Genetic Resources of Cereal and Oilseed Crops for Heterotic Hybrid Breeding
Abstract
1. Introduction
2. CMS-Rf Genetic Systems
2.1. CMS Types Exploited for Hybrid Production in Major Cereal and Oilseed Crops
2.2. The CMS-Associated Genes
2.3. Genetic Mechanisms Associated with the Suppression of the CMS Trait
| Species (Common Name) | CMS Type | Associated ORF | Rf Locus | Chr | Candidate Rf Gene ID | Encoded Protein | References |
|---|---|---|---|---|---|---|---|
| Oryza sativa L. (rice) | Boro II (BT) | atp6-orf79 | Rf1 (Rf5) | 10 | AB110016.2 * | PPR | [61,79,80,81] |
| Lead (LD) | L-ATP6-orf79 | Rf2 | 2 | AB583700.1 * | Non-PPR protein containing a glycine-rich domain (GRP162) | [60] | |
| Honglian (HL) | Atp6-orf79 | Rf5 | 10 | MN592706.1 * | PPR | [61,82,83] | |
| Chinese wild (CW) | orf307 | Rf17 (RMS) | 4L | LC456268.1 * | A protein with a segment partially similar to acyl-carrier protein synthase (ACPS) | [84,85,86,87] | |
| CMS-wild-abortive (WA) | rpl5-WA352c(T) | Rf3 Rf4 | 1 10 | MN592701.1 * | PPR PPR | [83,88,89] | |
| Sorghum bicolor (L.) Moench (sorghum) | CMS-A1 | orf107/urf209 atp6 | Rf1 Rf2 Rf5 Rf6 | 8 2 5 4 | XM_002442765.2 * XM_002459403.2 * LC494267.1 * Sobic.004G004100 ** | PPR PPR PPR PPR | [90,91,92,93] [68] |
| CMS-A2 | Rf5 | LC494267.1 * | PPR | [68] | |||
| Pennisetum glaucum (L.) R. Br. syn. Cenchrus americanus (L.) Morrone (pearl millet) | A1 A4 | involves cox1 involves cox3 | Single Rf locus Two Rf loci | PPR | [94,95,96,97] | ||
| Triticum aestivum L. (common wheat) | K | unique ORFs | Rfk1 | 1BS | TraesCS1B02G197400LC | Pectinesterase/pectinesterase inhibitor | [43,98,99] |
| T-CMS (Triticum timopheevii inducing cytoplasm) | orf279/atp8 | Rf1 Rf3 Rf9 | 1A 1B 6AS | XM_044588906.1 * MT014021 * MT015390 * | PPR PPR PPR, Mitochondrial transcription termination factors (mTERF) | [62,100,101,102,103] | |
| Hordeum vulgare L. (barley) | msm1 (male sterility maternal 1) msm2 (male sterility maternal 2) (derived from Hordeum vulgare ssp. spontaneum) | No data available | Rfm1 Rfm3 | 6HS 6HS | MF443757.1 * | PLS-DYW pentatricopeptide repeat (PPR) proteins Mitochondrial transcription termination factors (mTERF) | [104,105,106] |
| Secale cereale L. (rye) | Pampa | Rfp1 Rfp2 | 4RL 4RL | PPR, mTERF, GRP162 | [69,70,107] | ||
| Zea mays L. (maize) | T (Texas) | T-urf13 or urf13-atp4 | Rf1 | 3 | XM_035961723.1 * | PPR | [108,109,110] |
| T (Texas) | urf13 | Rf2 | 9 | U43082.1 * | Aldehyde dehydrogenase | [58,111] | |
| S | orf355-orf77 | Rf3 | 2 | NM_001197009.2 * | PPRE1(PPR) | [65,112,113,114] | |
| C (Charrua) | atp6-C | Rf4 Rf5 PPR153 Rf12 Rf*-A619 | 8 5 2 | XM_035964525.1 * Zm00001eb114660 ** Zm00001d007531 | bHLH PPR | [115,116,117] | |
| Helianthus annuus L. (sunflower) | PET1 | orfH522 16-kDa-protein | Rf1 Rf2 Rf7 | 13 | XM_022118415.2 * | PPR | [55,56,118,119,120] |
| PET2 | orf288, orf231 | Rf-PET2 | 13 | PPR | [121,122] | ||
| Brassica napus L. (rapeseed) | polima | orf224 (orf224/apt6) | Rfp | A9 | PPR | [123,124] | |
| ogura | orf138/atp8 | Rfo | C9 | FJ455099.1 * | PPR | [125,126,127] | |
| Brassica juncea (L.) Czern. | Hau | Orf288/atp6 | No data available | [128] |
3. Cytological Mechanisms Underlying the CMS Phenotype
3.1. Types of Anther (Microsporangium) Wall Development
3.2. History of Cytological Studies of Male Sterility
3.3. PCD and Other Models for CMS
3.4. A Range of Developmental Issues in the Microsporangium Can Lead to Male Sterility
3.5. A Variety of Phenotypes of CMS Sources
4. Genetic Resources of Cereal and Oilseed Crops for Heterotic Hybrid Breeding
4.1. Heterotic Hybrid Grouping of Outcrossing Cereal Plants
4.1.1. Maize
4.1.2. Sorghum
4.1.3. Ryegrass and Pearl Millet
4.2. Heterotic Hybrid Grouping of Self-Pollinating Cereal Crops
4.2.1. Rice
4.2.2. Wheat and Triticale
4.3. Oilseed Crops
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Volgin, V.V.; Ryzhenko, E.N. Development of the theory of heterosis in plants. Oil Crops 2024, 4, 117–131. [Google Scholar] [CrossRef]
- Hochholdinger, F.; Yu, P. Molecular concepts to explain heterosis in crops. Trends Plant Sci. 2025, 30, 95–104. [Google Scholar] [CrossRef]
- Shull, G.H. The composition of a field of maize. J. Hered. 1908, 4, 296–301. [Google Scholar] [CrossRef]
- Ter Steeg, E.M.S.; Struik, P.C.; Visser, R.G.F.; Lindhout, P. Crucial factors for the feasibility of commercial hybrid breeding in food crops. Nat. Plants 2022, 8, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Longin, C.F.H.; Mühleisen, J.; Maurer, H.P.; Zhang, H.; Gowda, M.; Reif, J.C. Hybrid breeding in autogamous cereals. Theor. Appl. Genet. 2012, 125, 1087–1096. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Pal, B.; Basnet, B.R.; Joshi, A.K. Hybrid wheat: Past, present and future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, M.M. Cytoplasmic inheritance of male sterility in Zea mays. Science 1931, 73, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Crow, J.F. 90 years ago: The beginning of hybrid maize. Genetics 1998, 148, 923–928. [Google Scholar] [CrossRef]
- Chen, L.; Lui, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef]
- Khan, I.U.; Arshad, M.; Khan, M.A.; Ashraf, M.; Saleem, A.; Awan, S.; Azam, S.; Shah, S.U.S. Heterosis expression analysis and its impact on different agro-morphological characters in sunflower (H. annuus L.) hybrids. Pakistan J. Agric. Res. 2019, 32, 325–333. [Google Scholar] [CrossRef]
- Al-Naggar, A.M.M.; Soliman, A.M.; Hussien, M.H.; Mohamed, A.M.H. Genetic diversity of maize inbred lines based on morphological traits and its association with heterosis. SABRAO J. Breed. Genet. 2022, 54, 589–597. [Google Scholar] [CrossRef]
- Abd-El-Aty, M.S.; Abo-Youssef, M.I.; Bahgt, M.M.; Ibrahim, O.M.; Faltakh, H.; Nouri, H.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; El-Tahan, A.M. Mode of gene action and heterosis for physiological, biochemical, and agronomic traits in some diverse rice genotypes under normal and drought conditions. Front. Plant Sci. 2023, 14, 1108977. [Google Scholar] [CrossRef]
