Proposal of Nutritional Standards for the Assessment of the Nutritional Status of Grapevines in Subtropical and Temperate Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Evaluations and Tissue Analyses
2.3. Calculations and Statistical Analyses
3. Results
3.1. Principal Component Analysis
3.2. Discriminant Analysis
3.3. Critical Levels, Upper Bounds, Lower Bounds, Standards, and Confidence Intervals for CND Standards for Reference Populations of Each Nutrient in Grapevine Leaves Across Different Regions
3.4. Correlation Between CND Summer and Autumn Nutritional Standards and Yield of the Sangiovese in Emilia-Romagna
4. Discussion
4.1. Cultivar, Region, and Years of Cultivation
4.2. Critical Levels and Limits of Nutrients in Grapevine Leaves in Different Regions
4.3. Recommended Timing for Foliar Diagnosis of the Sangiovese Cultivar in the Emilia-Romagna Region
4.4. Implications of the Results Obtained in Viticulture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Soil Property/Locality | Bologna | Farroupilha Dom Pedrito Maçambará | Pilar do Sul |
---|---|---|---|
pH | 5.5–7.2 | 5.8–6.2 | 4.5–6.3 |
g kg−1 | |||
Clay | 220–560 | 180–430 | 350–620 |
Organic matter | 13–93 | 28–55 | 26–44 |
cmolc.dm−3 | |||
Cation Exchange capacity | 37–212 | 14–120 | 28–198 |
Ca | 40–146 | 20–60 | 32–120 |
Mg | 11–62 | 08–20 | 12–44 |
mg.dm−3 | |||
P | 10–70 | 20–80 | 40–200 |
K | 0.6–5.8 | 0.8–6.0 | 1.9–6.2 |
S-SO4 | 1.0–6.9 | 1.5–10 | 2.0–12 |
B | 0.5–1.8 | 0.6–1.2 | 0.7–1.6 |
Cu | 4–10 | 0.3–1.0 | 0.2–1.4 |
Fe | 20–40 | 02–66 | 09–85 |
Mn | 7–20 | 2.7–6.7 | 11–23 |
Zn | 3–15 | 0.8–3.7 | 2.1–8.4 |
Minimum temperature (°C) | 0–19 | 08–18 | 12–19 |
Maximum temperature (°C) | 6–30 | 17–27 | 21–27 |
Average monthly precipitation (mm) | 40 | 171 | 116 |
References
- Organisation International of Vine and Wine. State of the World Vine and Wine Sector in 2022. Available online: https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf.
- Yamane, D.R.; Parent, S.-É.; Natale, W.; Cecílio Filho, A.B.; Rozane, D.E.; Nowaki, R.H.D.; de Mattos Junior, D.; Parent, L.E. Site-Specific Nutrient Diagnosis of Orange Groves. Horticulturae 2022, 8, 1126. [Google Scholar] [CrossRef]
- Rozane, D.E.; Vahl de Paula, B.; Wellington Bastos de Melo, G.; Haitzmann dos Santos, E.M.; Trentin, E.; Marchezan, C.; Stefanello da Silva, L.O.; Tassinari, A.; Dotto, L.; Nunes de Oliveira, F.; et al. Compositional Nutrient Diagnosis (CND) Applied to Grapevines Grown in Subtropical Climate Region. Horticulturae 2020, 6, 56. [Google Scholar] [CrossRef]
- Ciotta, M.N.; Ceretta, C.A.; Krug, A.V.; Brunetto, G.; Nava, G. Grape (Vitis vinifera L.) Production and Soil Potassium Forms in Vineyard Subjected to Potassium Fertilization. Rev. Bras. Frutic. 2021, 43, e-682. [Google Scholar] [CrossRef]
- Parent, L.-É. Diagnosis of the Nutrient Compositional Space of Fruit Crops. Rev. Bras. Frutic. 2011, 33, 321–334. [Google Scholar] [CrossRef]
