Biomass Productivity and Water Use Efficiency Are Elevated in Forage Crops Compared with Grain Crops in Hydrothermally Limited Areas
Abstract
1. Introduction
2. Results
2.1. Precipitation
2.2. Aboveground Biomass
2.3. Crude Protein Yield and Its Variability Across Cropping Years
2.4. Soil Water Use by Crops and Water Use Efficiency
3. Discussion
3.1. Biomass Between Crop Species or Cultivars and Its Variability
3.2. Crude Protein Yielding
3.3. Water Use Efficiency
4. Materials and Methods
4.1. Study Site, Experimental Design and Management
4.2. Assessment of Biomass and Crude Protein Content
4.3. Measurements of Soil Water Storage (SWS) and Crop Water Use Efficiency (WUE)
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AY | Aoyu 5102 (maize cultivar) |
| BY | Baiyan 7 (oat cultivar) |
| CV | Coefficient of variation |
| DY1 | Dingyin 1 (oat cultivar) |
| DY2 | Dingyan 2 (oat cultivar) |
| ET | Evapotranspiration |
| FY | Fangyu 36 (maize cultivar) |
| JK | Jinkai 5 (maize cultivar) |
| LC | Longchun 29 (wheat cultivar) |
| LM | Linmai 34 (wheat cultivar) |
| LS | Longshu 7 (potato cultivar) |
| QS | Qingshu 9 (potato cultivar) |
| SWS | Soil water storage |
| WUE | Water use efficiency |
| XDP | Xindaping (potato cultivar) |
| YL | Yongliang 15 (wheat cultivar) |
References
- Wang, N.; Chu, X.; Li, J.; Luo, X.; Ding, D.; Siddique, K.H.M.; Feng, H. Understanding Increased Grain Yield and Water Use Efficiency by Plastic Mulch from Water Input to Harvest Index for Dryland Maize in China’s Loess Plateau. Eur. J. Agron. 2025, 162, 127402. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, X.G.; Zhu, J.; Fan, C.Y.; Kong, X.J.; Turner, N.C.; Siddique, K.H.M.; Li, F.-M. Multi-Site Assessment of the Effects of Plastic-Film Mulch on Dryland Maize Productivity in Semiarid Areas in China. Agric. For. Meteorol. 2016, 220, 160–169. [Google Scholar] [CrossRef]
- Uslu, Ö.S.; Gedik, O.; Kaya, A.R.; Erol, A.; Babur, E.; Khan, H.; Seleiman, M.F.; Wasonga, D.O. Effects of Different Irrigation Water Sources Contaminated with Heavy Metals on Seed Germination and Seedling Growth of Different Field Crops. Water 2025, 17, 892. [Google Scholar] [CrossRef]
- Flexas, J.; Diaz-Espejo, A.; Galmés, J.; Kaldenhoff, R.; Medrano, H.; Ribas-Carbo, M. Rapid Variations of Mesophyll Conductance in Response to Changes in CO2 Concentration around Leaves. Plant Cell Environ. 2007, 30, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Hussain, S.; Qadir, T.; Khaliq, A.; Ashraf, U.; Parveen, A.; Saqib, M.; Rafiq, M. Drought stress in plants: An Overview on Implications, Tolerance Mechanisms and Agronomic Mitigation Strategies. Plant Sci. Today 2019, 6, 389–402. [Google Scholar] [CrossRef]
- Adimassu, Z.; Mul, M.; Owusu, A. Intra-Seasonal Rainfall Variability and Crop Yield in the Upper East Region of Ghana. Environ. Dev. Sustain. 2023, 26, 29249–29268. [Google Scholar] [CrossRef]
- Madamombe, S.M.; Nyamadzawo, G.; Öborn, I.; Smucker, A.; Chirinda, N.; Kihara, J.; Nkurunziza, L. Seasonal Rainfall Patterns Affect Rainfed Maize Production More than Management of Soil Moisture and Different Plant Densities on Sandy Soils of Semi-Arid Regions. Field Crops Res. 2025, 331, 110007. [Google Scholar] [CrossRef]
