Plasma-Activated Water Produced by a Moderately High Energy-Efficient 1-Liter Reactor: Effects on Germination and Growth of Tomato and Bell Pepper Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasma-Activated Water Reactor
2.2. Physicochemical Properties of Plasma-Activated Water
2.3. Plasma-Activated Water Treatments
2.4. Germination Test
2.5. Seeds Water Absorption
2.6. Plant Growth
2.7. Biometric Parameters of the Plants
2.8. Oxidative Stress of the Plants
2.8.1. Lipid Peroxidation
2.8.2. Antioxidant Enzymes
2.9. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Plasma-Activated Water
3.2. Seeds Germination and Water Absorption
3.3. Plant Growth
3.4. Oxidative Stress of the Plants
4. Discussion
4.1. Physicochemical Properties of Plasma-Activated Water
4.2. Seed Germination, Plant Growth, and the Oxidative Stress of the Plants
5. Conclusions
- The long-lived RONS concentrations obtained in PAW after only 15 min of activation were significantly high: 20 mg/L of H2O2, 147.6 mg/L of NO2−, and 182.3 mg/L of NO3−. These RONS concentrations are significantly higher than those reported in previous studies on the effects of PAW on tomato and pepper. Specifically, the H2O2 concentration was between 4 and 200 times greater, while the RNS (NOX = NO2− + NO3−) concentration (=5.4 mM) was 3 to 22 times higher.
- The average energy efficiency of RONS synthesis in the water of the plasma reactor was among the highest compared to those reported in similar studies: 60 nmol/J for NOX synthesis and 6.5 nmol/J for H2O2 synthesis.
- The effect of PAW was more significant in bell pepper than in tomato: the greatest increases in both germination and plant biometric parameters were obtained for bell pepper.
- PAW promoted the germination of bell pepper seeds, with an increase of up to 26% in the germination percentage at 14 days. No effect of PAW on tomato seed germination was observed.
- PAW significantly increased the plant growth, even in a nutrient-rich substrate: the bell pepper fresh weight increased between 37 and 51% and the dry weight between 44 and 61%—while the corresponding increases for tomato were between 20 and 42% in fresh weight and between 11 and 39% in dry weight.
- The PAWs evaluated did not induce oxidative stress in the plants, as evidenced by the similar levels of MDA content observed in PAW-irrigated and control plants. Additionally, tomato and bell pepper plants irrigated with PAW exhibited SOD and GPOX activities comparable to those of the control plants. Interestingly, CAT activity increased with PAW activation time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; et al. The 2022 Plasma Roadmap: Low Temperature Plasma Science and Technology. J. Phys. D Appl. Phys. 2022, 55, 373001. [Google Scholar] [CrossRef]
- Veerana, M.; Mumtaz, S.; Rana, J.N.; Javed, R.; Panngom, K.; Ahmed, B.; Akter, K.; Choi, E.H. Recent Advances in Non-Thermal Plasma for Seed Germination, Plant Growth, and Secondary Metabolite Synthesis: A Promising Frontier for Sustainable Agriculture. Plasma Chem. Plasma Process. 2024, 44, 2263–2302. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Gusein-zade, N.; Burmistrov, D.E.; Kolik, L.V.; Dorokhov, A.S.; Izmailov, A.Y.; Shokri, B.; Gudkov, S.V. Advancements in Plasma Agriculture: A Review of Recent Studies. Int. J. Mol. Sci. 2023, 24, 15093. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, P.; Sponsel, N.; Kizer, J.; Rojas-Pierce, M.; Hernández, R.; Gatiboni, L.; Grunden, A.; Stapelmann, K. Plasma Agriculture: Review from the Perspective of the Plant and Its Ecosystem. Plasma Process. Polym. 2021, 18, 2000162. [Google Scholar] [CrossRef]
- Misra, N.N.; Naladala, T.; Alzahrani, K.J. Design of Systems for Plasma Activated Water (PAW) for Agri-Food Applications. J. Phys. D Appl. Phys. 2024, 57, 493003. [Google Scholar] [CrossRef]