- Parent, S.-É.; Lafond, J.; Paré, M.C.; Parent, L.E.; Ziadi, N. Conditioning Machine Learning Models to Adjust Lowbush Blueberry Crop Management to the Local Agroecosystem. Plants 2020, 9, 1401. [Google Scholar] [CrossRef]
- Parent, L.E.; Dafir, M. A Theoretical Concept of Compositional Nutrient Diagnosis. J. Am. Soc. Hortic. Sci. 1992, 117, 239–242. [Google Scholar] [CrossRef]
- Brunetto, G.; Ernani, P.R.; de Melo, G.W.B.; Nava, G. Frutíferas. In Manual de Calagem e Adubação Para os Estados do Rio Grande do Sul e de Santa Catarina; Comissão de Química e Fertilidade do Solo RS/SC: Passo Fundo, Brazil, 2016; pp. 189–232. ISBN 978-85-66301-80-9. [Google Scholar]
- Teixeira, L.A.J.; Quaggio, J.A.; Mattos, D., Jr.; Boaretto, R.M.; Cantarella, H. Frutíferas. In Boletim 100: Recomendações de Adubação e Calagem Para o Estado de São Paulo; Cantarella, H., Quaggio, J.A., Mattos, D., Jr., Boaretto, R.M., Van Raij, B., Eds.; Instituto Agronômico (IAC): Campinas, Brazil, 2022; pp. 259–264. ISBN 9786588414095. [Google Scholar]
- da Silva, F.C. Manual de Análises Químicas de Solos, Plantas e Fertilizantes, 2nd ed.; Embrapa Informação Tecnológica: Brasília, DF, Brazil, 2009; ISBN 978-85-7383-430-7. [Google Scholar]
- Khiari, L.; Parent, L.-É.; Tremblay, N. Selecting the High-Yield Subpopulation for Diagnosing Nutrient Imbalance in Crops. Agron. J. 2001, 93, 802–808. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data, 1st ed.; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C. Isometric Logratio Transformations for Compositional Data Analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Greenacre, M.; Grunsky, E.; Bacon-Shone, J.; Erb, I.; Quinn, T. Aitchison’s Compositional Data Analysis 40 Years on: A Reappraisal. Stat. Sci. 2023, 38, 386–410. [Google Scholar] [CrossRef]
- Van Den Boogaart, D.G.; Tolosana-Delgado, R.; Bren, M. Compositions: Compositional Data Analysis in R Package 2013; Springer: Berlin, Germany, 2013. [Google Scholar]
- Hair, J.J.F.; Black, W.C.; Sant’Anna, A.S. Análise Multivariada de Dados, 6th ed.; Grupo A—Bookman: Porto Alegre, Brazil, 2005; ISBN 9788577805341. [Google Scholar]
- Conradie, W.J.; Raath, P.J.; Mulidzi, A.R.; Howell, C.L. Dry Matter Accumulation, Seasonal Uptake and Partitioning of Mineral Nutrients by Vitis vinifera L. Cv. Sultanina Grapevines in the Lower Orange River Region of South Africa—A Preliminary Investigation. S. Afr. J. Enol. Vitic. 2022, 43, 46–57. [Google Scholar] [CrossRef]
- Freedman, K.A.; Rana, T.S.; Hoffmann, M. Phenology Based Variability of Tissue Nutrient Content in Mature Muscadine Vines (Vitis Rotundifolia Cv. Carlos). Agriculture 2022, 12, 1805. [Google Scholar] [CrossRef]
- Brunetto, G.; Stefanello, L.O.; Kulmann, M.S.d.S.; Tassinari, A.; de Souza, R.O.S.; Rozane, D.E.; Tiecher, T.L.; Ceretta, C.A.; Ferreira, P.A.A.; de Siqueira, G.N.; et al. Prediction of Nitrogen Dosage in ‘Alicante Bouschet’ Vineyards with Machine Learning Models. Plants 2022, 11, 2419. [Google Scholar] [CrossRef] [PubMed]