- Mbanyele, V.; Mtambanengwe, F.; Nezomba, H.; Groot, J.C.J.; Mapfumo, P. Combinations of In-Field Moisture Conservation and Soil Fertility Management Reduce Effect of Intra-Seasonal Dry Spells on Maize under Semi-Arid Conditions. Field Crops Res. 2021, 270, 108218. [Google Scholar] [CrossRef]
- Diatta, A.A.; Abaye, O.; Battaglia, M.L.; Leme, J.F.D.C.; Seleiman, M.; Babur, E.; Thomason, W.E. Mungbean [Vigna radiata (L.) Wilczek] and Its Potential for Crop Diversification and Sustainable Food Production in Sub-Saharan Africa: A review. Technol. Agron. 2024, 4, e031. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Meng, F.; Zhou, W.; Liang, W.; Yang, J.; Wang, Y.; Wang, H.; Guo, J.; Yang, Q.; et al. Transcriptome and Metabolite Reveal the Inhibition Induced by Combined Heat and Drought Stress on the Viability of Silk and Pollen in Summer Maize. Ind. Crops Prod. 2025, 226, 120720. [Google Scholar] [CrossRef]
- Shen, S.; Liang, X.; Zhang, L.; Zhao, X.; Liu, Y.; Lin, S.; Gao, Z.; Wang, P.; Wang, Z.; Zhou, S. Intervening in Sibling Competition for Assimilates by Controlled Pollination Prevents Seed Abortion under Postpollination Drought in Maize. Plant Cell Environ. 2020, 43, 903–919. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhang, L.; Liang, X.-G.; Zhao, X.; Lin, S.; Qu, L.-H.; Liu, Y.-P.; Gao, Z.; Ruan, Y.-L.; Zhou, S.-L. Delayed Pollination and Low Availability of Assimilates Are Major Factors Causing Maize Kernel Abortion. J. Exp. Bot. 2018, 69, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Guo, J.; Jagadish, S.V.K.; Yang, S.; Qiao, J.; Wang, Y.; Xie, K.; Wang, H.; Yang, Q.; Deng, L.; et al. Ovary Abortion in Field-Grown Maize under Water-Deficit Conditions Is Determined by Photo-Assimilation Supply. Field Crops Res. 2023, 293, 108830. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.G.; Guan, Z.-H.; Jia, B.; Turner, N.C.; Li, F.-M. The Effects of Plastic-Film Mulch on the Grain Yield and Root Biomass of Maize Vary with Cultivar in a Cold Semiarid Environment. Field Crops Res. 2018, 216, 89–99. [Google Scholar] [CrossRef]
- Ma, Q.; Luan, F.; Jia, B.; Zhang, Q.; Wang, L.; Cui, Z.; Li, X.G. Agricultural Soil Aggregation Is Affected by the Crop Root Biomass Rather than Morphological Characteristics. J. Plant Nutr. Soil Sci. 2023, 186, 339–350. [Google Scholar] [CrossRef]
- Gu, X.; Yin, R.; Cai, W.; Chen, P.; Cui, K.; Du, Y.; Li, Y.; Cai, H. Residual Plastic Film Decreases Crop Yield and Water Use Efficiency through Direct Negative Effects on Soil Physicochemical Properties and Root Growth. Sci. Total Environ. 2024, 946, 174204. [Google Scholar] [CrossRef]
- Wang, D.; Xi, Y.; Shi, X.; Guo, C.; Zhong, Y.; Song, C.; Guan, Y.; Huang, L.; Yang, Q.; Li, F. Effects of Residual Plastic Film on Crop Yield and Soil Fertility in a Dryland Farming System. J. Integr. Agric. 2023, 22, 3783–3791. [Google Scholar] [CrossRef]