- Wong, K.S.; Chew, N.S.L.; Low, M.; Tan, M.K. Plasma-Activated Water: Physicochemical Properties, Generation Techniques, and Applications. Processes 2023, 11, 2213. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, D.; Wu, A.; Lin, X.; Li, X. Review of Low-Temperature Plasma Nitrogen Fixation Technology. Waste Dispos. Sustain. Energy 2021, 3, 201–217. [Google Scholar] [CrossRef]
- Barjasteh, A.; Lamichhane, P.; Dehghani, Z.; Kaushik, N.; Gupta, R.; Choi, E.H.; Kaushik, N.K. Recent Progress of Non-Thermal Atmospheric Pressure Plasma for Seed Germination and Plant Development: Current Scenario and Future Landscape. J. Plant Growth Regul. 2023, 42, 5417–5432. [Google Scholar] [CrossRef]
- Jeevan Kumar, S.P.; Rajendra Prasad, S.; Banerjee, R.; Thammineni, C. Seed Birth to Death: Dual Functions of Reactive Oxygen Species in Seed Physiology. Ann. Bot. 2015, 116, 663–668. [Google Scholar] [CrossRef]
- Zhang, S.; Rousseau, A.; Dufour, T. Promoting Lentil Germination and Stem Growth by Plasma Activated Tap Water, Demineralized Water and Liquid Fertilizer. RSC Adv. 2017, 7, 31244–31251. [Google Scholar] [CrossRef]
- Adhikari, B.; Adhikari, M.; Park, G. The Effects of Plasma on Plant Growth, Development, and Sustainability. Appl. Sci. 2020, 10, 6045. [Google Scholar] [CrossRef]
- Favaro, J.C. (Ed.) Producción de Tomate Para Mercado Fresco, 1st ed.; Ediciones INTA: Buenoas Aires, Argentina, 2023; ISBN 978-987-679-369-8. [Google Scholar]
- Pérez, G.A.; Ceconello, M.M.; Alderete, G.L.; Borquez, A.M. El Cultivo de Pimiento Bajo Cubierta En Tucumán. Panorama Del Sector y Costos de Producción 2021; INTA: Buenoas Aires, Argentina, 2021. [Google Scholar]
- Aceto, D.; Rotondo, P.R.; Porfido, C.; Bottiglione, B.; Paciolla, C.; Terzano, R.; Minafra, A.; Ambrico, M.; Dilecce, G.; Leoni, B.; et al. Assessing Plasma Activated Water Irrigation Effects on Tomato Seedlings. Front. Phys. 2024, 12, 1399910. [Google Scholar] [CrossRef]
- Adhikari, B.; Adhikari, M.; Ghimire, B.; Park, G.; Choi, E.H. Cold Atmospheric Plasma-Activated Water Irrigation Induces Defense Hormone and Gene Expression in Tomato Seedlings. Sci. Rep. 2019, 9, 16080. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhang, X.; Xiong, C. Plasma Activated-Water Stimulates Aged Pepper Seeds and Promotes Seedling Growth. Plasma Process. Polym. 2024, 21, 2300173. [Google Scholar] [CrossRef]
- Japundžić-Palenkić, B.; Benković, R.; Benković-Lačić, T.; Antunović, S.; Japundžić, M.; Romanjek Fajdetić, N.; Mirosavljević, K. Pepper Growing Modified by Plasma Activated Water and Growth Conditions. Sustainability 2022, 14, 15967. [Google Scholar] [CrossRef]
- Lindsay, A.; Byrns, B.; King, W.; Andhvarapou, A.; Fields, J.; Knappe, D.; Fonteno, W.; Shannon, S. Fertilization of Radishes, Tomatoes, and Marigolds Using a Large-Volume Atmospheric Glow Discharge. Plasma Chem. Plasma Process. 2014, 34, 1271–1290. [Google Scholar] [CrossRef]
- Punith, N.; Harsha, R.; Lakshminarayana, R.; Hemanth, M.; Anand, M.S.; Dasappa, S. Plasma Activated Water Generation and Its Application in Agriculture. Adv. Mater. Lett. 2019, 10, 700–704. [Google Scholar] [CrossRef]
- Sivachandiran, L.; Khacef, A. Enhanced Seed Germination and Plant Growth by Atmospheric Pressure Cold Air Plasma: Combined Effect of Seed and Water Treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar] [CrossRef]
- Hoeben, W.F.L.M.; van Ooij, P.P.; Schram, D.C.; Huiskamp, T.; Pemen, A.J.M.; Lukeš, P. On the Possibilities of Straightforward Characterization of Plasma Activated Water. Plasma Chem. Plasma Process. 2019, 39, 597–626. [Google Scholar] [CrossRef]