- Hoecker, N.; Keller, B.; Piepho, H.P.; Hochholdinger, F. Manifestation of heterosis during early maize (Zea mays L.) root development. Theor. Appl. Genet. 2006, 112, 421–429. [Google Scholar] [CrossRef]
- Abera, W.; Hussein, S.; Derera, J.; Worku, M.; Laing, M. Heterosis and combining ability of elite maize inbred lines under northern corn leaf blight disease prone environments of the mid-altitude tropics. Euphytica 2016, 208, 391–400. [Google Scholar] [CrossRef]
- Garcia, A.A.F.; Frisch, M.; Weng, Y.; Varshney, R.; Sorrells, M.; Fang, D.D. Heterosis and hybrid breeding. Theor. Appl. Genet. 2025, 138, 69. [Google Scholar] [CrossRef]
- Jones, D.F. Dominance of linked factors as a means of accounting for heterosis. Genetics 2017, 2, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Mather, K. The genetical basis of heterosis. Proc. R. Soc. Lond. Ser. B 1955, 144, 143–150. [Google Scholar] [CrossRef]
- East, E.M. Heterosis. Genetics 1936, 21, 375–397. [Google Scholar] [CrossRef]
- Powers, L. An expansion of Jones’s theory for the explanation of heterosis. Am. Nat. 1944, 78, 275–280. [Google Scholar] [CrossRef]
- Khotyleva, L.V.; Kilchevsky, A.V.; Shapturenko, M.N. Theoretical aspects of heterosis. Vavilov J. Genet. Breed. 2016, 20, 482–492. [Google Scholar] [CrossRef][Green Version]
- Anisimova, I.N.; Konarev, A.V.; Gavrilova, V.A.; Rozhkova, V.T.; Fido, R.F.; Tatham, A.S.; Shewry, P.R. Polymorphism and inheritance of methionine-rich 2S albumins in sunflower. Euphytica 2003, 129, 99–107. [Google Scholar] [CrossRef]
- Rehman, A.u.; Dang, T.; Qamar, S.; Ilyas, A.; Fatema, R.; Kafle, M.; Hussain, Z.; Masood, S.; Iqbal, S.; Shahzad, K. Revisiting plant heterosis—From field scale to molecules. Genes 2021, 12, 1688. [Google Scholar] [CrossRef]
- Lin, Z.; Qin, P.; Zhang, X.; Fu, C.; Deng, H.; Fu, X.; Huang, Z.; Jiang, S.; Li, C.; Tang, X.; et al. Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proc. Natl. Acad. Sci. USA 2020, 117, 4623–4631. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hou, M.; Shi, J.; Ku, L.; Song, W.; Li, C.; Ning, Q.; Li, X.; Li, C.; Zhao, B.; et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nat. Genet. 2023, 55, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Paschold, A.; Jia, Y.; Marcon, C.; Lund, S.; Larson, N.B.; Yeh, C.T.; Ossowski, S.; Lanz, C.; Nettleton, D.; Schnable, P.S.; et al. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 2012, 22, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, Y.; Luo, K. Molecular mechanisms of heterosis and its applications in tree breeding: Progress and perspectives. Int. J. Mol. Sci. 2024, 25, 12344. [Google Scholar] [CrossRef]
- Shapturenko, M.N.; Khotyleva, L.V. Heterosis: Current advances in the search for molecular mechanisms. Vavilov J. Genet. Breed. 2016, 20, 683–694. [Google Scholar] [CrossRef]
- Xie, J.; Wang, W.; Yang, T.; Zhang, Q.; Zhang, Z.; Zhu, X.; Li, N.; Zhi, L.; Ma, X.; Zhang, S.; et al. Large-scale genomic and transcriptomic profiles of rice hybrids reveal a core mechanism underlying heterosis. Genome Biol. 2022, 23, 264. [Google Scholar] [CrossRef]
- Botet, R.; Keurentjes, J.J.B. The role of transcriptional regulation in hybrid vigor. Front. Plant Sci. 2020, 11, 410. [Google Scholar] [CrossRef]
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Nitnavare, R.B.; Bhatnagar-Mathur, P.; Reddy, P.S. Cytoplasmic male sterility-based hybrids: Mechanistic insights. Planta 2024, 260, 100. [Google Scholar] [CrossRef]
- Kaul, M.L.H. Male sterility in higher plants. In Monographs on Theoretical and Applied Genetics; Springer: Berlin/Heidelberg, Germany, 1988; Volume 10. [Google Scholar]
- Schnable, P.S.; Wise, R.P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 1998, 3, 175–180. [Google Scholar] [CrossRef]
- Ivanov, M.K.; Dymshits, G.M. Cytoplasmic male sterility and restoration of pollen fertility in higher plants. Russ. J. Genet. 2007, 43, 354–368. [Google Scholar] [CrossRef]
- Harlan, J.R.; de Wet, J.M.J. Towards a rational classification of cultivated plants. Taxon 1971, 20, 509–517. [Google Scholar] [CrossRef]
- Beckett, J.B. Classification of male-sterile cytoplasms in maize (Zea mays L.). Crop Sci. 1971, 11, 724–727. [Google Scholar] [CrossRef]
- Stephens, J.C.; Holland, R.F. Cytoplasmic male sterility for hybrid sorghum seed production. Agron. J. 1954, 46, 20–23. [Google Scholar] [CrossRef]
- Geiger, H.H.; Schnell, F.W. Cytoplasmatic male sterility in rye (Secale cereale L.). Crop Sci. 1970, 10, 590–593. [Google Scholar] [CrossRef]
- Ahokas, H. Cytoplasmic male sterility in barley. Acta Agric. Scand. 1979, 29, 219–224. [Google Scholar] [CrossRef]
- Fu, T.D. Production and research of rapeseed in the People’s Republic of China. Eucarpia Crucif. Newsl. 1981, 6, 6–7. [Google Scholar] [CrossRef]
- Wan, Z.; Jing, B.; Tu, J.; Ma, C.; Shen, J.; Yi, B.; Wen, J.; Huang, T.; Wang, X.; Fu, T. Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theor. Appl. Genet. 2008, 116, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Leclerq, P. Une sterilite cytoplasmique chez le tournesol. Ann. Amelior. Plant 1969, 19, 99–106. [Google Scholar]
- Liu, H.; Cui, P.; Zhan, K.; Lin, Q.; Zhuo, G.; Guo, X.; Ding, F.; Yang, W.; Liu, D.; Hu, S.; et al. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genom. 2011, 12, 163. [Google Scholar] [CrossRef]
- Wilson, J.A.; Ross, W.M. Male sterility interaction of the Triticum aestivum nucleus and Triticum timopheevii cytoplasm. Wheat Inf. Serv. 1962, 14, 29–30. [Google Scholar]
- Seiler, G.J.; Qi, L.L.; Marek, L.F. Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci. 2017, 57, 1083–1101. [Google Scholar] [CrossRef]
