Topographic Heterogeneity Outweighs Climate in Shaping Artemisia L. Species Richness and Endemism in the Hengduan Mountains, Southwest China
Abstract
1. Introduction
2. Results
2.1. Diversity of Artemisia Species in HDMs
2.2. Spatial Richness Patterns and Hotspots
2.3. Spatial Endemism Patterns and Hotspots
2.4. Topographic Heterogeneity Dominates the Variance Partitioning of Richness and Endemism
2.5. Correlation of Artemisia Species Richness and Weighted Endemism with Elevational Gradients in the HDMs
3. Discussion
3.1. Artemisia Species Distribution Hotspots in HDMs
3.2. Influence of Topography Heterogeneity on Artemisia Species Diversity and Endemism
4. Materials and Methods
4.1. Plants Data Collection and Assembly
4.2. Mapping Distribution Ranges
4.3. Calculation of Diversity and Endemism Indices
4.4. Evaluation of the Impact of Environmental Factors on Diversity Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torrell, M.; Garcia-Jacas, N.; Susanna, A.; Vallès, J. Phylogeny in Artemisia (Asteraceae, Anthemideae) Inferred from Nuclear Ribosomal DNA (ITS) Sequences. TAXON 1999, 48, 721–736. [Google Scholar] [CrossRef]
- Jiao, B.; Chen, C.; Wei, M.; Niu, G.; Zheng, J.; Zhang, G.; Shen, J.; Vitales, D.; Vallès, J.; Verloove, F.; et al. Phylogenomics and Morphological Evolution of the Mega-Diverse Genus Artemisia (Asteraceae: Anthemideae): Implications for Its Circumscription and Infrageneric Taxonomy. Ann. Bot. 2023, 131, 867–883. [Google Scholar] [CrossRef]
- Funk, V.A.; Bayer, R.J.; Keeley, S.; Chan, R.; Watson, L.; Gemeinholzer, B.; Schilling, E.; Panero, J.L.; Baldwin, B.G.; Garcia-Jacas, N.; et al. Everywhere but Antarctica: Using a Supertree to Understand the Diversity and Distribution of the Compositae. Biol. Skr. 2005, 55, 343–373. [Google Scholar]
- Ling, Y.R. On the Floristics of Artemisia L. in the World. Bull. Bot. Res. 1995, 15, 1–37. [Google Scholar]
- Ling, Y.R.; Humphries, C.J.; Gilbert, M.G. Artemisia L. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2011; Volume 20, pp. 1125–1151. [Google Scholar]
- Jiao, B.; Wei, M.; Niu, G.; Chen, X.; Liu, Y.; Huang, G.; Chen, C.; Zheng, J.; Shen, J.; Vitales, D.; et al. Global Phylogeny and Taxonomy of Artemisia. Nat. Commun. 2025, 16, 8648. [Google Scholar] [CrossRef] [PubMed]
- Vallès, J.; McArthur, E.D. Artemisia Systematics and Phylogeny: Cytogenetic and Molecular Insights. In Proceedings of Shrubland Ecosystem Genetics and Biodiversity; McArthur, E.D., Fairbanks, D.J., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Provo, UT, USA, 2001; pp. 67–74. [Google Scholar]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, Genome Evolution, Biotechnological Issues and Research Including Applied Perspectives in Artemisia (Asteraceae). Adv. Bot. Res. 2011, 60, 349–419. [Google Scholar] [CrossRef]
- Miao, Y.F.; Meng, Q.Q.; Fang, X.M.; Yan, X.L.; Wu, F.L.; Song, C.H. Origin and Development of Artemisia (Asteraceae) in Asia and Its Implications for the Uplift History of the Tibetan Plateau: A Review. Quat. Int. 2011, 236, 3–12. [Google Scholar] [CrossRef]
- López-Pujol, J.; Zhang, F.M.; Sun, H.Q.; Ying, T.S.; Ge, S. Centres of Plant Endemism in China: Places for Survival or for Speciation? J. Biogeogr. 2011, 38, 1267–1280. [Google Scholar] [CrossRef]
- Hughes, C.E.; Atchison, G.W. The Ubiquity of Alpine Plant Radiations: From the Andes to the Hengduan Mountains. New Phytol. 2015, 207, 275–282. [Google Scholar] [CrossRef]