- Pushpavathi, Y.; Satisha, J.; Satisha, G.C.; Shivashankara, K.S.; Reddy, M.L.; Sriram, S. Effect of Different Sources and Method of Potassium Application on Growth and Yield of Grapes Cv. Sharad Seedless (Vitis vinifera L.). Int. J. Chem. Stud. 2019, 7, 2640–2642. [Google Scholar]
- Zeng, Q.; Brown, P.H.; Holtz, B.A. Potassium Fertilization Affects Soil K, Leaf K Concentration, and Nut Yield and Quality of Mature Pistachio Trees. HortScience 2001, 36, 85–89. [Google Scholar] [CrossRef]
- Porro, D.; Stringari, G.; Failla, O.; Scienza, A. Thirteen Years of Leaf Analysis Applied to Italian Viticulture, Olive and Fruit Growing. Acta Hortic. 2001, 413–420. [Google Scholar] [CrossRef]
- Failla, O.; Santucci, S.; Del Turco, C.; Di Francesco, L.; Chiuchiarelli, I. Tree Nutritional Status in Relation to Soil Pedogenetic Description: A Case Study. Acta Hortic. 2001, 564, 229–234. [Google Scholar] [CrossRef]
- Toselli, M.; Baldi, E.; Cavani, L.; Sorrenti, G. Nutrient Management in Fruit Crops: An Organic Way. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 379–392. [Google Scholar]
- Gerke, J. Improving Phosphate Acquisition from Soil via Higher Plants While Approaching Peak Phosphorus Worldwide: A Critical Review of Current Concepts and Misconceptions. Plants 2024, 13, 3478. [Google Scholar] [CrossRef]
- Akdağ, S.; Keyikoğlu, R.; Karagunduz, A.; Keskinler, B.; Khataee, A.; Yoon, Y. Recent Advances in Boron Species Removal and Recovery Using Layered Double Hydroxides. Appl. Clay Sci. 2023, 233, 106814. [Google Scholar] [CrossRef]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn Response to Nitrogen Is Influenced by Soil Texture and Weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and Antagonistic Interactions between Potassium and Magnesium in Higher Plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- de Oliveira, F.A.; Carmello, Q.A.d.C.; Mascarenhas, H.A.A. Disponibilidade de Potássio e Suas Relações Com Cálcio e Magnésio Em Soja Cultivada Em Casa-de-Vegetação. Sci. Agric. 2001, 58, 329–335. [Google Scholar] [CrossRef]
- Lisek, J. Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions. Agriculture 2025, 15, 108. [Google Scholar] [CrossRef]
- Custos, J.-M.; Moyne, C.; Sterckeman, T. How Root Nutrient Uptake Affects Rhizosphere PH: A Modelling Study. Geoderma 2020, 369, 114314. [Google Scholar] [CrossRef]
- Guimarães, G.G.F.; de Deus, J.A.L. Diagnosis of Soil Fertility and Banana Crop Nutrition in the State of Santa Catarina. Rev. Bras. Frutic. 2021, 43, e-124. [Google Scholar] [CrossRef]
- Colbert, S.R.; Lee Allen, H. Factors Contributing to Variability in Loblolly Pine Foliar Nutrient Concentrations. South. J. Appl. For. 1996, 20, 45–52. [Google Scholar] [CrossRef]
- Armindo, R.A.; Coelho, R.D.; Teixeira, M.B.; Ribeiro Junior, P.J. Spatial Variability of Leaf Nutrient Contents in a Drip Irrigated Citrus Orchard. Eng. Agrícola 2012, 32, 479–489. [Google Scholar] [CrossRef]