- Hanson, M.R.; Bentolila, S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 2004, 16, S154–S169. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, N.; Li, S.; Grover, C.E.; Nie, H.; Wendel, J.F.; Hua, J. Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit. Rev. Plant Sci. 2017, 36, 55–69. [Google Scholar] [CrossRef]
- Yang, H.; Xue, Y.; Li, B.; Lin, Y.; Li, H.; Guo, Z.; Li, W.; Fu, Z.; Ding, D.; Tang, J. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. Mol. Plant 2022, 15, 872–886. [Google Scholar] [CrossRef]
- Xing, M.; Peng, Z.; Guan, C.; Guan, M. Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus. PLoS ONE 2023, 13, e0284287. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Xu, H.; Liu, Z.; Guo, J.; Li, H.; Chen, L.; Fang, C.; Zhang, Q.; Bai, M.; Yao, N.; et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 2013, 45, 573–577. [Google Scholar] [CrossRef]
- Rhoads, D.M.; Levings, C.S.; Siedow, J.N. URF13, a ligand-gated, pore-forming receptor for T-toxin in the inner membrane of cms-T mitochondria. J. Bioenerg. Biomembr. 1995, 27, 437–445. [Google Scholar] [CrossRef]
- Fujii, S.; Bond, C.S.; Small, I.D. Selection patterns on restorer-like genes reveals a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc. Natl. Acad. Sci. USA 2011, 108, 1723–1728. [Google Scholar] [CrossRef]
- Dahan, J.; Mireau, H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol. 2013, 10, 1469–1476. [Google Scholar] [CrossRef]
- Schmitz-Linneweber, C.; Smal, I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci. 2008, 13, 663–670. [Google Scholar] [CrossRef]
- Goryunov, D.V.; Anisimova, I.N.; Gavrilova, V.A.; Chernova, A.I.; Sotnikova, E.A.; Martynova, E.U.; Boldyrev, S.V.; Ayupova, A.F.; Gubaev, R.F.; Mazin, P.V.; et al. Association mapping of fertility restorer gene for CMS PET1 in sunflower. Agronomy 2019, 9, 49. [Google Scholar] [CrossRef]
- Horn, R.; Radanovic, A.; Fuhrmann, L.; Sprycha, Y.; Hamrit, S.; Jockovic, M.; Miladinovic, D.; Jansen, C. Development and validation of markers for the fertility restorer gene Rf1 in sunflower. Int. J. Mol. Sci. 2019, 20, 1260. [Google Scholar] [CrossRef] [PubMed]
- Sivolapova, A.B.; Polivanova, O.B.; Goryunov, D.V.; Chebanova, Y.V.; Fedorova, A.V.; Sotnikova, E.A.; Karabitsina, Y.I.; Benko, N.I.; Mukhina, Z.M.; Anisimova, I.N.; et al. Refinement of Rf1-gene localization and development of the new molecular markers for fertility restoration in sunflower. Mol. Biol. Rep. 2023, 50, 7919–7926. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wise, R.P.; Schnable, P.S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 1996, 272, 1334–1336. [Google Scholar] [CrossRef]
- Suketomo, C.; Kazama, T.; Toriyama, K. Fertility restoration of Chinese wild rice-type cytoplasmic male sterility by CRISPR/Cas9-mediated genome editing of nuclear-encoded RETROGRADE-REGULATED MALE STERILITY. Plant Biotechnol. 2020, 37, 285–292. [Google Scholar] [CrossRef]
- Itabashi, E.; Iwata, N.; Fujii, S.; Kazama, T.; Toriyama, K. The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J. 2011, 65, 359–367. [Google Scholar] [CrossRef]
- Hu, J.; Wang, K.; Huang, W.; Liu, G.; Gao, Y.; Wang, J.; Huang, Q.; Ji, Y.; Qin, X.; Wan, L.; et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 2012, 24, 109–122. [Google Scholar] [CrossRef]
- Melonek, J.; Duarte, J.; Martin, J.; Beuf, L.; Murigneux, A.; Varenne, P.; Comadran, J.; Specel, S.; Levadoux, S.; Bernath-Levin, K.; et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat. Commun. 2021, 12, 1036. [Google Scholar] [CrossRef]
- Brownfield, L. Plant breeding: Revealing the secrets of cytoplasmic male sterility in wheat. Curr. Biol. 2021, 31, R724–R726. [Google Scholar] [CrossRef]
- Tyrka, M.; Bakera, B.; Szeliga, M.; Święcicka, M.; Krajewski, P.; Mokrzycka, M.; Rakoczy-Trojanowska, M. Identification of Rf genes in hexaploid wheat (Triticum aestivum L.) by RNA-seq and paralog analyses. Int. J. Mol Sci. 2021, 22, 9146. [Google Scholar] [CrossRef]
- Feng, Y.; Zheng, Q.; Song, H.; Wang, Y.; Wang, H.; Jiang, L.; Yan, J.; Zheng, Y.; Yue, B. Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize. Theor. Appl. Genet. 2015, 128, 2341–2350. [Google Scholar] [CrossRef]
- Hu, B.L.; Xie, J.K.; Wan, Y.; Zhang, J.W.; Zhang, F.T.; Li, X. Mapping QTLs for fertility restoration of different cytoplasmic male sterility types in rice using two Oryza sativa × O. rufipogon backcross inbred line populations. Biomed. Res. Int. 2016, 2016, 9236573. [Google Scholar] [CrossRef]
- Kante, M.; Rattunde, H.F.W.; Nébié, B.; Weltzien, E.; Haussmann, B.I.G.; Leiser, W.L. QTL mapping and validation of fertility restoration in West African sorghum A1 cytoplasm and identification of a potential causative mutation for Rf2. Theor. Appl. Genet. 2018, 131, 2397–2412. [Google Scholar] [CrossRef]
- Kiyosawa, A.; Yonemaru, J.; Kawahigashi, H.; Goto, K. Analysis of quantitative trait loci for fertility restoration in seven F2 populations derived from sorghum F1 hybrids bred in Japan. Breed. Sci. 2020, 70, 379–386. [Google Scholar] [CrossRef]
- Miedaner, T.; Glass, C.; Dreyer, F.; Wilde, P.; Wortmann, H.; Geiger, H.H. Mapping of genes for male-fertility restoration in ‘Pampa’ CMS winter rye (Secale cereale L.). Theor. Appl. Genet. 2000, 101, 1226–1233. [Google Scholar] [CrossRef]
- Niedziela, A.; Brukwiński, W.; Bednarek, P.T. Genetic mapping of pollen fertility restoration QTLs in rye (Secale cereale L.) with CMS Pampa. J. Appl. Genet. 2021, 62, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Si, J.; Chen, L.; Fang, Z.; Zhuang, M.; Lv, H.; Wang, Y.; Ji, J.; Yu, H.; Zhang, Y. Mechanism and utilization of Ogura cytoplasmic male sterility in Cruciferae crops. Int. J. Mol. Sci. 2022, 23, 9099. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.C.; Huang, D.J.; Tan, Y.L.; Wang, S.H.; Tan, X.L. Genetic analysis of fertility revertants identified in rice CMS populations. Crop Sci. 2010, 50, 903–908. [Google Scholar] [CrossRef]