- Antonelli, A.; Kissling, W.D.; Flantua, S.G.A.; Bermúdez, M.A.; Mulch, A.; Muellner-Riehl, A.N.; Kreft, H.; Linder, H.P.; Badgley, C.; Fjeldså, J.; et al. Geological and Climatic Influences on Mountain Biodiversity. Nat. Geosci. 2018, 11, 718–725. [Google Scholar] [CrossRef]
- Tito, R.; Vasconcelos, H.L.; Feeley, K.J. Mountain Ecosystems as Natural Laboratories for Climate Change Experiments. Front. For. Glob. Change 2020, 3, 38. [Google Scholar] [CrossRef]
- Sun, H.; Li, Z. Qinghai-Tibet Plateau Uplift and Its Impact on Tethys Flora. Adv. Earth Sci. 2003, 18, 852. [Google Scholar]
- Sun, H. Tethys Retreat and Himalayas-Hengduanshan Mountains Uplift and Their Significance on the Origin and Development of the Sino-Himalayan Elements and Alpine Flora. Acta Bot. Yunnan. 2002, 24, 273–288. [Google Scholar]
- Xing, Y.; Ree, R.H. Uplift-Driven Diversification in the Hengduan Mountains, a Temperate Biodiversity Hotspot. Proc. Natl. Acad. Sci. USA 2017, 114, E3444–E3451. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Deng, T.; Boufford, D.E. Origins and Evolution of Plant Diversity in the Hengduan Mountains, China. Plant Divers. 2017, 39, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Li, X.W.; Li, J. A Preliminary Study on the Seed Plant Flora of the Hengduan Mountains Region. Acta Bot. Yunnan. 1993, 15, 217–231. [Google Scholar]
- Liu, J.; Milne, R.I.; Zhu, G.F.; Spicer, R.A.; Wambulwa, M.C.; Wu, Z.Y.; Boufford, D.E.; Luo, Y.-H.; Provan, J.; Yi, T.S.; et al. Name and Scale Matter: Clarifying the Geography of Tibetan Plateau and Adjacent Mountain Regions. Glob. Planet. Change 2022, 215, 103893. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity Hotspots for Conservation Priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Zhang, D.; Boufford, D.E.; Ree, R.H.; Sun, H. The 29°N Latitudinal Line: An Important Division in the Hengduan Mountains, a Biodiversity Hotspot in Southwest China. Nord. J. Bot. 2009, 27, 405–412. [Google Scholar] [CrossRef]
- Guo, Z.T.; Ruddiman, W.F.; Hao, Q.Z.; Wu, H.B.; Qiao, Y.S.; Zhu, R.X.; Peng, S.Z.; Wei, J.J.; Yuan, B.Y.; Liu, T.S. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature 2002, 416, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.N.; Ree, R.H.; Spicer, R.A.; Xing, Y.W. Ancient Orogenic and Monsoon-Driven Assembly of the World’s Richest Temperate Alpine Flora. Science 2020, 369, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.R. The Old World Artemisia L. (Compositae). Bull. Bot. Res. 1992, 12, 1–108. [Google Scholar]
- Cañadas, E.M.; Fenu, G.; Peñas, J.; Lorite, J.; Mattana, E.; Bacchetta, G. Hotspots within Hotspots: Endemic Plant Richness, Environmental Drivers, and Implications for Conservation. Biol. Conserv. 2014, 170, 282–291. [Google Scholar] [CrossRef]
- Noroozi, J.; Talebi, A.; Doostmohammadi, M.; Rumpf, S.B.; Linder, H.P.; Schneeweiss, G.M. Hotspots within a Global Biodiversity Hotspot—Areas of Endemism Are Associated with High Mountain Ranges. Sci. Rep. 2018, 8, 10345. [Google Scholar] [CrossRef]
- Chang, Y.; Gelwick, K.; Willett, S.D.; Shen, X.; Albouy, C.; Luo, A.; Wang, Z.; Zimmermann, N.E.; Pellissier, L. Phytodiversity Is Associated with Habitat Heterogeneity from Eurasia to the Hengduan Mountains. New Phytol. 2023, 240, 1647–1658. [Google Scholar] [CrossRef]
- Sun, S.Q.; Wu, Y.H.; Wang, G.X.; Zhou, J.; Yu, D.; Bing, H.J.; Luo, J. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS ONE 2013, 8, e58131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fang, J.; Tang, Z.; Lin, X. Relative Role of Contemporary Environment versus History in Shaping Diversity Patterns of China’s Woody Plants. Ecography 2012, 35, 1124–1133. [Google Scholar] [CrossRef]
