NSC Level
4.4. Seasonal Variation Patterns of NSC Caused by Seasonal Variation of Root Morphological Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Felton, A.J.; Slette, I.J.; Smith, M.D.; Knapp, A.K. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. Glob. Change Biol. 2020, 26, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, M.; Li, G.; Wang, M.; Li, Z.; De Boeck, H.J. Changes of Aboveground and Belowground Biomass Allocation in Four Dominant Grassland Species Across a Precipitation Gradient. Front. Plant Sci. 2021, 12, 650802. [Google Scholar] [CrossRef]
- Poorter, H.; Nagel, O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. Funct. Plant Biol. 2000, 27, 1191. [Google Scholar] [CrossRef]
- Binkley, D.; Stape, J.L.; Ryan, M.G. Thinking about efficiency of resource use in forests. For. Ecol. Manag. 2004, 193, 5–16. [Google Scholar] [CrossRef]
- Niklas, K.J. Modelling below-and above-ground biomass for non-woody and woody plants. Ann. Bot. 2005, 95, 315–321. [Google Scholar] [CrossRef]
- Hui, D.; Jackson, R.B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytol. 2006, 169, 85–93. [Google Scholar] [CrossRef]
- Bloom, A.J.; Chapin, F.S., III; Mooney, H.A. Resource limitation in plants-an economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Gedroc, J.J.; McConnaughay, K.; Coleman, J.S. Plasticity in root/shoot partitioning: Optimal, ontogenetic, or both? Funct. Ecol. 1996, 10, 44–50. [Google Scholar] [CrossRef]
- Mao, W.; Allington, G.; Li, Y.; Zhang, T.-H.; Zhao, X.-Y.; Wang, S.-K. Life history strategy influences biomass allocation in response to limiting nutrients and water in an arid system. Pol. J. Ecol. 2012, 60, 545–557. [Google Scholar]
- Villar, R.; Veneklaas, E.J.; Jordano, P.; Lambers, H. Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. New Phytol. 1998, 140, 425–437. [Google Scholar] [CrossRef]
- Enquist, B.J.; Niklas, K.J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Chen, X.; Tian, X.; Wang, X.; Luo, G. Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE 2014, 9, e93566. [Google Scholar] [CrossRef]
- Baker, T.T., III; Conner, W.H.; Lockaby, B.G.; Stanturf, J.A.; Burke, M.K. Fine root productivity and dynamics on a forested floodplain in South Carolina. Soil Sci. Soc. Am. J. 2001, 65, 545–556. [Google Scholar] [CrossRef]
- Retzlaff, W.A.; Handest, J.A.; O’Malley, D.M.; McKeand, S.E.; Topa, M.A. Whole-tree biomass and carbon allocation of juvenile trees of loblolly pine (Pinus taeda): Influence of genetics and fertilization. Can. J. For. Res. 2001, 31, 960–970. [Google Scholar] [CrossRef]
- Shi, S.; Shi, T.; Zhou, S.; Gao, S.; Zhao, Y.; Shi, G. Non-structural carbohydrates accumulation in seedlings improved flowering quality of tree peony under forcing culture conditions, with roots playing a crucial role. Plants 2024, 13, 2837. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Carbone, M.S.; Keenan, T.F.; Czimczik, C.I.; Hollinger, D.Y.; Murakami, P.; Schaberg, P.G.; Xu, X. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 2013, 197, 850–861. [Google Scholar] [CrossRef]
- Wang, C.; Ma, X.; Li, Q.; Hu, Y.; Yang, J.; Song, Z. Effects of NSC in different organs and at different growth stages on the yield of oil peony Fengdan with different ages. Front. Plant Sci. 2023, 14, 1108668. [Google Scholar] [CrossRef]
- Ziemer, R.R. Translocation of 14C in ponderosa pine seedlings. Can. J. Bot. 1971, 49, 167–171. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Field, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Adams, H.D.; Germino, M.J.; Breshears, D.D.; Barron-Gafford, G.A.; Guardiola-Claramonte, M.; Zou, C.B.; Huxman, T.E. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol. 2013, 197, 1142–1151. [Google Scholar] [CrossRef]