- Small, I.D.; Earle, E.D.; Escote-Carlson, L.J.; Gabay-Laughnan, S.; Laughnan, J.R.; Leaver, C.J. A comparison of cytoplasmic revertants to fertility from different CMS-S maize sources. Theor. Appl. Genet. 1988, 76, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Kaur, A.P.; Mackenzie, S.A.; Dweikat, I.M. Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor. Appl. Genet. 2009, 118, 1361–1370. [Google Scholar] [CrossRef]
- Nan, G.L.; Zhai, J.X.; Arikit, S.; Morrow, D.; Fernandes, J.; Mai, L.; Nguyen, N.; Meyers, B.C.; Walbot, V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development 2017, 144, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Jaqueth, J.S.; Hou, Z.; Zheng, P.; Ren, R.; Nagel, B.A.; Cutter, G.; Niu, X.; Vollbrecht, E.; Greene, T.W.; Kumpatla, S.P. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 2020, 101, 101–111. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Liu, X.; Zhang, P.; Zhao, Z.; Yi, H.; Cao, M. Identification of maize Rf4-restorer lines and development of a CAPS marker for Rf4. Agronomy 2022, 12, 1506. [Google Scholar] [CrossRef]
- Zhao, N.; Li, Z.; Zhang, L.; Yang, X.; Mackenzie, S.A.; Hu, Z.; Zhang, J. MutS HOMOLOG1 mediates fertility reversion from cytoplasmic male sterile Brassica juncea in response to environment. Plant Cell Environ. 2021, 44, 234–246. [Google Scholar] [CrossRef]
- Kazama, T.; Toriyama, K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 2006, 544, 99–102. [Google Scholar] [CrossRef]
- Komori, T.; Imaseki, H. Transgenic rice hybrids that carry the Rf-1 gene at multiple loci show improved fertility at low temperature. Plant Cell Environ. 2005, 28, 425–431. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Y.; Li, X.; Zhang, Q.; Chen, L.; Wu, H.; Su, D.; Chen, Y.; Guo, J.; Luo, D.; et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 2006, 18, 676–687. [Google Scholar] [CrossRef]
- Huang, J.Z.; E, Z.G.; Zhang, H.L.; Shu, Q.Y. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. Rice 2014, 7, 13. [Google Scholar] [CrossRef]
- Li, P.; Zhou, H.; Yang, H.; Xia, D.; Liu, R.; Sun, P.; Wang, Q.; Gao, G.; Zhang, Q.; Wang, G.; et al. Genome-Wide Association Studies reveal the genetic basis of fertility restoration of CMS-WA and CMS-HL in xian/indica and aus accessions of rice (Oryza sativa L.). Rice 2020, 13, 11. [Google Scholar] [CrossRef]
- Fujii, S.; Kazama, T.; Yamada, M.; Toriyama, K. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes. BMC Genom. 2010, 11, 209. [Google Scholar] [CrossRef]
- Fujii, S.; Komatsu, S.; Toriyama, K. Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant Mol. Biol. 2007, 63, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Toriyama, K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc. Natl. Acad. Sci. USA 2009, 106, 9513–9518. [Google Scholar] [CrossRef]
- Toriyama, K.; Kazama, T.; Sato, T.; Fukuta, Y.; Oka, M. Development of cytoplasmic male sterile lines and restorer lines of various elite Indica Group rice cultivars using CW-CMS/Rf17 system. Rice 2019, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Luo, D.; Zhou, D.; Zhang, Q.; Tian, D.; Zheng, X.; Chen, L.; Liu, Y.-G. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol. Plant 2014, 7, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Xu, Z.; Zhao, X.; Wan, Z.; Cheng, X.; Liu, Q.; Gu, M.; Tang, S. The effects of Rf4 and the genetic mechanism behind fertility restoration of wild abortive cytoplasmic male sterility (WA-CMS) in Japonica rice (Oryza sativa ssp. Japonica). Rice 2022, 15, 59. [Google Scholar] [CrossRef]
- Klein, R.R.; Klein, P.E.; Mullet, J.E.; Minx, P.; Rooney, W.L.; Schertz, K.F. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor. Appl. Genet. 2005, 111, 994–1012. [Google Scholar] [CrossRef]
- Jordan, D.R.; Mace, E.S.; Henzell, R.G.; Klein, P.E.; Klein, R.R. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 2010, 120, 1279–1287. [Google Scholar] [CrossRef]
- Jordan, D.R.; Klein, R.R.; Sakrewski, K.G.; Henzell, R.G.; Klein, P.E.; Mace, E.S. Mapping and characterization of Rf 5 a new gene conditioning pollen fertility restoration in A1 and A2 cytoplasm in sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 2011, 123, 383–396. [Google Scholar] [CrossRef]
- Praveen, M.; Anurag Uttam, G.; Suneetha, N.; Umakanth, A.; Patil, J.V.; Madhusudhana, R. Inheritance and molecular mapping of Rf6 locus with pollen fertility restoration ability on A1 and A2 cytoplasms in sorghum. Plant Sci. 2015, 238, 73–80. [Google Scholar] [CrossRef]
- Govindaraj, M.; Rai, K.N.; Cherian, B.; Pfeiffer, W.H.; Kanatti, A.; Shivade, H. Breeding biofortified pearl millet varieties and hybrids to enhance millet markets for human nutrition. Agriculture 2019, 9, 106. [Google Scholar] [CrossRef]
- Jorben, J.; Singh, S.P.; Satyavathi, C.T.; Sankar, S.M.; Bhat, J.S.; Durgesh, K.; Mallik, M. Inheritance of fertility restoration of A4 cytoplasm in pearl millet [Pennisetum glaucum (L.) R. Br.]. Indian J. Genet. Plant Breed. 2020, 80, 64–69. [Google Scholar] [CrossRef]
- Srivastava, R.; Bollam, S.; Pujarula, V.; Pusuluri, M.; Singh, R.B.; Potupureddi, G.; Gupta, R. Exploitation of heterosis in pearl millet: A review. Plants 2020, 9, 807. [Google Scholar] [CrossRef]
- Ramu, P.; Srivastava, R.K.; Sanyal, A.; Fengler, K.; Cao, J.; Zhang, Y.; Nimkar, M.; Gerke, J.; Shreedharan, S.; Llaca, V.; et al. Improved pearl millet genomes representing the global heterotic pool offer a framework for molecular breeding applications. Commun Biol. 2023, 6, 902. [Google Scholar] [CrossRef]