- Shrestha, N.; Su, X.; Xu, X.; Wang, Z. The Drivers of High Rhododendron Diversity in South-west China: Does Seasonality Matter? J. Biogeogr. 2018, 45, 438–447. [Google Scholar] [CrossRef]
- Zou, D.T.; Wang, Q.G.; Luo, A.; Wang, Z.H. Species Richness Patterns and Resource Plant Conservation Assessments of Rosaceae in China. Chin. J. Plant Ecol. 2019, 43, 1–15. [Google Scholar] [CrossRef]
- Yu, H.; Miao, S.; Xie, G.; Guo, X.; Chen, Z.; Favre, A. Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front. Ecol. Evol. 2020, 8, 136. [Google Scholar] [CrossRef]
- Zhang, D.; Ye, J.; Sun, H. Quantitative Approaches to Identify Floristic Units and Centres of Species Endemism in the Qinghai-Tibetan Plateau, South-western China. J. Biogeogr. 2016, 43, 2465–2476. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, L.; Spalink, D.; Sun, L.; Chen, J.; Sun, H. Spatial Phylogenetics of Two Topographic Extremes of the Hengduan Mountains in Southwestern China and Its Implications for Biodiversity Conservation. Plant Divers. 2021, 43, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Yang, X.; Gao, R.; Hou, X.; Huo, L.; Huang, Z.; Cornelissen, J.H.C. Allometry Rather than Abiotic Drivers Explains Biomass Allocation among Leaves, Stems and Roots of Artemisia across a Large Environmental Gradient in China. J. Ecol. 2021, 109, 1026–1040. [Google Scholar] [CrossRef]
- Guo, C.; Wang, Z.; Zhang, X.; Yang, Y.; Tang, Y.; Bao, W. Confronting Allometric and Optimal Partitioning Theories in Biomass Allocation: Evidence from Artemisia Species along an Elevational Gradient in Southwest of China. J. Plant Ecol. 2025, rtaf136. [Google Scholar] [CrossRef]
- Dupont-Nivet, G.; Jonell, T.N.; Dommain, R.; Clift, P.D. Asian Geodynamics, Climate and Biodiversity: An Introduction. Geol. Soc. Lond. Spec. Publ. 2025, 549, 1–10. [Google Scholar] [CrossRef]
- Fjeldså, J.; Bowie, R.C.K.; Rahbek, C. The Role of Mountain Ranges in the Diversification of Birds. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 249–265. [Google Scholar] [CrossRef]
- Quintero, I.; Jetz, W. Global elevational diversity and diversification of birds. Nature 2018, 555, 246–250. [Google Scholar] [CrossRef]
- Buonincontri, M.P.; Bosso, L.; Smeraldo, S.; Chiusano, M.L.; Pasta, S.; Di Pasquale, G. Shedding Light on the Effects of Climate and Anthropogenic Pressures on the Disappearance of Fagus Sylvatica in the Italian Lowlands: Evidence from Archaeo-Anthracology and Spatial Analyses. Sci. Total Environ. 2023, 877, 162893. [Google Scholar] [CrossRef]
- Chen, I.C.; Shen, S.F.; Chan, S.F. Niche theory and species range limits along elevational gradients: Perspectives and future directions. Annu. Rev. Ecol. Evol. Syst. 2024, 55, 449–469. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, J.; Cui, W.; Chen, D.; Zhang, J.; Lu, H.; Maeda, E.E.; Zeng, Z.; Beck, H.E. Elevation Regulates the Response of Climate Heterogeneity to Climate Change. Geophys. Res. Lett. 2024, 51, e2024GL109483. [Google Scholar] [CrossRef]
- Liu, J.; Yunhong, T.; Slik, J.W.F. Topography Related Habitat Associations of Tree Species Traits, Composition and Diversity in a Chinese Tropical Forest. For. Ecol. Manag. 2014, 330, 75–81. [Google Scholar] [CrossRef]
- Di Pasquale, G.; Saracino, A.; Bosso, L.; Russo, D.; Moroni, A.; Bonanomi, G.; Allevato, E. Coastal Pine–Oak Glacial Refugia in the Mediterranean Basin: A Biogeographic Approach Based on Charcoal Analysis and Spatial Modelling. Forests 2020, 11, 673. [Google Scholar] [CrossRef]