- Wang, D.; Xi, Y.; Shi, X.-Y.; Zhong, Y.-J.; Guo, C.-L.; Han, Y.-N.; Li, F.-M. Effect of Plastic Film Mulching and Film Residues on Phthalate Esters Concentrations in Soil and Plants, and its Risk Assessment. Environ. Pollut. 2021, 286, 117546. [Google Scholar] [CrossRef]
- Zhang, Q.; Bell, L.W.; Shen, Y.; Whish, J.P.M. Indices of Forage Nutritional Yield and Water Use Efficiency amongst Spring-Sown Annual Forage Crops in North-West China. Eur. J. Agron. 2018, 93, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Whish, J.P.M.; Bell, L.W.; Nan, Z. Forage Production, Quality and Water-Use-Efficiency of Four Warm-Season Annual Crops at Three Sowing Times in the Loess Plateau Region of China. Eur. J. Agron. 2017, 84, 84–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Sun, Y.; Zhang, Y.; Li, H.; Liu, P.; Wang, X.; Wang, R.; Li, J. Conservation Tillage Improves Soil Water Storage, Spring Maize (Zea Mays L.) Yield and WUE in Two Types of Seasonal Rainfall Distributions. Soil Tillage Res. 2022, 215, 105237. [Google Scholar] [CrossRef]
- Monteleone, B.; Borzí, I.; Bonaccorso, B.; Martina, M. Developing Stage-Specific Drought Vulnerability Curves for Maize: The Case Study of the Po River basin. Agric. Water Manag. 2022, 269, 107713. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, K.; Liu, Y.; Guo, R.; Chen, L. Assessing the Vulnerability and Risk of Maize to Drought in China Based on the AquaCrop Model. Agric. Syst. 2021, 189, 103040. [Google Scholar] [CrossRef]
- Ren, A.; Zhao, W.; Sumera, A.; Lin, W.; Ding, P.; Hao, R.; Wang, P.; Zhong, R.; Tong, J.; Gao, Z.; et al. Effects of Tillage and Seasonal Variation of Rainfall on Soil Water Content and Root Growth Distribution of Winter Wheat under Rainfed Conditions of the Loess Plateau, China. Agric. Water Manag. 2022, 268, 107533. [Google Scholar] [CrossRef]
- Vujić, S.; Krstić, D.; Mačkić, K.; Čabilovski, R.; Radanović, Z.; Zhan, A.; Ćupina, B. Effect of Winter Cover Crops on Water Soil Storage, Total Forage Production, and Quality of Silage Corn. Eur. J. Agron. 2021, 130, 126366. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long-Term Evaluation of Tillage Methods in Fallow Season for Soil Water Storage, Wheat Yield and Water Use Efficiency in Semiarid Southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, Y.; Shen, Y.; Zhang, G.; Wang, Y.; Chen, X. Change of Crop Structure Intensified Water Supply-Demand Imbalance in China’s Black Soil Granary. Agric. Water Manag. 2024, 306, 109199. [Google Scholar] [CrossRef]
- Li, R.; Chai, S.; Chai, Y.; Li, Y.; Lan, X.; Ma, J.; Cheng, H.; Chang, L. Mulching Optimizes Water Consumption Characteristics and Improves Crop Water Productivity on the Semi-Arid Loess Plateau of China. Agric. Water Manag. 2021, 254, 106965. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Agroclimatology and Wheat Production: Coping with Climate Change. Front. Plant Sci. 2018, 9, 224. [Google Scholar] [CrossRef]
- Lin, G.-Z.; Chiang, L.-C. Crop Conversion as a Strategy for Enhancing Water Efficiency and Nutrient Management under Climate Change. J. Hydrol. 2025, 660, 133415. [Google Scholar] [CrossRef]
