Exploring the Hyperspectral Response of Quercetin in Anoectochilus roxburghii (Wall.) Lindl. Using Standard Fingerprints and Band-Specific Feature Analysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Spectral Response and Feature Selection Analysis
2.2. Traditional Machine Learning Models for Goldthread Classification
2.3. Transferability of the Standard Model to Plant Samples
3. Materials and Methods
3.1. Plant Materials and Standard Solutions
3.2. Hyperspectral Imaging System and Acquisition
3.3. Image Preprocessing and Region of Interest Extraction
3.4. Data Analysis Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, S.; Shao, Q.; Xu, M.; Li, S.; Wu, M.; Tan, X.; Su, L. Effects of Light Quality on Morphology, Enzyme Activities, and Bioactive Compound Contents in Anoectochilus roxburghii. Front. Plant Sci. 2017, 8, 857. [Google Scholar] [CrossRef]
- Han, T.; Xu, E.; Yao, L.; Zheng, B.; Younis, A.; Shao, Q. Regulation of Flowering Time Using Temperature, Photoperiod and Spermidine Treatments in Anoectochilus roxburghii. Physiol. Mol. Biol. Plants 2020, 26, 247–260. [Google Scholar] [CrossRef]
- Xing, B.; Wan, S.; Su, L.; Riaz, M.W.; Li, L.; Ju, Y.; Zhang, W.; Zheng, Y.; Shao, Q. Two Polyamines -Responsive WRKY Transcription Factors from Anoectochilus roxburghii Play Opposite Functions on Flower Development. Plant Sci. 2023, 327, 111566. [Google Scholar] [CrossRef]
- Jin, Q.-R.; Mao, J.-W.; Zhu, F. The Effects of Anoectochilus roxburghii Polysaccharides on the Innate Immunity and Disease Resistance of Procambarus clarkii. Aquaculture 2022, 555, 738210. [Google Scholar] [CrossRef]
- Xu, M.; Shao, Q.; Ye, S.; Li, S.; Wu, M.; Ding, M.; Li, Y. Simultaneous Extraction and Identification of Phenolic Compounds in Anoectochilus roxburghii Using Microwave-Assisted Extraction Combined with UPLC-Q-TOF-MS/MS and Their Antioxidant Activities. Front. Plant Sci. 2017, 8, 1474. [Google Scholar] [CrossRef]
- Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hien, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights Promote Growth and Flavonoid Accumulation of Anoectochilus roxburghii and Are Linked to the Enhanced Expression of Several Related Genes. Plants 2020, 9, 1344. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Yan, X.; Xu, Z.; Shao, Q.; Wu, X.; Tou, L.; Fang, L.; Wei, M.; Wang, H. Induction, Proliferation, Regeneration and Kinsenoside and Flavonoid Content Analysis of the Anoectochilus roxburghii (Wall.) Lindl Protocorm-like Body. Plants 2022, 11, 2465. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, C.; Zhu, F. Effects of Dietary Quercetin on the Innate Immune Response and Resistance to White Spot Syndrome Virus in Procambarus clarkii. Fish Shellfish Immunol. 2021, 118, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Pan, X.; Zhou, X.; Zhu, F. Dietary Quercetin Protects Cherax Quadricarinatus Against White Spot Syndrome Virus Infection. J. Invertebr. Pathol. 2023, 198, 107931. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yao, M.; Wang, D.; Geng, M.; Nan, S.; Peng, X.; Xue, Y.; Zhang, W.; Nie, C. Quercetin Can Alleviate ETECK88-Induced Oxidative Stress in Weaned Piglets by Inhibiting Quorum-Sensing Signal Molecule Autoinducer-2 Production in the Cecum. Antioxidants 2025, 14, 852. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.-H.; Zhang, F.; Liu, X.-X.; Zhang, F.; Wang, L.-J.; Xu, S.-J.; Zhang, J.-H.; Ji, H.-L.; Xu, P. Qualitative and Quantitative Analysis of Catechin and Quercetin in Flavonoids Extracted from Rosa roxburghii Tratt. Trop. J. Pharm. Res. 2018, 17, 71. [Google Scholar] [CrossRef] [PubMed]