- López-Pujol, J.; Zhang, F.-M.; Sun, H.-Q.; Ying, T.-S.; Ge, S. Mountains of Southern China as “Plant Museums” and “Plant Cradles”: Evolutionary and Conservation Insights. Mt. Res. Dev. 2011, 31, 261–269. [Google Scholar] [CrossRef]
- Scott, J.M.; Csuti, B.; Jacobi, J.D.; Estes, J.E. Species Richness. BioScience 1987, 37, 782–788. [Google Scholar] [CrossRef]
- Muellner-Riehl, A.N.; Schnitzler, J.; Kissling, W.D.; Mosbrugger, V.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; Versteegh, H.; Favre, A. Origins of Global Mountain Plant Biodiversity: Testing the ‘Mountain-geobiodiversity Hypothesis’. J. Biogeogr. 2019, 46, 2826–2838. [Google Scholar] [CrossRef]
- Munguía, M.; Rahbek, C.; Rangel, T.F.; Diniz-Filho, J.A.F.; Araújo, M.B. Equilibrium of Global Amphibian Species Distributions with Climate. PLoS ONE 2012, 7, e34420. [Google Scholar] [CrossRef] [PubMed]
- Velazco, S.J.E.; Ribeiro, B.R.; Laureto, L.M.O.; De Marco Júnior, P. Overprediction of Species Distribution Models in Conservation Planning: A Still Neglected Issue with Strong Effects. Biol. Conserv. 2020, 252, 108822. [Google Scholar] [CrossRef]
- Xu, W.; Wu, Y.; Zhou, W.W.; Chen, H.M.; Zhang, B.L.; Chen, J.M.; Xu, W.H.; Rao, D.Q.; Zhao, H.P.; Yan, F.; et al. Hidden Hotspots of Amphibian Biodiversity in China. Proc. Natl. Acad. Sci. USA 2024, 121, e2320674121. [Google Scholar] [CrossRef]
- Jiang, N.; Zhao, L.; Han, M.; Xu, W. China’s Mountain Biodiversity and Conservation Status. Geogr. Sustain. 2025, 6, 100360. [Google Scholar] [CrossRef]
- Huang, J.; Huang, J.; Liu, C.; Zhang, J.; Lu, X.; Ma, K. Diversity hotspots and conservation gaps for the Chinese endemic seed flora. Biol. Conserv. 2016, 198, 104–112. [Google Scholar] [CrossRef]
- Crisp, M.D.; Laffan, S.; Linder, H.P.; Monro, A. Endemism in the Australian Flora. J. Biogeogr. 2001, 28, 183–198. [Google Scholar] [CrossRef]








| Lon | Lat | Hotspots | Richness | Endemism |
|---|---|---|---|---|
| 32.8628 | 103.786 | Minshan Mountains | Top 5% | Top 10% |
| 32.8628 | 104.786 | Daba Mountains | Top 5% | Top 5% |
| 32.8628 | 103.786 | Dadu River Valley | Top 5% | Top 10% |
| 31.3628 | 100.786 | Daxue Mountains | Top 5% | Top 5% |
| 29.8628 | 102.286 | Mount Gongga | Top 5% | Top 5% |
| 29.8628 | 101.786 | Mount Gongga | Top 5% | |
| 27.8628 | 101.286 | Jinping Mountains | Top 5% | |
| 27.8628 | 99.7861 | Northwestern Yunnan | Top 5% | Top 10% |
| 28.3628 | 98.7861 | Northwestern Yunnan | Top 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Wang, Z.; Zhuang, H.; Wei, D.; Bao, W. Topographic Heterogeneity Outweighs Climate in Shaping Artemisia L. Species Richness and Endemism in the Hengduan Mountains, Southwest China. Plants 2025, 14, 3379. https://doi.org/10.3390/plants14213379
Guo C, Wang Z, Zhuang H, Wei D, Bao W. Topographic Heterogeneity Outweighs Climate in Shaping Artemisia L. Species Richness and Endemism in the Hengduan Mountains, Southwest China. Plants. 2025; 14(21):3379. https://doi.org/10.3390/plants14213379
Chicago/Turabian StyleGuo, Chang’an, Ziwei Wang, Huifu Zhuang, Dandan Wei, and Weikai Bao. 2025. "Topographic Heterogeneity Outweighs Climate in Shaping Artemisia L. Species Richness and Endemism in the Hengduan Mountains, Southwest China" Plants 14, no. 21: 3379. https://doi.org/10.3390/plants14213379
APA StyleGuo, C., Wang, Z., Zhuang, H., Wei, D., & Bao, W. (2025). Topographic Heterogeneity Outweighs Climate in Shaping Artemisia L. Species Richness and Endemism in the Hengduan Mountains, Southwest China. Plants, 14(21), 3379. https://doi.org/10.3390/plants14213379