- Quentin, A.G.; Pinkard, E.A.; Ryan, M.G.; Tissue, D.T.; Baggett, L.S.; Adams, H.D.; Millard, P.; Marchand, J.; Landhausser, S.M.; Lacointe, A.; et al. Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol. 2015, 35, 1146–1165. [Google Scholar] [CrossRef]
- Ji, L.; Liu, Y.; Wang, J.; Lu, Z.; Zhang, L.; Yang, Y. Differential variation in non-structural carbohydrates in root branch orders of Fraxinus mandshurica Rupr. seedlings across different drought intensities and soil substrates. Front. Plant Sci. 2021, 12, 692715. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, W.; Li, R.; Xu, M.; Wang, S. Different responses of non-structural carbohydrates in above-ground tissues/organs and root to extreme drought and re-watering in Chinese fir (Cunninghamia lanceolata) saplings. Trees 2016, 30, 1863–1871. [Google Scholar] [CrossRef]
- Blumstein, M.; Gersony, J.; Martínez-Vilalta, J.; Sala, A. Global variation in nonstructural carbohydrate stores in response to climate. Glob. Change Biol. 2023, 29, 1854–1869. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Iversen, C.M.; McCormack, M.L.; Powell, A.S.; Blackwood, C.B.; Freschet, G.T.; Kattge, J.; Roumet, C.; Stover, D.B.; Soudzilovskaia, N.A.; Valverde-Barrantes, O.J.; et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytol. 2017, 215, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Ma, C.; Zhang, Q.; Li, L.; Chen, X.; Zeng, H.; Guo, D. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 2014, 203, 863–872. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Raich, J.W. Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 1992, 73, 1139–1147. [Google Scholar] [CrossRef]
- Jackson, R.B.; Mooney, H.A.; Schulze, E.D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA 1997, 94, 7362–7366. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Laskowski, M.J.; Burton, A.J.; Lessard, V.C.; Zak, D.R. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol. 1998, 18, 665–670. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Tjoelker, M.G.; Vanderklein, D.; Buschena, C. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct. Ecol. 1998, 12, 395–405. [Google Scholar] [CrossRef]
- Weigelt, A.; Mommer, L.; Andraczek, K.; Iversen, C.M.; Bergmann, J.; Bruelheide, H.; Fan, Y.; Freschet, G.T.; Guerrero Ramirez, N.R.; Kattge, J. An integrated framework of plant form and function: The belowground perspective. New Phytol. 2021, 232, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Weemstra, M.; Mommer, L.; Visser, E.J.; van Rijven, J.; Kuyper, T.W.; Mohren, G.M.J.; Sterck, F.J. Towards a multidimensional root trait framework: A tree root review. New Phytol. 2016, 211, 1159–1169. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; De Deyn, G.B.; Johnson, D.; Klimešová, J. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef] [PubMed]
- Lõhmus, K.; Truu, M.; Truu, J.; Ostonen, I.; Kaar, E.; Vares, A.; Uri, V.; Alama, S.; Kanal, A. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas. Plant Soil 2006, 283, 1–10. [Google Scholar] [CrossRef]
- Ostonen, I.; Helmisaari, H.S.; Borken, W.; Tedersoo, L.; Kukumägi, M.; Bahram, M.; Lindroos, A.J.; Nöjd, P.; Uri, V.; Merilä, P. Fine root foraging strategies in N orway spruce forests across a European climate gradient. Glob. Change Biol. 2011, 17, 3620–3632. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; DeForest, J.L.; Burton, A.J.; Allen, M.F.; Ruess, R.W.; Hendrick, R.L. Fine root architecture of nine North American trees. Ecol. Monogr. 2002, 72, 293–309. [Google Scholar] [CrossRef]