- Cezana, D.C.; Gontijo, I.; Cavalcanti, A.C.; da Silva, M.B.; de Jesus Santos, E.O.; Partelli, F.L. Spatio-Temporal Variability of Leaf Macronutrients in a Conilon Coffee Crop. Braz. J. Prod. Eng. 2024, 10, 178–187. [Google Scholar] [CrossRef]
- de Lima, A.M.; Chaves, L.H.G.; Fernandes, J.D.; Monteiro Filho, A.F.; Corrêa, É.B.; Duarte, M.d.S.B.; Kubo, G.T.M. Phosphorus Adsorption after the Incubation of Clay Soil with Different Doses of Biochar. Ciênc. Agrotec. 2024, 48, e016724. [Google Scholar] [CrossRef]
- Hu, W.; Wang, J.; Deng, Q.; Liang, D.; Xia, H.; Lin, L.; Lv, X. Effects of Different Types of Potassium Fertilizers on Nutrient Uptake by Grapevine. Horticulturae 2023, 9, 470. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction Between Macro- and Micro-Nutrients in Plants. Front. Plant Sci. 2021, 12, 665583. [Google Scholar] [CrossRef]
- Bijay-Singh; Craswell, E. Fertilizers and Nitrate Pollution of Surface and Ground Water: An Increasingly Pervasive Global Problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Martínez, J.R.F.; Durán Zuazo, V.H.; Martínez Raya, A. Environmental Impact from Mountainous Olive Orchards under Different Soil-Management Systems (SE Spain). Sci. Total Environ. 2006, 358, 46–60. [Google Scholar] [CrossRef]
Regions | Cultivars | Years of Sample Collection | Observations | R2 of Statistical Models | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Start | End | Ref. | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | |||
Bologna | Sangiovese (Abs) | 2020–2022 | 56 | 53 | 25 | 0.81 | 0.79 | 0.87 | 0.57 | 0.65 | 0.14 | 0.80 | 0.74 | 0.98 | 0.51 | 0.90 |
Sangiovese (Est) | 2020–2022 | 96 | 93 | 26 | 0.59 | 0.58 | 0.75 | 0.74 | 0.82 | 0.49 | 0.77 | 0.98 | 0.44 | 0.8 | 0.98 | |
Pilar do Sul | APPC 7–Estela | 2022–2023 | 95 | 95 | 35 | 0.06 | 0.70 | 0.48 | 0.54 | 0.67 | 0.81 | 0.86 | 0.98 | 0.57 | 0.92 | 0.91 |
Farroupilha | Moscato Branco | 2020–2021 | 96 | 96 | 60 | 0.69 | 0.90 | 0.56 | 0.83 | 0.77 | 0.93 | 0.97 | 0.99 | 0.65 | 0.88 | 0.94 |
Bordô | 2020–2021 | 99 | 99 | 52 | 0.22 | 0.83 | 0.35 | 0.98 | 0.96 | 0.96 | 0.97 | 0.76 | 0.91 | 0.86 | 0.94 | |
Dom Pedrito | Tannat | 2006–2016 | 6 | 6 | 0.78 | 0.91 | 0.88 | 0.57 | 0.90 | 0.84 | 0.65 | 0.96 | 0.88 | 0.95 | 0.87 | |
Sauvignon Blanc; Chardonnay; Gewurztraminer; Merlot and Pinotage | 11 | 11 | 33 | |||||||||||||
Malbec and Cabernet Sauvignon | 4 | 4 | ||||||||||||||
Maçambará | Cabernet Sauvignon, Merlot and Tannat | 2010–2016 | 6 | 6 | 31 | 0.90 | 0.94 | 0.93 | 0.68 | 0.83 | 0.93 | 0.58 | 0.92 | 0.96 | 0.95 | 0.93 |
Cabernet Franc and Ruby Cabernet | 5 | 5 | ||||||||||||||
Chardonnay | 14 | 14 | ||||||||||||||
Malbec, Syrah, Viognier and Pinot Noir | 7 | 7 | ||||||||||||||
Tempranillo | 4 | 4 |
Variables | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
Region | −0.940 | −0.168 | −0.070 | 0.088 |
Cultivars | −0.882 | 0.176 | −0.027 | 0.056 |
Year | 0.837 | −0.406 | 0.067 | 0.050 |
N | 0.675 | −0.506 | −0.089 | 0.390 |
P | −0.498 | −0.551 | −0.433 | 0.086 |
K | −0.826 | −0.040 | 0.040 | 0.264 |