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V. Factors Affecting Crop Water Use Efficiency: A Worldwide Meta-Analysis. Agric. Water Manag. 2020, 228, 105878. [Google Scholar] [CrossRef]
- Cui, H. Challenges and Approaches to Crop Improvement Through C3-to-C4 Engineering. Front. Plant Sci. 2021, 12, 715391. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Shi, H. Comparison of Climate Change Impacts on the Growth of C3 and C4 Crops in China. Ecol. Inform. 2023, 74, 101968. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Krutz, J.L.; Pinnamaneni, S.R.; Sui, R. Quantifying Water and CO2 Fluxes and Water Use Efficiencies across Irrigated C3 and C4 Crops in a Humid Climate. Sci. Total Environ. 2019, 663, 338–350. [Google Scholar] [CrossRef]
- Martins, T.S.; Magalhães Filho, J.R.; Cruz, L.P.; Almeida, R.L.; Marchiori, P.E.R.; Silva, A.L.B.O.; Pires, R.C.M.; Landell, M.G.A.; Xavier, M.A.; Machado, E.C.; et al. Light Interception and Conversion Efficiencies and Biomass Partitioning in Sugarcane Varieties with Varying Canopy Architecture under Subtropical Conditions. Field Crops Res. 2025, 322, 109724. [Google Scholar] [CrossRef]
- Li, P.; Yin, W.; Zhao, L.; Wan, P.; Fan, Z.; Hu, F.; Nan, Y.; Sun, Y.; Fan, H.; He, W.; et al. No Tillage with Straw Mulching Enhanced Radiation Use Efficiency of Wheat via Optimizing Canopy Radiation Interception and Photosynthetic Properties. Field Crops Res. 2025, 326, 109854. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhang, Z.; Xu, J.; Han, J.; Cheng, F.; Tao, F. Overcoming Wheat Yield Stagnation in China Depends More on Cultivar Improvements than Water and Fertilizer Management. Field Crops Res. 2025, 333, 110089. [Google Scholar] [CrossRef]
- Hao, B.; Ma, J.; Si, S.; Wang, X.; Wang, S.; Li, F.; Jiang, L. Response of Grain Yield and Water Productivity to Plant Density in Drought-Tolerant Maize Cultivar under Irrigated and Rainfed Conditions. Agric. Water Manag. 2024, 298, 108880. [Google Scholar] [CrossRef]
- Liu, W.; Yan, S.; Jiang, N.; Li, M.; Yin, L.; Zhang, S.; Xie, X.; Gao, G.; Chang, S.; Hou, F. Interaction of Nitrogen and Mowing Frequency in Enhancing Regeneration and Crude Protein Content of Forage Oat in Northwestern of China. Field Crops Res. 2025, 331, 109994. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, S.; Usman, M.; Hou, F.; Nan, Z. [SI_Forage] Trade-Offs between Artificial Forage Yield and Quality under Multiple Mowing Enhance Grass-Livestock System Balance on the Qinghai-Tibetan Plateau. J. Integr. Agric. 2025, in press. [Google Scholar] [CrossRef]
- Larsen, S.U.; Manevski, K.; Lærke, P.E.; Jørgensen, U. Biomass Yield, Crude Protein Yield and Nitrogen Use Efficiency over Nine Years in Annual and Perennial Cropping Systems. Eur. J. Agron. 2024, 161, 127336. [Google Scholar] [CrossRef]
- Uslu, O.S.; Babur, E.; Battaglia, M.L.; Turkkaya, E.; Seleiman, M.F.; Roy, R.; Dindaroglu, T. Effects of Gyttja Applications on Hay Yield and Quality of a Rangeland in the Mediterranean Region. Int. J. Environ. Sci. Technol. 2023, 20, 4139–4150. [Google Scholar] [CrossRef]