- Ostonen, I.; Truu, M.; Helmisaari, H.S.; Lukac, M.; Borken, W.; Vanguelova, E.; Godbold, D.L.; Lõhmus, K.; Zang, U.; Tedersoo, L. Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol. 2017, 215, 977–991. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Zhu, B.; Koide, R.T.; Eissenstat, D.M.; Guo, D. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 2015, 208, 125–136. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Wells, C.E.; Yanai, R.D.; Whitbeck, J.L. Building roots in a changing environment: Implications for root longevity. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef]
- Ostonen, I.; Lõhmus, K.; Helmisaari, H.; Truu, J.; Meel, S. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol. 2007, 27, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Hartmann, H.; Ziegler, W.; Trumbore, S. Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct. Ecol. 2013, 27, 413–427. [Google Scholar] [CrossRef]
- Mitchell, P.J.; O’Grady, A.P.; Tissue, D.T.; White, D.A.; Ottenschlaeger, M.L.; Pinkard, E.A. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol. 2013, 197, 862–872. [Google Scholar] [CrossRef]
- Piper, F.I.; Fajardo, A. Carbon dynamics of Acer pseudoplatanus seedlings under drought and complete darkness. Tree Physiol. 2016, 36, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Körner, C.; Asshoff, R.; Bignucolo, O.; Hättenschwiler, S.; Keel, S.G.; Peláez-Riedl, S.; Pepin, S.; Siegwolf, R.T.W.; Zotz, G. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 2005, 309, 1360–1362. [Google Scholar] [CrossRef]
- Wiley, E.; Hoch, G.; Landhäusser, S.M. Dying piece by piece: Carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. J. Exp. Bot. 2017, 68, 5221–5232. [Google Scholar] [CrossRef]
- Nzunda, E.F.; Griffiths, M.E.; Lawes, M.J. Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Funct. Ecol. 2008, 22, 577–582. [Google Scholar] [CrossRef]
- Dietze, M.C.; Clark, J.S. Changing the gap dynamics paradigm: Vegetative regeneration control on forest response to disturbance. Ecol. Monogr. 2008, 78, 331–347. [Google Scholar] [CrossRef]
- Dietze, M.C.; Sala, A.; Carbone, M.S.; Czimczik, C.I.; Mantooth, J.A.; Richardson, A.D.; Vargas, R. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol. 2014, 65, 667–687. [Google Scholar] [CrossRef]
- Bell, T.L.; Ojeda, F. Underground starch storage in Erica species of the Cape Floristic Region–differences between seeders and resprouters. New Phytol. 1999, 144, 143–152. [Google Scholar] [CrossRef]
- Verdaguer, D.; Ojeda, F. Root starch storage and allocation patterns in seeder and resprouter seedlings of two Cape Erica (Ericaceae) species. Am. J. Bot. 2002, 89, 1189–1196. [Google Scholar] [CrossRef]
- Ryser, P. The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses. Funct. Ecol. 1996, 10, 717–723. [Google Scholar] [CrossRef]
- Withington, J.M.; Reich, P.B.; Oleksyn, J.; Eissenstat, D.M. Root structure and lifespan are largely independent of leaf structure and lifespan in a common garden comparison of eleven tree species. Ecol. Monogr. 2006, 76. [Google Scholar]
- Mei, L.; Xiong, Y.; Gu, J.; Wang, Z.; Guo, D. Whole-tree dynamics of non-structural carbohydrate and nitrogen pools across different seasons and in response to girdling in two temperate trees. Oecologia 2015, 177, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Attaullah, K.; Wang, J.; Yu, D.; Yang, Y.; Yang, L.; Lu, Z. Root traits determine variation in nonstructural carbohydrates (NSCs) under different drought intensities and soil substrates in three temperate tree species. Forests 2020, 11, 415. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Announcement on the Nomination of Yunnan Provincial Science and Technology Awards for 2023; National Forestry and Grassland Administration: Beijing, China, 2023. [Google Scholar]