Ca | 0.424 | 0.731 | 0.291 | 0.156 |
Mg | −0.309 | 0.825 | 0.251 | 0.100 |
S | 0.140 | −0.699 | 0.431 | 0.373 |
B | 0.316 | −0.083 | −0.743 | −0.361 |
Cu | 0.609 | 0.475 | 0.018 | −0.255 |
Fe | 0.646 | −0.143 | 0.124 | 0.100 |
Mn | −0.793 | −0.201 | 0.274 | −0.088 |
Zn | −0.481 | −0.427 | 0.174 | −0.510 |
R | 0.061 | 0.220 | −0.737 | 0.267 |
Yield | 0.332 | −0.407 | 0.346 | −0.382 |
Expl. Var. | 5.905 | 3.178 | 1.876 | 1.106 |
Prq. Tol. | 0.369 | 0.199 | 0.117 | 0.069 |
Variables | Root 1 | Root 2 | Root 3 | WL 1 | Root 1 | Root 2 | Root 3 | WL 1 | Root 1 | Root 2 | Root 3 | Root 4 | WL 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
----------- Regions ----------- | ----------- Cultivars ----------- | ---------------- Year ---------------- | |||||||||||
N | −0.387 | −0.662 | −0.157 | 0.002 | −0.464 | −0.707 | −0.611 | 0.003 | 0.949 | −0.353 | 0.600 | 0.774 | 0.002 |
P | 0.700 | −0.224 | 0.141 | 0.001 | 0.623 | −0.199 | 0.133 | 0.003 | 0.464 | −0.115 | −0.118 | 0.392 | 0.002 |
K | 0.224 | −0.144 | 0.392 | 0.001 | 0.258 | −0.041 | 0.141 | 0.003 | −0.660 | −0.458 | 0.289 | 1.134 | 0.002 |
Ca | −0.781 | −0.115 | −0.312 | 0.001 | −0.818 | −0.201 | −0.192 | 0.003 | 1.075 | −0.114 | 0.066 | 0.998 | 0.002 |
Mg | 0.262 | 0.574 | 0.489 | 0.001 | 0.258 | 0.687 | 0.229 | 0.003 | −0.894 | −0.032 | −0.603 | 1.132 | 0.002 |
S | 0.103 | −0.517 | 0.860 | 0.002 | 0.072 | −0.432 | 0.961 | 0.003 | 0.322 | 0.533 | −0.930 | 0.545 | 0.002 |
B | −0.641 | −0.104 | 1.058 | 0.002 | −0.639 | 0.010 | 1.093 | 0.003 | 0.243 | −1.086 | −0.640 | 0.910 | 0.002 |
Cu | −0.410 | −0.599 | −0.055 | 0.001 | −0.378 | −0.583 | −0.119 | 0.003 | 0.808 | −0.786 | 0.216 | 2.333 | 0.002 |
Fe | −0.172 | −0.391 | 0.019 | 0.001 | −0.032 | −0.485 | 0.404 | 0.003 | 0.458 | −0.362 | −0.041 | 1.533 | 0.002 |
Mn | 0.515 | −0.539 | −0.481 | 0.002 | 0.447 | −0.718 | −0.328 | 0.003 | 0.510 | −1.146 | 0.668 | 1.307 | 0.002 |
Zn | −0.248 | −0.247 | 0.285 | 0.001 | −0.180 | −0.177 | 0.251 | 0.003 | 0.244 | 0.051 | −0.398 | 1.620 | 0.002 |
Eigenvalue | 14.737 | 4.929 | 1.881 | 11.835 | 4.967 | 1.566 | 13.838 | 3.087 | 1.588 | 1.012 | |||
Cum.Prop. | 0.637 | 0.850 | 0.931 | 0.612 | 0.869 | 0.950 | 0.667 | 0.816 | 0.892 | 0.941 | |||
WL 1 | 0.001 | 0.017 | 0.104 | 0.002 | 0.029 | 0.175 | 0.001 | 0.017 | 0.068 | 0.177 |
Variables | Bologna Abs | Bologna Est | Dom Pedrito | Maçambará | |||||||||||||||
---------- Means ---------- | t-Value | p | ------- Means ------- | t-Value | p | ||||||||||||||
N | 2.620 | 3.182 | −16.210 | 0.000 | 2.362 | 2.063 | 4.738 | 0.000 | |||||||||||
P | −0.015 | 0.558 | −24.081 | 0.000 | 1.095 | 1.339 | −2.645 | 0.009 | |||||||||||
K | 1.253 | 1.784 | −10.198 | 0.000 | 2.914 | 2.803 | 1.388 | 0.167 | |||||||||||
Ca | 3.459 | 3.079 | 12.965 | 0.000 | 2.366 | 2.447 | −2.320 | 0.022 | |||||||||||
Mg | 1.465 | 1.244 | 6.320 | 0.000 | 1.624 | 1.768 | −2.180 | 0.031 | |||||||||||
S | −0.068 | 0.455 | −27.118 | 0.000 | 0.338 | 0.078 | 3.696 | 0.000 | |||||||||||