- Bruggeman, P.; Leys, C. Non-Thermal Plasmas in and in Contact with Liquids. J. Phys. D Appl. Phys. 2009, 42, 053001. [Google Scholar] [CrossRef]
- Baird, R.; Eaton, A.; Rice, E. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- ISTA. The Germination Test; International Seed Testing Association (ISTA): Wallisellen Switzerland, 2016. [Google Scholar]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide Metabolism in Mammalian Organs. Physiol. Rev. 1979, 59, 527–605. [Google Scholar] [CrossRef] [PubMed]
- Becana, M.; Aparicio-Tejo, P.; Irigoyen, J.J.; Sanchez-Diaz, M. Some Enzymes of Hydrogen Peroxide Metabolism in Leaves and Root Nodules of Medicago Sativa. Plant Physiol. 1986, 82, 1169–1171. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Balestrasse, K.B.; Gallego, S.M.; Tomaro, M.L. Aluminium Stress Affects Nitrogen Fixation and Assimilation in Soybean (Glycine Max L.). Plant Growth Regul. 2006, 48, 271–281. [Google Scholar] [CrossRef]
- R Core Team. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Lukes, P.; Locke, B.R.; Brisset, J.-L. Aqueous-Phase Chemistry of Electrical Discharge Plasma in Water and in Gas–Liquid Environments. In Plasma Chemistry and Catalysis in Gases and Liquids; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 243–308. ISBN 978-3-527-64952-5. [Google Scholar]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
- Tachibana, K.; Nakamura, T. Comparative Study of Discharge Schemes for Production Rates and Ratios of Reactive Oxygen and Nitrogen Species in Plasma Activated Water. J. Phys. D Appl. Phys. 2019, 52, 385202. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Gao, K.; Liu, R.; Liu, R.; Yao, X.; Gong, D.; Su, Z.; Jia, P. Comparison of Deionized and Tap Water Activated with an Atmospheric Pressure Glow Discharge. Phys. Plasmas 2019, 26, 033507. [Google Scholar] [CrossRef]
- Rathore, V.; Tiwari, B.S.; Nema, S.K. Treatment of Pea Seeds with Plasma Activated Water to Enhance Germination, Plant Growth, and Plant Composition. Plasma Chem. Plasma Process. 2022, 42, 109–129. [Google Scholar] [CrossRef]
- Sajib, S.A.; Billah, M.; Mahmud, S.; Miah, M.; Hossain, F.; Omar, F.B.; Roy, N.C.; Hoque, K.M.F.; Talukder, M.R.; Kabir, A.H.; et al. Plasma Activated Water: The next Generation Eco-Friendly Stimulant for Enhancing Plant Seed Germination, Vigor and Increased Enzyme Activity, a Study on Black Gram (Vigna Mungo L.). Plasma Chem. Plasma Process. 2020, 40, 119–143. [Google Scholar] [CrossRef]
- Bafoil, M.; Jemmat, A.; Martinez, Y.; Merbahi, N.; Eichwald, O.; Dunand, C.; Yousfi, M. Effects of Low Temperature Plasmas and Plasma Activated Waters on Arabidopsis Thaliana Germination and Growth. PLoS ONE 2018, 13, e0195512. [Google Scholar] [CrossRef]
- Ruamrungsri, S.; Sawangrat, C.; Panjama, K.; Sojithamporn, P.; Jaipinta, S.; Srisuwan, W.; Intanoo, M.; Inkham, C.; Thanapornpoonpong, S. Effects of Using Plasma-Activated Water as a Nitrate Source on the Growth and Nutritional Quality of Hydroponically Grown Green Oak Lettuces. Horticulturae 2023, 9, 248. [Google Scholar] [CrossRef]
- Ferreyra, M.G.; Cejas, E.; Santamaría, B.; Chamorro, J.C.; Goméz, B.J.; Prevosto, L. Numerical Simulation of the Ionic Composition and Ionization Phenomena in the Positive Column of a Millisecond DC-Pulsed Glow-Type Discharge in Atmospheric Pressure Air with a Water-Cathode. Plasma Chem. Plasma Process. 2024, 44, 2199–2231. [Google Scholar] [CrossRef]
- Shutov, D.A.; Batova, N.A.; Smirnova, K.V.; Ivanov, A.N.; Rybkin, V.V. Kinetics of Processes Initiated in a Water Cathode by the Action of a Direct Current Discharge at Atmospheric Pressure in Air: Simulation and Experiment. J. Phys. D Appl. Phys. 2022, 55, 345206. [Google Scholar] [CrossRef]