- Liu, Y.; Wu, J.; Wu, D.; Li, S.; Wang, L. Seasonal variation in δ13C of Pinus. yunnanensis and Pinus. armandii at different stand ages. Sci. Rep. 2023, 13, 7938. [Google Scholar] [CrossRef]
- Marod, D.; Kutintara, U.; Tanaka, H.; Nakashizuka, T. Effects of drought and fire on seedling survival and growth under contrasting light conditions in a seasonal tropical forest. J. Veg. Sci. 2004, 15, 691–700. [Google Scholar] [CrossRef]
- Yukun, F.; Qinying, L.; Linlin, H.; Zengquan, L. Research progress of seed germination characteristics and seedling drought resistance of Pinus yunnanensis Franch. Seed Sci. Res. 2018, 37, 47–51. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Li, L.; Sun, A.; Wang, W.; Su, N.; Yu, G.; Zhang, W.; Bao, X.; Zheng, S.; et al. Effects of watering control on physiological and biochemical traits of Pinus yunnanensis seedlings. J. Northwest For. Univ. 2016, 31, 78–84. [Google Scholar] [CrossRef]
- Aguadé, D.; Poyatos, R.; Rosas, T.; Martínez-Vilalta, J. Comparative drought responses of Quercus ilex L. and Pinus sylvestris L. in a montane forest undergoing a vegetation shift. Forests 2015, 6, 2505–2529. [Google Scholar] [CrossRef]
- Lin, T.; Zheng, H.; Huang, Z.; Wang, J.; Zhu, J. Non-structural carbohydrate dynamics in leaves and branches of Pinus massoniana (Lamb.) following 3-year rainfall exclusion. Forests 2018, 9, 315. [Google Scholar] [CrossRef]
- Cai, N.; Tang, J.; Che, F.; Chen, S.; Wang, J.; Xu, Y.; Li, G. Effects of stumping height on carbon, nitrogen, and phosphorus stoichiometry in different organs of Pinus yunnanensis seedlings. Chin. J. Ecol. 2022, 41, 849–857. [Google Scholar] [CrossRef]
- Cai, N.; Tang, J.; Che, F.; Chen, S.; Wang, J.; Xu, Y.; Li, G. Effects of stumping treatments on C, N, and P stoichiometry in different organs of Pinus yunnanensis Franch. J. Northeast For. Univ. 2022, 50, 35–42. [Google Scholar] [CrossRef]
- Cai, N.; Hu, Z.; He, B.; Cheng, S.; Chen, L.; Tang, J.; Chen, S.; Xu, Y. Variation in the allometric relationship between the stoichiometric ratio of nitrogen, phosphorus, potassium and plant size for Pinus yunnanensis seedlings. Chin. J. Ecol. 2023, 43, 1300–1306. [Google Scholar] [CrossRef]
- Liang, S.; Tan, T.; Wu, D.; Li, C.; Jing, H.; Wu, J. Seasonal variations in carbon, nitrogen, and phosphorus of Pinus yunnanenis at different stand ages. Front. Plant Sci. 2023, 14, 1107961. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, M.; He, B.; Wang, Q.; Yu-lan, X.; Wei, L.; Nian-hui, C. Response of allometric relationship among N, P and K contents of Pinus yunnanensis seedlings to combined to nitrogen and phosphorus addition. J. Northeast For. Univ. 2023, 39, 26–34. [Google Scholar]
- Li, Y.; Chen, L.; Tang, J.; Chen, S.; Yulan, X.; Nianhui, C. Effects of fertilization on stoichiometric ratio of nitrogen, phosphorus and potassium in Pinus yunnanensis seedling and soil. J. Northwest A F Univ. (Nat. Sci. Ed.) 2024, 52, 40. [Google Scholar]
- Liu, Y.; Xiao, J.; Sun, J.; Zhao, Z.; Deng, X.; Wu, J.; Zhang, D.; Bao, Y. Seasonal variation in C:N:P stoichiometry, nonstructural carbohydrates, and carbon isotopes of two coniferous pioneer tree species in subtropical China. Front. Plant Sci. 2023, 14, 1225436. [Google Scholar] [CrossRef]
- LY/T 1950-2011; Fast-Growing and High-Yielding Plantation of Pinus yunnanensis. National Forestry and Grassland Administration: Beijing, China, 2011.