- Wu, B.; Xia, Y.; Zhang, G.; Wang, Y.; Wang, J.; Ma, S.; Song, Y.; Yang, Z.; Ma, L.; Niu, N. Transcriptomics reveals a core transcriptional network of K-type cytoplasmic male sterility microspore abortion in wheat (Triticum aestivum L.). BMC Plant Biol. 2023, 23, 618. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jia, Y.; Niu, F.; Wu, Y.; Ye, J.; Yang, X.; Zhang, L.; Song, X. Identification and validation of genetic locus Rfk1 for wheat fertility restoration in the presence of Aegilops kotschyi cytoplasm. Theor. Appl. Genet. 2021, 134, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Geyer, M.; Bund, A.; Albrecht, T.; Hartl, L.; Mohler, V. Distribution of the fertility-restoring gene Rf3 in common and spelt wheat determined by an informative SNP marker. Mol. Breed. 2016, 36, 167. [Google Scholar] [CrossRef]
- Geyer, M.; Albrecht, T.; Hartl, L.; Mohler, V. Exploring the genetics of fertility restoration controlled by Rf1 in common wheat (Triticum aestivum L.) using high-density linkage maps. Mol. Genet. Genom. 2018, 293, 451–462. [Google Scholar] [CrossRef]
- Würschum, T.; Leiser, W.L.; Weissmann, S.; Maurer, H.P. Genetic architecture of male fertility restoration of Triticum timopheevii cytoplasm and fine-mapping of the major restorer locus Rf3 on chromosome 1B. Theor. Appl. Genet. 2017, 130, 1253–1266. [Google Scholar] [CrossRef]
- Shahinnia, F.; Geyer, M.; Block, A.; Mohler, V.; Hartl, L. Identification of Rf9, a gene contributing to the genetic complexity of fertility restoration in hybrid wheat. Front. Plant Sci. 2020, 11, 577475. [Google Scholar] [CrossRef]
- Rizzolatti, C.; Bury, P.; Tatara, E.; Pin, P.A.; Rodde, N.; Berges, H.; Budar, F.; Mireau, H.; Gielen, J.J. Map-based cloning of the fertility restoration locus Rfm1 in cultivated barley (Hordeum vulgare). Euphytica 2017, 213, 276. [Google Scholar] [CrossRef]
- Bernhard, T.; Koch, M.; Snowdon, R.J.; Friedt, W.; Wittkop, B. Undesired fertility restoration in msm1 barley associates with two mTERF genes. Theor. Appl. Genet. 2019, 132, 1335–1350. [Google Scholar] [CrossRef]
- Ahokas, H. Cytoplasmic male sterility in barley. XV. PI 296897 as a restorer of fertility in msm1 and msm2 cytoplasms. Hereditas 1983, 99, 157–159. [Google Scholar] [CrossRef]
- Steinborn, R.; Schwabe, W.; Weihe, A.; Adolf, K.; Melz, G.; Börner, T. A new type of cytoplasmic male sterility in rye (Secale cereale L.): Analysis of mitochondrial DNA. Theor. Appl. Genet. 1993, 85, 822–824. [Google Scholar] [CrossRef]
- Wise, R.P.; Bronson, C.R.; Schnable, P.S.; Horner, H.T. The genetics, pathology, and molecular biology of T-cytoplasm male sterility in maize. Adv. Agron. 1999, 65, 79–130. [Google Scholar] [CrossRef]
- Meyer, J.; Pei, D.; Wise, R.P. Rf8-mediated T-urf13 transcript accumulation coincides with a pentatricopeptide repeat cluster on maize chromosome 2L. Plant Genome J. 2011, 4, 283–299. [Google Scholar] [CrossRef]
- Kennell, J.C.; Pring, D.R. Initiation and processing of atp6,T-urf13 and ORF221 transcripts from mitochondria of T cytoplasm maize. Mol. Gen. Genet. 1989, 216, 16–24. [Google Scholar] [CrossRef]
- Snyder, R.J.; Duvick, D.N. Cromosomal location of Rf2, a restorer gene for cytoplasmic pollen sterile maize. Crop Sci. 1969, 9, 156–157. [Google Scholar] [CrossRef]
- Gabay-Laughnan, S.; Chase, C.D.; Ortega, V.M.; Zhao, L. Molecular-genetic characterization of CMS-S restorer-of-fertility alleles identified in Mexican maize and teosinte. Genetics 2004, 166, 959–970. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, Y. Identification of candidate genes associated with fertility restoration in maize S cytoplasmic male sterility. Plant Mol. Biol. Rep. 2008, 26, 6071. [Google Scholar] [CrossRef]
- Qin, X.; Tian, S.; Zhang, W.; Zheng, Q.; Wang, H.; Feng, Y.; Lin, Y.; Tang, J.; Wang, Y.; Yan, J.; et al. The main restorer Rf3 of maize S type cytoplasmic male sterility encodes a PPR protein that functions in reduction of the transcripts of orf355. Mol. Plant 2021, 14, 1961–1964. [Google Scholar] [CrossRef]
- Dewey, R.; Timothy, D.; Levings, C. Chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr. Genet. 1991, 20, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Yongming, L.; Zhuofan, Z.; Yanli, L.; Chuan, L.; Jing, W.; Boxiao, D.; Bing, L.; Tao, Q.; Wenbing, Z.; Moju, C. A preliminary identification of Rf*-A619, a novel restorer gene for CMS-C in maize (Zea mays L.). PeerJ 2016, 4, e2719. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Z.; Zheng, M.; Liu, Y.; Niu, Q.; Liu, X.; Shi, Z.; Yi, H.; Yu, T.; Rong, T.; et al. Fine mapping and candidate gene analysis of a novel fertility restorer gene for C-type cytoplasmic male sterility in maize (Zea mays L.). Theor. Appl. Genet. 2023, 136, 234. [Google Scholar] [CrossRef]
- De la Canal, L.; Crouzillat, D.; Quetier, F.; Ledoigt, G. A transcriptional alteration on the atp9 gene is associated with a sunflower male sterile cytoplasm. Theor. Appl. Genet. 2001, 102, 1185–1189. [Google Scholar] [CrossRef]
- Horn, R.; Kusterer, B.; Lazarescu, E.; Prüfe, M.; Friedt, W. Molecular mapping of the Rf1 gene restoring pollen fertility in PET1-based F1 hybrids in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2003, 106, 599–606. [Google Scholar] [CrossRef]
- Talukder, Z.I.; Ma, G.; Hulke, B.S.; Jan, C.C.; Qi, L. Linkage mapping and enome-Wide Association Studies of the Rf gene cluster in sunflower (Helianthus annuus L.) and their distribution in world sunflower collections. Front. Genet. 2019, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Whelan, E.D.P. A new source of cytoplasmic male sterility in sunflower. Euphytica 1980, 29, 33–46. [Google Scholar] [CrossRef]
- Reddemann, A.; Horn, R. Recombination events involving the atp9 gene are associated with male sterility of CMS PET2 in sunflower. Int. J. Mol. Sci. 2018, 19, 806. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, P.; Long, F.; Hong, D.; He, Q.; Yang, G. Fine mapping and candidate gene analysis of the nuclear restorer gene Rfp for pol CMS in rapeseed (Brassica napus L.). Theor. Appl. Genet. 2012, 125, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Brown, G.G. Characterization of expression of a mitochondrial gene region associated with the Brassica “Polima” CMS: Developmental influences. Curr. Genet. 1993, 24, 316–322. [Google Scholar] [CrossRef]