- Santamaría, B.; Ferreyra, M.G.; Chamorro, J.C.; Cejas, E.; Fina, B.L.; Prevosto, L. Physicochemical Properties and Time Stability of Plasma Activated Water by a Liquid-Cathode Glow-Type Discharge in Air: The Effect of Air Confinement. IEEE Trans. Plasma Sci. 2024, 52, 1923–1929. [Google Scholar] [CrossRef]
- Liu, B.; Honnorat, B.; Yang, H.; Arancibia, J.; Rajjou, L.; Rousseau, A. Non-Thermal DBD Plasma Array on Seed Germination of Different Plant Species. J. Phys. D Appl. Phys. 2018, 52, 025401. [Google Scholar] [CrossRef]
- Terebun, P.; Kwiatkowski, M.; Hensel, K.; Kopacki, M.; Pawłat, J. Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Appl. Sci. 2021, 11, 6164. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Hensel, K. Effects of Plasma Activated Water on Wheat: Germination, Growth Parameters, Photosynthetic Pigments, Soluble Protein Content, and Antioxidant Enzymes Activity. Plasma Process. Polym. 2019, 16, 1800131. [Google Scholar] [CrossRef]
- Mumtaz, S.; Javed, R.; Rana, J.N.; Iqbal, M.; Choi, E.H. Pulsed High Power Microwave Seeds Priming Modulates Germination, Growth, Redox Homeostasis, and Hormonal Shifts in Barley for Improved Seedling Growth: Unleashing the Molecular Dynamics. Free Radic. Biol. Med. 2024, 222, 371–385. [Google Scholar] [CrossRef]
Reference | Discharge Type | Power [W] | Activation Time [min] | Volume [L] | η H2O2 [nmol/J] |
---|---|---|---|---|---|
[14] | DBD | 13 | 60 | 0.5 | 2 |
[15] | Jet | 3.6 | 60 | 0.05 | 0.1 |
[17] | Jet | 15 | 40 | 0.215 | 0.7 |
[18] | Glow | 420 | 80 | 1.9 | - |
[19] | Arc | 37 | 30 | 2 | - |
[20] | DBD | 3 | 30 | 0.25 | 0.1 |
[21] | Arc | 150 | 25 | 0.4 | 2.1 |
[35] | Glow | 22 | 30 | 0.4 | 0.8 |
This work | Glow | 100 | 15 | 1 | 6.5 |
Crop | Treatment | CAT | SOD | GPOX |
---|---|---|---|---|
[pmol/mgprot] | [U/mgprot] | [µmol/min/mgprot] | ||
Tomato | C | 2.2 ± 0.4 c | 167.2 ± 52.0 a | 123.1 ± 30.0 b |
PAW5 | 5.3 ± 1.2 c | 142.9 ± 34.5 a | 226.8 ± 39.3 a | |
PAW10 | 9.5 ± 1.8 b | 132.5 ± 34.3 a | 94.6 ± 13.6 b | |
PAW15 | 13.9 ± 1.0 a | 86.7 ± 14.5 a | 98.8 ± 17.0 b | |
Bell pepper | C | 51.8 ± 1.3 a | 68.5 ± 10.5 a | 81.3 ± 18.6 a |
PAW5 | 55.7 ± 7.5 a | 78.5 ± 11.7 a | 133.2 ± 35.6 a | |
PAW10 | 61.9 ± 6.5 a | 60.4 ± 7.1 a | 64.5 ± 16.9 a | |
PAW15 | 66.0 ± 6.5 a | 49.1 ± 2.9 a | 72.1 ± 13.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreyra, M.G.; Caffaro, M.M.; Santamaría, B.; Zilli, C.; Hernández, A.; Fina, B.L.; Vélez, A.S.; Balestrasse, K.B.; Prevosto, L. Plasma-Activated Water Produced by a Moderately High Energy-Efficient 1-Liter Reactor: Effects on Germination and Growth of Tomato and Bell Pepper Plants. Plants 2025, 14, 722. https://doi.org/10.3390/plants14050722
Ferreyra MG, Caffaro MM, Santamaría B, Zilli C, Hernández A, Fina BL, Vélez AS, Balestrasse KB, Prevosto L. Plasma-Activated Water Produced by a Moderately High Energy-Efficient 1-Liter Reactor: Effects on Germination and Growth of Tomato and Bell Pepper Plants. Plants. 2025; 14(5):722. https://doi.org/10.3390/plants14050722
Chicago/Turabian StyleFerreyra, Matías G., María M. Caffaro, Brenda Santamaría, Carla Zilli, Alejandra Hernández, Brenda L. Fina, Ada S. Vélez, Karina B. Balestrasse, and Leandro Prevosto. 2025. "Plasma-Activated Water Produced by a Moderately High Energy-Efficient 1-Liter Reactor: Effects on Germination and Growth of Tomato and Bell Pepper Plants" Plants 14, no. 5: 722. https://doi.org/10.3390/plants14050722
APA StyleFerreyra, M. G., Caffaro, M. M., Santamaría, B., Zilli, C., Hernández, A., Fina, B. L., Vélez, A. S., Balestrasse, K. B., & Prevosto, L. (2025). Plasma-Activated Water Produced by a Moderately High Energy-Efficient 1-Liter Reactor: Effects on Germination and Growth of Tomato and Bell Pepper Plants. Plants, 14(5), 722. https://doi.org/10.3390/plants14050722