- Lammerts Van Bueren, E.T.; Thorup-Kristensen, K.; Leifert, C.; Cooper, J.M.; Becker, H.C. Breeding for Nitrogen Efficiency: Concepts, Methods, and Case Studies. Euphytica 2014, 199, 1–2. [Google Scholar] [CrossRef][Green Version]
- Smit, M.; Malan, P.; Smit, N.; Deacon, F. Drought Impact on the Nutrients of Forage Plants in a Semi-Arid Rangeland and Its Potential Implications for Sustaining Herbivores. J. Arid Environ. 2025, 227, 105299. [Google Scholar] [CrossRef]
- Deng, J.; Zhang, Z.; Liang, Z.; Li, Z.; Yang, X.; Wang, Z.; Coulter, J.A.; Shen, Y. Replacing Summer Fallow with Annual Forage Improves Crude Protein Productivity and Water Use Efficiency of the Summer Fallow-Winter Wheat Cropping System. Agric. Water Manag. 2020, 230, 105980. [Google Scholar] [CrossRef]
- Hou, X.; Li, R. Interactive Effects of Autumn Tillage with Mulching on Soil Temperature, Productivity and Water Use Efficiency of Rainfed Potato in Loess Plateau of China. Agric. Water Manag. 2019, 224, 105747. [Google Scholar] [CrossRef]
- Zhang, G.; Mo, F.; Shah, F.; Meng, W.; Liao, Y.; Han, J. Ridge-Furrow Configuration Significantly Improves Soil Water Availability, Crop Water Use Efficiency, and Grain Yield in Dryland Agroecosystems of the Loess Plateau. Agric. Water Manag. 2021, 245, 106657. [Google Scholar] [CrossRef]
- Way, D.A.; Katul, G.G.; Manzoni, S.; Vico, G. Increasing Water Use Efficiency along the C3 to C4 Evolutionary Pathway: A Stomatal Optimization Perspective. J. Exp. Bot. 2014, 65, 3683–3693. [Google Scholar] [CrossRef]
- Gheysari, M.; Loescher, H.W.; Sadeghi, S.H.; Mirlatifi, S.M.; Zareian, M.J.; Hoogenboom, G. Chapter Three—Water-Yield Relations and Water Use Efficiency of Maize Under Nitrogen Fertigation for Semiarid Environments: Experiment and Synthesis. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: San Diego, CA, USA, 2015; Volume 130, pp. 175–229. [Google Scholar]
- Wang, S.; Wang, H.; Zhang, Y.; Wang, R.; Zhang, Y.; Xu, Z.; Jia, G.; Wang, X.; Li, J. The Influence of Rotational Tillage on Soil Water Storage, Water Use Efficiency and Maize Yield in Semi-Arid Areas under Varied Rainfall Conditions. Agric. Water Manag. 2018, 203, 376–384. [Google Scholar] [CrossRef]
- Liu, X.E.; Li, X.G.; Hai, L.; Wang, Y.P.; Li, F.M. How Efficient Is Film Fully-Mulched Ridge–Furrow Cropping to Conserve Rainfall in Soil at a Rainfed Site? Field Crops Res. 2014, 169, 107–115. [Google Scholar] [CrossRef]
- Lu, R. Soil and Agro-Chemistry Analysis; China Agricultural Scio-technological Press: Beijing, China, 2000. [Google Scholar]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Washington, DC, USA, 1980. [Google Scholar]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]








| Crop | Cultivar | SWS at Sowing (mm) | SWS at Harvest (mm) | ∆SWS (mm) | ET (mm) | ET Rate (mm d−1) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 | ||
| Potato | LS | 321 | 312 | 445 | 341 | 532 | 518 | 20.5 | 220 | 73.3 | 359 | 358 | 365 | 2.11 | 2.17 | 2.29 |
| QS | 321 | 301 | 433 | 335 | 506 | 480 | 14.2 | 205 | 47.0 | 365 | 373 | 391 | 2.15 | 2.26 | 2.46 | |