- Zhang, Z. Effect of Biochar and Reduced Fertilizer on Soil Physichemical Properties and Nutrient Utilization in Continuous Cropping. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2020. [Google Scholar]
- Buysse, J.; Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 1993, 44, 1627–1629. [Google Scholar] [CrossRef]
- Xie, H.; Yu, M.; Cheng, X. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species. Plant Physiol. Biochem. 2018, 124, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Wright, S.J.; Lasso, E.; Kitajima, K.; Pearcy, R.W. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology 2000, 81, 1925–1936. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C.; Chen, J.; Shi, Z.; Xiao, W.; Zhao, G.; Yuan, X.; Wu, J. Leaf and fine root functional traits response of 10-year-old Cunninghamia lanceolate plantations to soil phosphorus addition. For. Res. 2022, 35, 23–32. (In Chinese) [Google Scholar] [CrossRef]
- Song, S.; Leng, H.; Feng, S.; Meng, C.; Luo, B.; Zhao, L.; Zhang, C. Biomass allocation pattern of urban shrubs in the Yangtze River Delta region, China—A field observation of 13 shrub species. Urban For. Urban Green. 2021, 63, 127228. [Google Scholar] [CrossRef]
- Umaña, M.N.; Cao, M.; Lin, L.; Swenson, N.G.; Zhang, C. Trade-offs in above- and below-ground biomass allocation influencing seedling growth in a tropical forest. J. Ecol. 2021, 109, 1184–1193. [Google Scholar] [CrossRef]
- He, W.; Wang, Y.; Wang, X.; Wen, X.; Li, T.; Ye, M.; Chen, G.; Zhao, K.; Hou, G.; Li, X.; et al. Stand structure adjustment influences the biomass allocation in naturally generated Pinus massoniana seedlings through environmental factors. Front. Plant Sci. 2022, 13, 997795. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C. Sampling roots to capture plant and soil functions. Funct. Ecol. 2017, 31, 1506–1518. [Google Scholar] [CrossRef]
- Dhiman, I.; Bilheux, H.; DeCarlo, K.; Painter, S.L.; Santodonato, K.; Warren, J.M. Quantifying root water extraction after drought recovery using sub-mm in situ empirical data. Plant Soil 2018, 424, 73–89. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, D.; Xu, X.; Lu, M.; Bardgett, R.D.; Eissenstat, D.M.; McCormack, M.L.; Hedin, L.O. Evolutionary history resolves global organization of root functional traits. Nature 2018, 555, 94–97. [Google Scholar] [CrossRef]
- Peng, L.L.; Jiang, W.B.; Han, J. Effects of source-sink relationship change on yield and quality in fruit tree. Nonwood For. Res. 2012, 30, 134–140. [Google Scholar]
- Kozlowski, T.T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 1992, 58, 107–222. [Google Scholar] [CrossRef]
- Sala, A.; Woodruff, D.R.; Meinzer, F.C. Carbon dynamics in trees: Feast or famine? Tree Physiol. 2012, 32, 764–775. [Google Scholar] [CrossRef]
- Liu, Y.; Li, P.; Xiao, L.; Wang, W.; Yu, K.; Shi, P. Heterogeneity in short-term allocation of carbon to roots of Pinus tabuliformis seedlings and root respiration under drought stress. Plant Soil 2020, 452, 359–378. [Google Scholar] [CrossRef]
- Xu, X.; Kuzyakov, Y.; Wanek, W.; Richter, A. Root-derived respiration and non-structural carbon of rice seedlings. Eur. J. Soil Biol. 2008, 44, 22–29. [Google Scholar] [CrossRef]
- Guo, D.L.; Mitchell, R.J.; Hendricks, J.J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia 2004, 140, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Briones, E.; Rodríguez-Macías, R.; Salcedo-Pérez, E.; Martínez-Gallardo, N.; Tiessen, A.; Molina-Torres, J.; Délano-Frier, J.P.; Zañudo-Hernández, J. Seasonal variation in non-structural carbohydrates, sucrolytic activity and secondary metabolites in deciduous and perennial Diospyros species sampled in Western Mexico. PLoS ONE 2017, 12, e0187235. [Google Scholar] [CrossRef]