B | −2.979 | −2.630 | −7.017 | 0.000 | −3.532 | −3.581 | 1.124 | 0.263 | |||||||||||
Cu | −2.058 | −2.577 | 6.194 | 0.000 | −4.127 | −4.553 | 3.712 | 0.000 | |||||||||||
Fe | −1.455 | −2.588 | 19.010 | 0.000 | −3.007 | −3.265 | 2.628 | 0.010 | |||||||||||
Mn | −2.606 | −2.995 | 10.301 | 0.000 | −1.079 | −0.155 | −9.902 | 0.000 | |||||||||||
Zn | −3.227 | −3.284 | 0.592 | 0.555 | −2.516 | −2.539 | 0.362 | 0.718 | |||||||||||
R | 3.611 | 3.771 | −2.599 | 0.010 | 3.562 | 3.596 | −0.385 | 0.701 | |||||||||||
Variáveis | Pilar do Sul x Farroupilha MB | Pilar do Sul x Farroupilha B | Farroupilha MB x Farroupilha B | ||||||||||||||||
----- Médias ----- | t-Value | p | ----- Médias ----- | t-Value | p | ----- Médias ----- | t-Value | p | |||||||||||
N | 3.29 | 2.92 | 10.89 | 0.000 | 3.29 | 3.15 | 6.17 | 0.000 | 2.92 | 3.15 | −6.91 | 0.000 | |||||||
P | 0.90 | 1.08 | −3.38 | 0.001 | 0.90 | 1.51 | −11.22 | 0.000 | 1.08 | 1.51 | −7.14 | 0.000 | |||||||
K | 2.11 | 2.08 | 0.89 | 0.373 | 2.11 | 2.27 | −5.49 | 0.000 | 2.08 | 2.27 | −6.05 | 0.000 | |||||||
Ca | 2.45 | 1.96 | 9.84 | 0.000 | 2.45 | 1.93 | 7.40 | 0.000 | 1.96 | 1.93 | 0.39 | 0.695 | |||||||
Mg | 0.59 | 0.48 | 2.54 | 0.012 | 0.59 | 0.40 | 3.16 | 0.002 | 0.48 | 0.40 | 1.21 | 0.227 | |||||||
S | 0.79 | 1.09 | −4.11 | 0.000 | 0.79 | 0.95 | −2.31 | 0.022 | 1.09 | 0.95 | 1.62 | 0.107 | |||||||
B | −3.79 | −3.14 | −7.41 | 0.000 | −3.79 | −2.75 | −11.95 | 0.000 | −3.14 | −2.75 | −3.69 | 0.000 | |||||||
Cu | −3.12 | −4.00 | 5.07 | 0.000 | −3.12 | −4.53 | 11.18 | 0.000 | −4.00 | −4.53 | 4.40 | 0.000 | |||||||
Fe | −2.23 | −2.60 | 5.93 | 0.000 | −2.23 | −2.06 | −2.65 | 0.009 | −2.60 | −2.06 | −11.10 | 0.000 | |||||||
Mn | −1.38 | −0.82 | −8.35 | 0.000 | −1.38 | −1.81 | 6.64 | 0.000 | −0.82 | −1.81 | 17.42 | 0.000 | |||||||
Zn | −2.98 | −2.27 | −9.05 | 0.000 | −2.98 | −2.69 | −3.55 | 0.000 | −2.27 | −2.69 | 4.68 | 0.000 | |||||||
R | 3.38 | 3.22 | 3.44 | 0.001 | 3.38 | 3.64 | −4.85 | 0.000 | 3.22 | 3.64 | −9.62 | 0.000 |
Cultivars/Elements | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bologna Abs | IS+ | 16.8 | 1.4 | 3.9 | 44.6 | 5.5 | 1.0 | 64.1 | 130.2 | 603.2 | 82.1 | 69.4 |
NC | 13.9 | 1.2 | 2.9 | 39.3 | 4.7 | 0.9 | 49.0 | 109.7 | 444.2 | 71.3 | 56.0 | |
Ii− | 10.9 | 1.0 | 1.9 | 34.1 | 3.9 | 0.8 | 34.0 | 89.1 | 285.2 | 60.4 | 42.6 | |
Mean | 2.56 | 0.08 | 1.03 | 3.55 | 1.48 | −0.09 | −3.04 | −2.26 | −1.02 | −2.64 | −2.97 | |
SD | 0.24 | 0.16 | 0.32 | 0.12 | 0.23 | 0.10 | 0.34 | 0.27 | 0.49 | 0.15 | 0.21 | |
UCB | 2.69 | 0.17 | 1.21 | 3.61 | 1.61 | −0.04 | −2.85 | −2.11 | −0.74 | −2.56 | −2.85 | |
LCB | 2.42 | 0.00 | 0.85 | 3.48 | 1.36 | −0.15 | −3.23 | −2.42 | −1.30 | −2.73 | −3.09 | |
Bologna Est | IS+ | 29.1 | 2.0 | 5.8 | 23.4 | 4.4 | 1.8 | 69.8 | 156.2 | 71.2 | 56.9 | 56.9 |
NC | 26.2 | 1.8 | 5.0 | 20.7 | 3.8 | 1.6 | 60.5 | 110.9 | 65.2 | 48.8 | 40.6 | |
Ii− | 23.4 | 1.6 | 4.2 | 18.0 | 3.3 | 1.4 | 51.2 | 65.6 | 59.2 | 40.8 | 24.2 | |