- Grelon, M.; Budar, F.; Bonhomme, S.; Pelletier, G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol. Gen. Genet. 1994, 243, 540–547. [Google Scholar] [CrossRef]
- Yamagishi, H.; Hashimoto, A.; Fukunaga, A.; Takenaka, M.; Terachi, T. Identification and variation of a new restorer of fertility gene that induces cleavage in orf138 mRNA of Ogura male sterility in radish. Theor. Appl. Genet. 2024, 137, 231. [Google Scholar] [CrossRef]
- Uyttewaal, M.; Arnal, N.; Quadrado, M.; Martin-Canadell, A.; Vrielynck, N.; Hiard, S.; Gherbi, H.; Bendahmane, A.; Budar, F.; Mireau, H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 2008, 20, 3331–3345. [Google Scholar] [CrossRef]
- Jing, B.; Heng, S.; Tong, D.; Wan, Z.; Fu, T.; Tu, J.; Ma, C.; Yi, B.; Wen, J.; Shen, J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J. Exp. Bot. 2012, 63, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.L. Anther wall formation. In Systematic Embryology of the Angiosperms; Wiley: New York, NY, USA; London, UK; Sydney, Australia, 1966; pp. 8–11. [Google Scholar]
- Teryokhin, E.S.; Batygina, T.B.; Shamrov, I.I. New approach to the classifying modes of microsporangiumwall formation. In Embryology of Flowering Plants: Terminology and Concepts, Volume 1: Generative Organs of Flower; Enfield, Plymouth; CRC Press: Boca Raton, FL, USA, 2002; pp. 32–39. [Google Scholar]
- Kamelina, O.P. New approach to the classification of tapetum types. In Embryology of Flowering Plants: Terminology and Concepts, Volume 1: Generative Organs of Flower; CRC Press: Boca Raton, FL, USA, 2002; pp. 28–32. [Google Scholar]
- Biswas, R.; Chaudhuri, S. The tale of tapetum: From anther walls to pollen wall. Nucleus 2024, 67, 611–630. [Google Scholar] [CrossRef]
- Gourret, J.P.; Delourme, R.; Renard, M. Expression of ogu cytoplasmic male sterility in cybrids of Brassica napus. Theor. Appl. Genet. 1992, 83, 549–556. [Google Scholar] [CrossRef]
- Kamelina, O.P. Systematic Embryology of Flowering Plants. Dicotyledons; Publishing House “Arctic”: Barnaul, Russia, 2009; 501p. [Google Scholar]
- Kamelina, O.P. Systematic Embryology of Flowering Plants. Monocotyledons; Publishing House “Arctic”: Barnaul, Russia, 2011; 501p. [Google Scholar]
- Rhoades, M.M. The cytoplasmic inheritance of male sterility in Zea mays. J. Genet. 1933, 27, 71–93. [Google Scholar] [CrossRef]
- Kley van der, F.K. Male sterility and its importance in breeding heterosis varieties. Euphytica 1954, 3, 117–124. [Google Scholar] [CrossRef]
- Pirev, M.N. Histochemical study of anthers of fertile and sterile sunflower pollen forms. In Biology of Fertilization and Heterosis of Cultivated Plants; Iss. 4. Kishinev; Academy of Sciences of Moldova: Chișinău, Moldova, 1966; pp. 98–113. [Google Scholar]
- Laser, K.D.; Lersten, N.R. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot. Rev. 1972, 38, 425–454. [Google Scholar] [CrossRef]
- Nakashima, H.; Hosokawa, S. Studies on histological features of male sterility in sunflower (Helianthus annuus L.). Jpn. J. Crop Sci. 1974, 43, 475–481. [Google Scholar] [CrossRef][Green Version]
- Seetharam, A.; Kusuma-Kumari, P. Histological studies on cytoplasmic and GA-induced male sterile lines of sunflower. Indian J. Genet. Plant Breed. 1976, 36, 342–344. [Google Scholar][Green Version]
- Kini, A.V.; Seetharam, A.S.; Joshi, S.S. Mechanism of pollen abortion in cytoplasmic male sterile line of sunflower. Cytologia 1994, 59, 121–124. [Google Scholar] [CrossRef][Green Version]
- Horner, H.T., Jr. A comparative light- and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am. J. Bot. 1977, 64, 745–759. [Google Scholar] [CrossRef]
- Simonenko, V.K.; Karpovich, E.V. Cytological manifestation of various types of male sterility in sunflower. Sci. Tech. Bull. All-Union Breed. Genet. Inst. 1978, 31, 32–38. [Google Scholar]
- Laveau, J.H.; Schneider, C.; Berville, A. Microsporogenesis abortion in cytoplasmic male sterile plants from H. petiolaris or H. petiolaris fallax crossed by sunflower (Helianthus annuus). Ann. Bot. 1989, 63, 137–148. [Google Scholar] [CrossRef]
- Hanson, M.R. Plant mitochondrial mutations and male sterility. Annu. Rev. Genet. 1991, 25, 461–486. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.J.; Monéger, F.; Leaver, C.J. Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell 1994, 6, 811–825. [Google Scholar] [CrossRef][Green Version]
- Balk, J.; Leaver, C.J. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 2001, 13, 1803–1818. [Google Scholar] [CrossRef]
- Ku, S.; Yoon, H.; Suh, H.S.; Chung, Y.-Y. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta 2003, 217, 559–565. [Google Scholar] [CrossRef]
- Budar, F.; Pelletier, G. Male sterility in plants: Occurrence, determinism, significance and use. Comptes Rendus Acad. Sci. Ser. III 2001, 324, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Bohra, A.; Tiwari, A.; Pareek, S.; Joshi, R.; Naik, S.J.S.; Kumari, K.; Verma, R.L.; Parihar, A.K.; Patil, P.G.; Dixit, G.P. Past and future of cytoplasmic male sterility and heterosis breeding in crop plants. Plant Cell Rep. 2025, 44, 33. [Google Scholar] [CrossRef] [PubMed]
- Meric, C. Histological aspects of anther wall in male fertile and cytoplasmic male sterile sunflower (Helianthus annuus L.). Helia 2003, 26, 7–18. [Google Scholar] [CrossRef]
- Meric, C.; Dane, F.; Olgun, G. Histological aspects of anther wall in male fertile and cytoplasmic male sterile Helianthus annuus L. (Sunflower). Asian J. Plant Sci. 2004, 3, 145–150. [Google Scholar] [CrossRef]
- Wang, J.; Ying, S.; Long, W.; Luo, L.; Qian, M.; Chen, W.; Luo, L.; Xu, W.; Li, Y.; Cai, Y.; et al. Integrated transcriptomic and metabolomic analysis provides insight into the pollen development of CMS-D1 rice. BMC Plant Biol. 2024, 24, 535. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Shi, Z.; Zhang, P.; Su, S.; Jiang, B.; Liu, X.; Zhao, Z.; Zhang, S.; Huang, Q.; Li, C.; et al. ZmMS39 encodes a callose synthase essential for male fertility in maize (Zea mays L.). Crop J. 2023, 11, 394–404. [Google Scholar] [CrossRef]