- Bazot, S.; Barthes, L.; Blanot, D.; Fresneau, C. Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages. Trees 2013, 27, 1023–1034. [Google Scholar] [CrossRef]
- Scartazza, A.; Moscatello, S.; Matteucci, G.; Battistelli, A.; Brugnoli, E. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Tree Physiol. 2013, 33, 730–742. [Google Scholar] [CrossRef]
- Canadell, J.; López-Soria, L. Lignotuber reserves support regrowth following clipping of two Mediterranean shrubs. Funct. Ecol. 1998, 12, 31–38. [Google Scholar] [CrossRef]
- Wildy, D.T.; Pate, J.S. Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus Kochii subsp. plenissima, to contrasting decapitation regimes. Ann. Bot. 2002, 90, 185–197. [Google Scholar] [CrossRef]
- Tang, Y.; Schiestl-Aalto, P.; Saurer, M.; Sahlstedt, E.; Kulmala, L.; Kolari, P.; Ryhti, K.; Salmon, Y.; Jyske, T.; Ding, Y.; et al. Tree organ growth and carbon allocation dynamics impact the magnitude and δ13C signal of stem and soil CO2 fluxes. Tree Physiol. 2022, 42, 2404–2418. [Google Scholar] [CrossRef] [PubMed]
Seedling Order | C (g/kg) | N (g/kg) | P (g/kg) | K (g/kg) |
---|---|---|---|---|
I | 1.683 ± 0.240 a | 2.725 ± 0.099 a | 2.079 ± 0.265 a | 8.050 ± 0.029 b |
II | 1.202 ± 0.524 a | 1.963 ± 0.303 b | 1.832 ± 0.242 a | 8.067 ± 0.060 b |
III | 0.842 ± 0.318 a | 3.037 ± 0.105 a | 1.850 ± 0.243 a | 8.800 ± 0.100 a |
Source of Variation | df | p Values (<0.05) | ||||
---|---|---|---|---|---|---|
Biomass | SRL | SRA | RTD | AD | ||
Time intervals | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Seedling orders | 2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
T × S | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 |
Source of Variation | df | p Values (<0.05) | ||
---|---|---|---|---|
SS | ST | NSC | ||
Time intervals | 3 | 0.00 | 0.00 | 0.00 |
Seedling orders | 2 | 0.02 | 0.00 | 0.00 |
T × S | 6 | 0.00 | 0.01 | 0.70 |
Seedling Orders | Time Intervals | SS-ST Ratio in Roots | SS-ST Ratio in Stems |
---|---|---|---|
First-order | 03/23 | 0.220 | 1.775 |
06/23 | 1.726 | 1.349 | |
09/23 | 1.838 | 1.425 | |
12/23 | 0.370 | 0.861 | |
Second-order | 03/23 | 0.250 | 1.809 |
06/23 | 0.713 | 2.280 | |
09/23 | 1.178 | 1.340 | |
12/23 | 0.576 | 0.718 | |
Third-order | 03/23 | 0.305 | 1.999 |
06/23 | 0.856 | 1.196 | |
09/23 | 2.629 | 1.296 | |
12/23 | 0.511 | 2.427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Lu, Z.; Li, S.; Liao, J.; Zhou, C.; Chen, L.; Chen, S.; Cai, N.; Wang, D.; Xu, Y. Seasonal Variation in Root Morphological Traits and Non-Structural Carbohydrates of Pinus yunnanensis Seedlings Across Different Seedling Orders. Plants 2025, 14, 825. https://doi.org/10.3390/plants14050825
Pan Z, Lu Z, Li S, Liao J, Zhou C, Chen L, Chen S, Cai N, Wang D, Xu Y. Seasonal Variation in Root Morphological Traits and Non-Structural Carbohydrates of Pinus yunnanensis Seedlings Across Different Seedling Orders. Plants. 2025; 14(5):825. https://doi.org/10.3390/plants14050825
Chicago/Turabian StylePan, Zixing, Zhuangyue Lu, Sunling Li, Jianzhen Liao, Chiyu Zhou, Lin Chen, Shi Chen, Nianhui Cai, Dexin Wang, and Yulan Xu. 2025. "Seasonal Variation in Root Morphological Traits and Non-Structural Carbohydrates of Pinus yunnanensis Seedlings Across Different Seedling Orders" Plants 14, no. 5: 825. https://doi.org/10.3390/plants14050825
APA StylePan, Z., Lu, Z., Li, S., Liao, J., Zhou, C., Chen, L., Chen, S., Cai, N., Wang, D., & Xu, Y. (2025). Seasonal Variation in Root Morphological Traits and Non-Structural Carbohydrates of Pinus yunnanensis Seedlings Across Different Seedling Orders. Plants, 14(5), 825. https://doi.org/10.3390/plants14050825