Mean | 3.28 | 0.61 | 1.66 | 3.12 | 1.37 | 0.48 | −2.77 | −2.22 | −2.67 | −2.98 | −3.27 | |
SD | 0.12 | 0.08 | 0.24 | 0.09 | 0.14 | 0.11 | 0.19 | 0.78 | 0.10 | 0.17 | 0.19 | |
UCB | 3.34 | 0.66 | 1.79 | 3.16 | 1.45 | 0.55 | −2.67 | −1.79 | −2.62 | −2.89 | −3.17 | |
LCB | 3.21 | 0.57 | 1.53 | 3.07 | 1.30 | 0.42 | −2.87 | −2.64 | −2.72 | −3.07 | −3.38 | |
Pilar do Sul | IS+ | 33.1 | 3.8 | 11.3 | 15.1 | 2.9 | 3.0 | 34.8 | 220.2 | 142.2 | 312.5 | 66.7 |
NC | 30.4 | 3.3 | 10.1 | 12.8 | 2.5 | 2.3 | 25.5 | 78.9 | 116.5 | 192.8 | 43.5 | |
Ii− | 27.7 | 2.8 | 8.8 | 10.6 | 2.0 | 1.5 | 16.2 | 78.9 | 90.8 | 73.2 | 20.3 | |
Mean | 3.02 | 0.80 | 1.87 | 2.14 | 0.42 | 0.42 | −4.09 | −2.99 | −2.53 | −2.00 | −3.51 | |
SD | 0.14 | 0.32 | 0.20 | 0.21 | 0.29 | 0.31 | 0.43 | 0.92 | 0.16 | 0.56 | 0.55 | |
UCB | 3.09 | 0.95 | 1.97 | 2.24 | 0.55 | 0.57 | −3.89 | −2.57 | −2.46 | −1.74 | −3.25 | |
LCB | 2.96 | 0.65 | 1.78 | 2.04 | 0.29 | 0.28 | −4.29 | −3.42 | −2.60 | −2.25 | −3.76 | |
Farroupilha Moscato Branco | IS+ | 30.3 | 5.6 | 13.4 | 13.4 | 2.9 | 6.7 | 87.7 | 96.3 | 125.2 | 850.1 | 257.3 |
NC | 27.5 | 4.0 | 12.1 | 11.3 | 2.5 | 5.0 | 48.7 | 21.8 | 106.3 | 645.9 | 158.1 | |
Ii− | 24.7 | 2.5 | 10.8 | 9.1 | 2.0 | 3.4 | 9.8 | 21.8 | 87.4 | 441.6 | 59.0 | |
Mean | 2.50 | 0.48 | 1.65 | 1.60 | 0.10 | 0.80 | −3.83 | −4.64 | −3.09 | −1.27 | −2.69 | |
SD | 0.27 | 0.40 | 0.28 | 0.37 | 0.28 | 0.59 | 0.72 | 1.15 | 0.27 | 0.37 | 0.60 | |
UCB | 2.59 | 0.62 | 1.75 | 1.72 | 0.20 | 1.01 | −3.58 | −4.25 | −3.00 | −1.15 | −2.48 | |
LCB | 2.41 | 0.35 | 1.56 | 1.47 | 0.01 | 0.60 | −4.08 | −5.04 | −3.18 | −1.40 | −2.89 | |
Farroupilha Bordô | IS+ | 25.9 | 6.0 | 11.1 | 12.9 | 2.8 | 4.8 | 93.6 | 13.6 | 222.5 | 217.1 | 115.2 |
NC | 23.5 | 4.7 | 10.0 | 9.7 | 2.1 | 3.5 | 58.1 | 11.1 | 167.2 | 165.8 | 76.3 | |
Ii− | 21.2 | 3.4 | 8.8 | 6.5 | 1.4 | 2.1 | 22.6 | 8.5 | 111.9 | 114.4 | 37.4 | |
Mean | 2.65 | 0.94 | 1.79 | 1.68 | 0.14 | 0.66 | −3.42 | −5.06 | −2.41 | −2.38 | −3.18 | |
SD | 0.15 | 0.43 | 0.17 | 0.47 | 0.43 | 0.52 | 0.70 | 0.30 | 0.39 | 0.37 | 0.65 | |
UCB | 2.70 | 1.10 | 1.85 | 1.85 | 0.30 | 0.86 | −3.16 | −4.95 | −2.27 | −2.24 | −2.94 | |
LCB | 2.59 | 0.77 | 1.72 | 1.51 | −0.03 | 0.47 | −3.68 | −5.17 | −2.56 | −2.51 | −3.43 | |
Dom Pedrito | IS+ | 10.4 | 4.5 | 27.1 | 15.0 | 8.4 | 2.0 | 37.5 | 24.9 | 69.7 | 605.3 | 111.6 |
NC | 7.4 | 3.1 | 19.7 | 12.9 | 6.1 | 1.5 | 32.8 | 11.5 | 51.7 | 399.9 | 86.6 | |
Ii− | 4.4 | 1.7 | 12.2 | 10.9 | 3.9 | 1.0 | 28.1 | 11.5 | 33.7 | 194.5 | 61.5 | |
Mean | 2.40 | 1.08 | 2.92 | 2.42 | 1.70 | 0.35 | −3.47 | −4.49 | −3.06 | −1.04 | −2.52 | |
SD | 0.41 | 0.54 | 0.45 | 0.24 | 0.53 | 0.36 | 0.34 | 0.57 | 0.57 | 0.66 | 0.39 | |
UCB | 2.63 | 1.38 | 3.17 | 2.55 | 1.99 | 0.56 | −3.28 | −4.17 | −2.74 | −0.67 | −2.30 | |
LCB | 2.17 | 0.78 | 2.67 | 2.29 | 1.40 | 0.15 | −3.66 | −4.81 | −3.38 | −1.41 | −2.73 | |
Maçambará | IS+ | 11.3 | 5.9 | 25.0 | 14.2 | 8.5 | 1.8 | 33.1 | 15.2 | 59.0 | 1401.0 | 104.2 |
NC | 8.5 | 4.5 | 18.4 | 12.5 | 7.0 | 1.4 | 28.8 | 11.8 | 44.2 | 980.6 | 76.8 | |