- Chaubal, R.; Zanella, C.; Trimnell, M.R.; Fox, T.W.; Albertsen, M.C.; Bedinger, P. Two male-sterile mutants of Zea mays (Poaceae) with an extra cell division in the anther wall. Am. J. Bot. 2000, 87, 1193–1201. [Google Scholar] [CrossRef]
- Anisimova, I.N.; Dubovskaya, A.G. CMS systems in rapeseed and their use in the breeding of domestic hybrids. Proc. Appl. Bot. Gen. Breed. 2020, 181, 171–180. [Google Scholar] [CrossRef]
- Shi, S.; Ding, D.; Mei, S.; Wang, J. A comparative light and electron microscopic analysis of microspore and tapetup development in fertile and cytoplasmic male sterile radish. Protoplasma 2010, 241, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Zhao, A.; Liu, H.; Jan, C.C.; Qi, D.; Liu, G. Morphological and cytological study in a new type of cytoplasmic male sterile line CMS-GIG2 in sunflower (Helianthus annuus). Plant Breed. 2010, 129, 19–23. [Google Scholar] [CrossRef]
- Horn, R.; Friedt, W. CMS sources in sunflower: Different origin but same mechanism? Theor. Appl. Genet. 1999, 98, 195–201. [Google Scholar] [CrossRef]
- Echeverria, M.M.; Salaberry, M.T.; Rodriguez, R.H. Characterization for agronomic use of cytoplasmic male-sterility in sunflower (Helianthus annuus L.) introduced from H. resinosus Small. Plant Breed. 2003, 122, 357–361. [Google Scholar] [CrossRef]
- Duvick, D. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Troyer, A.F. Temperate corn. Background, behavior and breeding. In Specialty Corn; Hallauer, A.R., Ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 393–466. [Google Scholar]
- Dziubetskyi, B.V.; Cherchel, V.Y.; Abelmasov, O.V.; Semenova, V.V.; Tagantsova, M.M. Iodent germplasm source material selection in development of maize hybrids for the steppe zone of Ukraine. Ukr. J. Ecol. 2020, 10, 76–84. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Miranda, J.B. Quantitative Genetics in Maize Breeding, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1981. [Google Scholar]
- Sidorova, V.V.; Konarev, A.V.; Kerv, Y.A. Zein patterns as effective markers of valuable agronomic traits in maize. Proc. Appl. Bot. Gen. Breed. 2023, 184, 160–175. [Google Scholar] [CrossRef]
- Govor, E.M.; Shimansky, L.P. Classification of self-pollinated lines of maize on the basis of electrophoretic mobility of zein components. Arable Farming Plant Breed. Belarus 2019, 55, 353–358. [Google Scholar]
- Zheng, D.H.; Van, K.J.; Wang, L.; Lee, S.H. Molecular genetic distance and hybrid performance between Chinese and American maize (Zea mays L.) inbreds. Aust. J. Agric. Res. 2008, 59, 1010–1020. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Zhang, Y.; Gu, R. Advances in research on the mechanism of heterosis in plants. Front. Plant Sci. 2021, 12, 745726. [Google Scholar] [CrossRef]
- Crozier, D.; Hoffmann, L.; Klein, P.E.; Klein, R.R.; Rooney, W.L. Predicting heterosis in grain sorghum hybrids using sequence-based genetic similarity estimates. J. Crop Improv. 2020, 34, 600–617. [Google Scholar] [CrossRef]
- Rajendran, A.; Muthian, A.; Joel, J.; Shanmugasundaram, P.; Raju, D. Heterotic grouping and patterning of quality protein maize inbreds based on genetic and molecular marker studies. Proc. Natl. Acad. Sci. USA 2014, 38, 10–20. [Google Scholar] [CrossRef]
- Bhatla, A.; Angidi, S.; Thomas, N.; Madankar, K.; Shahi, J.P. Classification of maize inbred lines into heterotic groups based on yield and yield attributing traits. Plant Genet. Resour. Charact. Util. 2025, 23, 27–39. [Google Scholar] [CrossRef]
- Jiang, F.; Yin, X.; Li, Z.W.; Guo, R.; Wang, J.; Fan, J.; Zhang, Y.; Kang, M.S.; Fan, X. Predicting heterosis via genetic distance and the number of SNPs in selected segments of chromosomes in maize. Front. Plant Sci. 2023, 14, 1111961. [Google Scholar] [CrossRef]
- Sang, Z.; Zhang, Z.; Yang, Y.; Li, Z.; Liu, X.; Xu, Y.; Li, W. Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions. J. Integr. Agric. 2022, 21, 2477–2491. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, J.; Guimaraes, C.T.; Taba, S.; Hao, Z.; Gao, S.; Chen, S.; Li, J.; Zhang, S.; Vivek, B.S.; et al. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor. Appl. Genet. 2009, 120, 93–115. [Google Scholar] [CrossRef]
- Dube, S.P.; Sibiya, J.; Kutu, F. Genetic diversity and population structure of maize inbred lines using phenotypic traits and single nucleotide polymorphism (SNP) markers. Sci. Rep. 2023, 13, 17851. [Google Scholar] [CrossRef] [PubMed]
- Adewale, S.A.; Badu-Apraku, B.; Richard, O.; Akinwale, R.O. Assessing the suitability of stress tolerant early-maturing maize (Zea mays) inbred lines for hybrid development using combining ability effects and DArTseq markers. Plant Breed. 2023, 142, 223–237. [Google Scholar] [CrossRef]
- Maazou, A.-R.S.; Gedil, M.; Adetimirin, V.O.; Unachukwu, N.; Mengesha, W.; Meseka, S.; Menkir, A. Heterotic grouping of provitamin A-enriched maize inbred lines for increased provitamin A content in hybrids. BMC Genom. Data 2023, 24, 57. [Google Scholar] [CrossRef] [PubMed]
- Verma, L.K.; Biradar, B.D.; Meena, A.K. Heterotic grouping in rabi sorghum [Sorghum bicolor (L.) Monech] through diallel analysis. Pharm. Innov. 2022, 11, 1955–1957. [Google Scholar]
- Amelework, B.; Shimelis, H.; Tongoona, P.; Laing, M.; Mengistu, F. Genetic variation in lowland sorghum (Sorghum bicolor (L.) Moench) landraces assessed by simple sequence repeats. Plant Genet. Res. 2015, 13, 131–141. [Google Scholar] [CrossRef]
- Silva, K.J.; Pastina, M.M.; Guimarães, C.T.; Magalhães, J.V.; Pimentel, L.D.; Schaffert, R.E.; Pinto, M.O.; Souza, V.F.; Bernardino, K.C.; Silva, M.J.; et al. Genetic diversity and heterotic grouping of sorghum lines using SNP markers. Sci. Agric. 2021, 78, e20200039. [Google Scholar] [CrossRef]