| XDP | 321 | 338 | 445 | 371 | 506 | 527 | 49.9 | 168 | 81.4 | 330 | 410 | 357 | 1.94 | 2.49 | 2.24 | |
| Wheat | YL | 328 | 353 | 440 | 248 | 377 | 415 | −80.1 | 24.0 | −24.7 | 226 | 282 | 291 | 2.13 | 2.39 | 2.34 |
| LM | 328 | 352 | 454 | 247 | 384 | 421 | −80.6 | 31.7 | −29.6 | 227 | 274 | 296 | 2.14 | 2.32 | 2.38 | |
| LC | 328 | 349 | 437 | 252 | 371 | 387 | −76.2 | 21.5 | −49.5 | 222 | 284 | 316 | 2.10 | 2.41 | 2.54 | |
| Oat | DY2 | 328 | 349 | 436 | 236 | 412 | 342 | −92.0 | 62.6 | −93.7 | 238 | 324 | 398 | 2.12 | 2.35 | 2.90 |
| DY1 | 328 | 334 | 441 | 237 | 404 | 335 | −90.9 | 70.3 | −106 | 237 | 317 | 410 | 2.11 | 2.29 | 2.99 | |
| BY | 328 | 351 | 427 | 248 | 422 | 347 | −82.8 | 70.6 | −80.0 | 229 | 316 | 384 | 2.04 | 2.29 | 2.80 | |
| Maize | JK | 321 | 331 | 409 | 365 | 464 | 452 | 44.0 | 133 | 43.5 | 335 | 445 | 394 | 1.97 | 2.69 | 2.48 |
| AY | 321 | 325 | 402 | 358 | 458 | 441 | 36.8 | 133 | 39.0 | 343 | 445 | 399 | 2.02 | 2.70 | 2.51 | |
| FY | 321 | 326 | 407 | 345 | 424 | 430 | 24.6 | 97.8 | 23.2 | 355 | 480 | 415 | 2.09 | 2.91 | 2.61 | |
| Crop Species | Potato | Wheat | Oat | Maize |
|---|---|---|---|---|
| Sowing pattern | Hill-drop | In drill | In drill | Hill-drop |
| Urea (kg N ha−1) | 140 | 105 | 105 | 210 |
| Superphosphate (kg P ha−1) | 23.6 | 15.7 | 15.7 | 31.4 |
| Plant density (plants ha−1) | 6.06 × 104 | 450 × 104 | 450 × 104 | 7.58 × 104 |
| Row spacing (cm) | 55 | 15 | 15 | 55 |
| Plant spacing (cm) | 30 | - | - | 24 |
| Sowing date | ||||
| in 2017 | 25 April | 2 April | 2 April | 25 April |
| in 2018 | 18 April | 26 March | 26 March | 18 April |
| in 2019 | 22 April | 24 March | 24 March | 22 April |
| in 2020 | 25 April | 9 April | 9 April | 25 April |
| Harvest date | ||||
| in 2017 | 12 October | 16 July | 22 July | 12 October |
| in 2018 | 30 September | 22 July | 11 August | 30 September |
| in 2019 | 28 September | 26 July | 8 August | 28 September |
| in 2020 | 7 October | 31 July | 8 August | 7 October |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Yin, F.; Zhou, X.; Wang, L.; Zhu, K.; Li, X. Biomass Productivity and Water Use Efficiency Are Elevated in Forage Crops Compared with Grain Crops in Hydrothermally Limited Areas. Plants 2025, 14, 3736. https://doi.org/10.3390/plants14243736
Ma Q, Yin F, Zhou X, Wang L, Zhu K, Li X. Biomass Productivity and Water Use Efficiency Are Elevated in Forage Crops Compared with Grain Crops in Hydrothermally Limited Areas. Plants. 2025; 14(24):3736. https://doi.org/10.3390/plants14243736
Chicago/Turabian StyleMa, Qiujin, Fangyuan Yin, Xiaolong Zhou, Lin Wang, Kexuan Zhu, and Xiaogang Li. 2025. "Biomass Productivity and Water Use Efficiency Are Elevated in Forage Crops Compared with Grain Crops in Hydrothermally Limited Areas" Plants 14, no. 24: 3736. https://doi.org/10.3390/plants14243736
APA StyleMa, Q., Yin, F., Zhou, X., Wang, L., Zhu, K., & Li, X. (2025). Biomass Productivity and Water Use Efficiency Are Elevated in Forage Crops Compared with Grain Crops in Hydrothermally Limited Areas. Plants, 14(24), 3736. https://doi.org/10.3390/plants14243736