Ii− | 5.6 | 3.0 | 11.9 | 10.9 | 5.6 | 1.0 | 24.5 | 8.3 | 29.4 | 560.1 | 49.4 | |
Mean | 2.01 | 1.38 | 2.81 | 2.43 | 1.84 | 0.19 | −3.63 | −4.56 | −3.24 | −0.13 | −2.66 | |
SD | 0.37 | 0.53 | 0.51 | 0.24 | 0.30 | 0.36 | 0.17 | 0.42 | 0.37 | 0.59 | 0.39 | |
UCB | 2.19 | 1.65 | 3.06 | 2.54 | 1.99 | 0.37 | −3.55 | −4.36 | −3.06 | 0.16 | −2.47 | |
LCB | 1.83 | 1.12 | 2.55 | 2.31 | 1.69 | 0.01 | −3.72 | −4.77 | −3.43 | −0.42 | −2.85 | |
References | ||||||||||||
[9] | 30–35 | 2.4–2.9 | 15–20 | 13–18 | 4.8–5.3 | 3.3–3.8 | 45–53 | 18–22 | 95–105 | 65–75 | 30–35 | |
[3] | 24–30 | 2.9–3.8 | 11–14 | 12–16 | 2.6–3.3 | 3.1–3.8 | 27–41 | 10–14 | 91–142 | 398–586 | 148–254 | |
[8] | 16–24 | 1.2–4.0 | 8–16 | 16–24 | 2.0–6.0 | 30–65 | 60–150 | 30–300 | 25–60 | |||
[22] | 21–31 | 1.3–3.1 | 8–15 | 16–28 | 2.0–3.9 | 1.0–2.3 | 15–45 | 60–130 | 50–220 | 30–80 | ||
[22]-Veraison | 18–27 | 0.9–3.0 | 7–16 | 23–39 | 2.2–4.7 | 0.9–3.5 | 16–41 | 40–220 | 35–220 | 10–90 | ||
[23] | 22.5 | 1.7 | 8.4 | 37.6 | 4.0 |
Stages | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | R |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Abscissed | −0.12 | 0.57 * | −0.42 * | 0.75 * | 0.29 * | 0.53 * | −0.05 | −0.54 * | 0.72 * | 0.23 | 0.77 * | |
−0.37 * | 0.51 * | −0.56 * | 0.64 * | −0.02 | 0.01 | −0.29 * | −0.71 * | 0.79 * | −0.18 | 0.72 * | −0.53 * | |
Estate | 0.76 * | 0.74 * | 0.01 | 0.34 * | 0.53 * | 0.72 * | −0.24 * | 0.61 * | 0.03 | 0.22 * | 0.30 * | |
0.28 * | 0.34 * | −0.41 * | −0.15 | 0.18 | 0.23 * | −0.57 * | 0.45 * | −0.57 * | −0.14 | 0.35 * | −0.77 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozane, D.E.; Toselli, M.; Brunetto, G.; Baldi, E.; Natale, W.; Paula, B.V.d.; Lima, J.D.; Medeiros, F.C.; Ayres, G.; Gobi, S.F. Proposal of Nutritional Standards for the Assessment of the Nutritional Status of Grapevines in Subtropical and Temperate Regions. Plants 2025, 14, 698. https://doi.org/10.3390/plants14050698
Rozane DE, Toselli M, Brunetto G, Baldi E, Natale W, Paula BVd, Lima JD, Medeiros FC, Ayres G, Gobi SF. Proposal of Nutritional Standards for the Assessment of the Nutritional Status of Grapevines in Subtropical and Temperate Regions. Plants. 2025; 14(5):698. https://doi.org/10.3390/plants14050698
Chicago/Turabian StyleRozane, Danilo Eduardo, Moreno Toselli, Gustavo Brunetto, Elena Baldi, William Natale, Betania Vahl de Paula, Juliana Domingues Lima, Fabiana Campos Medeiros, Gustavo Ayres, and Samuel Francisco Gobi. 2025. "Proposal of Nutritional Standards for the Assessment of the Nutritional Status of Grapevines in Subtropical and Temperate Regions" Plants 14, no. 5: 698. https://doi.org/10.3390/plants14050698
APA StyleRozane, D. E., Toselli, M., Brunetto, G., Baldi, E., Natale, W., Paula, B. V. d., Lima, J. D., Medeiros, F. C., Ayres, G., & Gobi, S. F. (2025). Proposal of Nutritional Standards for the Assessment of the Nutritional Status of Grapevines in Subtropical and Temperate Regions. Plants, 14(5), 698. https://doi.org/10.3390/plants14050698