- Amelework, B.; Shimelis, H.; Laing, M. Genetic variation in sorghum as revealed by phenotypic and SSR markers: Implications for combining ability and heterosis for grain yield. Plant Genet. Res. 2017, 15, 335–347. [Google Scholar] [CrossRef]
- Sapkota, S.; Boyles, R.; Cooper, E.; Brenton, Z.; Myers, M.; Kresovich, S. Impact of sorghum racial structure and diversity on genomic prediction of grain yield components. Crop Sci. 2020, 60, 132–148. [Google Scholar] [CrossRef]
- Baggett, J.P.; Tillett, R.L.; Cooper, E.A.; Yerka, M.K. De novo identification and targeted sequencing of SSRs efficiently fingerprints Sorghum bicolor sub-population identity. PLoS ONE 2021, 16, e0248213. [Google Scholar] [CrossRef]
- Zhang, H.; Lyu, D.; Zhang, Y.; Wang, W.; Zhao, R.; Lü, P.; Zhao, W.; Zhou, Z.; Lu, S. Classification of heterotic groups and prediction of heterosis in sorghum based on Whole-Genome Resequencing. Int. J. Mol. Sci. 2025, 26, 7950. [Google Scholar] [CrossRef]
- Vogt, M.; Yates, S.; Sykes, T.; Luesink, W.; Koch, M.; Studer, B. Developing heterotic groups for successful hybrid breeding in perennial ryegrass. Agronomy 2020, 10, 1410. [Google Scholar] [CrossRef]
- Sattler, F.T.; Haussmann, B.I. A unified strategy for West African pearl millet hybrid and heterotic group development. Crop Sci. 2020, 60, 1–13. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, S.K. Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE 2019, 14, e0207463. [Google Scholar] [CrossRef]
- Hussain, I.; Ali, S.; Liu, W.; Awais, M.; Li, J.; Liao, Y.; Zhu, M.; Fu, C.; Liu, D.; Wang, F. Identification of heterotic groups and patterns based on genotypic and phenotypic characteristics among rice accessions of diverse origins. Front. Genet. 2022, 13, 811124. [Google Scholar] [CrossRef]
- Gu, Z.; Gong, J.; Zhu, Z.; Li, Z.; Feng, Q.; Wang, C.; Zhao, Y.; Zhan, Q.; Zhou, C.; Wang, A.; et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nat. Genet. 2023, 55, 1745–1756. [Google Scholar] [CrossRef]
- Gu, Z.; Han, B. Unlocking the mystery of heterosis opens the era of intelligent rice breeding. Plant Physiol. 2024, 196, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Z.; Liu, G.; Jiang, Y.; Maurer, H.P.; Würschum, T.; Mock, H.P.; Matros, A.; Ebmeyer, E.; Schachschneider, R.; et al. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc. Natl. Acad. Sci. USA 2015, 112, 15624–15629. [Google Scholar] [CrossRef] [PubMed]
- Boeven, P.H.; Longin, C.F.H.; Würschum, T. A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor. Appl. Genet. 2016, 129, 1231–1245. [Google Scholar] [CrossRef]
- Fischer, S.; Maurer, H.P.; Würschum, T.; Möhring, J.; Piepho, H.P.; Schön, C.C.; Thiemt, E.M.; Dhillon, B.S.; Weissmann, E.A.; Melchinger, A.E.; et al. Development of heterotic groups in triticale. Crop Sci. 2010, 50, 584–590. [Google Scholar] [CrossRef]
- Orlovskaya, O.A.; Koren, L.V.; Khotyleva, L.V. Impact of parents genetic divergence on heterosis of F1-hybrids of spring triticale. Ecol. Genet. 2012, 10, 3–9. [Google Scholar] [CrossRef]
- Avin, F.A.; Nabipour, A.; Zali, A.; Shahbazi, P.; Arockiaraj, J.; Bhassu, S. Identification of high diverse heterotic groups in sunflower inbred lines for further hybrid production. Res. Crops 2013, 14, 492–499. [Google Scholar]
- Hladni, N.; Zorić, M.; Terzić, S.; Ćurčić, N.; Satovic, Z.; Perović, D.; Panković, D. Comparison of methods for the estimation of best parent heterosis among lines developed from interspecific sunflower germplasm. Euphytica 2018, 214, 108. [Google Scholar] [CrossRef]
- Ibrar, D.; Khan, M.A.; Mahmood, T.; Ahmad, M.; Hafiz, I.A.; Jan, S.A.; Ahmad, R. Determination of heterotic groups among sunflower accessions through morphological traits and total seed storage proteins. Int. J. Agric. Biol. 2018, 20, 2025–2031. [Google Scholar]
- Ibrar, D.; Khan, S.; Raza, M.; Nawaz, M.; Hasnain, Z.; Kashif, M.; Rais, A.; Gul, S.; Ahmad, R.; Gaafar, A.R.Z. Application of machine learning for identification of heterotic groups in sunflower through combined approach of phenotyping, genotyping and protein profiling. Sci. Rep. 2024, 14, 7333. [Google Scholar] [CrossRef]
- Owens, G.L.; Baute, G.J.; Hubner, S.; Rieseberg, L.H. Genomic sequence and copy number evolution during hybrid crop development in sunflowers. Evol. Appl. 2019, 12, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Cendoya, M.G.; Grondona, M.; Zambelli, A. Assessment of genetic diversity and linkage disequilibrium within sunflower heterotic groups for improved elite breeding. J. Crop Sci. Biotechnol. 2025, 28, 563–576. [Google Scholar] [CrossRef]
- Krenzer, D.; Frisch, M.; Beckmann, K.; Kox, T.; Flachenecker, C.; Abbadi, A.; Snowdon, R.; Herzog, E. Simulation-based establishment of base pools for a hybrid breeding program in winter rapeseed. Theor. Appl. Genet. 2024, 137, 16. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anisimova, I.N.; Voronova, O.N.; Gavrilova, V.A.; Alpatieva, N.V.; Radchenko, E.E. Genetic Resources of Cereal and Oilseed Crops for Heterotic Hybrid Breeding. Plants 2025, 14, 3412. https://doi.org/10.3390/plants14223412
Anisimova IN, Voronova ON, Gavrilova VA, Alpatieva NV, Radchenko EE. Genetic Resources of Cereal and Oilseed Crops for Heterotic Hybrid Breeding. Plants. 2025; 14(22):3412. https://doi.org/10.3390/plants14223412
Chicago/Turabian StyleAnisimova, Irina N., Olga N. Voronova, Vera A. Gavrilova, Natalia V. Alpatieva, and Evgeny E. Radchenko. 2025. "Genetic Resources of Cereal and Oilseed Crops for Heterotic Hybrid Breeding" Plants 14, no. 22: 3412. https://doi.org/10.3390/plants14223412
APA StyleAnisimova, I. N., Voronova, O. N., Gavrilova, V. A., Alpatieva, N. V., & Radchenko, E. E. (2025). Genetic Resources of Cereal and Oilseed Crops for Heterotic Hybrid Breeding. Plants, 14(22), 3412. https://doi.org/10.3390/plants14223412