- Ang, L.F.; Yam, M.F.; Fung, Y.T.T.; Kiang, P.K.; Darwin, Y. HPLC Method for Simultaneous Quantitative Detection of Quercetin and Curcuminoids in Traditional Chinese Medicines. J. Pharmacopunct. 2014, 17, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Umer, M.; Nisa, M.U.; Ahmad, N.; Rahim, M.A.; Kasankala, L.M. Quantification of Quercetin from Red Onion (Allium cepa L.) Powder via High-Performance Liquid Chromatography-Ultraviolet (HPLC-UV) and Its Effect on Hyperuricemia in Male Healthy Wistar Albino Rats. Food Sci. Nutr. 2024, 12, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Abouelenein, D.; Angeloni, S.; Maggi, F.; Navarini, L.; Sagratini, G.; Santanatoglia, A.; Torregiani, E.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of Quercetin and Its Derivatives in Green Coffee Beans. Foods 2022, 11, 3033. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Juhasz, A.; Islam, S.; Yu, Z.; Zhao, Y.; Li, G.; Ding, W.; Ma, W. Characterising Avenin-like Proteins (ALPs) from Albumin/Globulin Fraction of Wheat Grains by RP-HPLC, SDS-PAGE, and MS/MS Peptides Sequencing. BMC Plant Biol. 2020, 20, 45. [Google Scholar] [CrossRef]
- Nasir, V.; Nourian, S.; Zhou, Z.; Rahimi, S.; Avramidis, S.; Cool, J. Classification and Characterization of Thermally Modified Timber Using Visible and Near-Infrared Spectroscopy and Artificial Neural Networks: A Comparative Study on the Performance of Different NDE Methods and ANNs. Wood Sci. Technol. 2019, 53, 1093–1109. [Google Scholar] [CrossRef]
- Qi, H.; Huang, Z.; Sun, Z.; Tang, Q.; Zhao, G.; Zhu, X.; Zhang, C. Rice Seed Vigor Detection Based on Near-Infrared Hyperspectral Imaging and Deep Transfer Learning. Front. Plant Sci. 2023, 14, 1283921. [Google Scholar] [CrossRef] [PubMed]
- Lindelauf, A.A.M.A.; Saelmans, A.G.; Van Kuijk, S.M.J.; Van Der Hulst, R.R.W.J.; Schols, R.M. Near-Infrared Spectroscopy (NIRS) versus Hyperspectral Imaging (HSI) to Detect Flap Failure in Reconstructive Surgery: A Systematic Review. Life 2022, 12, 65. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, S.; Lin, C.; Lin, Z.; Zhang, L.; Dong, W.; Zhong, N. Hyperspectral Imaging and Machine Learning for Diagnosing Rice Bacterial Blight Symptoms Caused by Xanthomonas oryzae pv. oryzae, Pantoea ananatis and Enterobacter asburiae. Plants 2025, 14, 733. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Chen, C.; Zhou, L.; Zhao, Y.; Chen, J.; Tan, C.; Sun, J.; Zhang, L.; Hu, M.; et al. Coupling the PROSAIL Model and Machine Learning Approach for Canopy Parameter Estimation of Moso Bamboo Forests from UAV Hyperspectral Data. Forests 2024, 15, 946. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Guo, W.; Yang, X.; Qu, J.; Gao, M.; Chen, S.; Dong, J.; Li, Q.; Wang, T. Comparison of the Chemical Components, Efficacy and Mechanisms of Action of Chrysanthemum morifolium Flower and Its Wild Relative Chrysanthemum indicum Flower against Liver-Fire Hyperactivity Syndrome of Hypertension via Integrative Analyses. IJMS 2022, 23, 13767. [Google Scholar] [CrossRef]
- Hu, H.; Mei, Y.; Wei, Y.; Xu, Z.; Zhao, Y.; Xu, H.; Mao, X.; Huang, L. Chemical Composition Prediction in Goji (Lycium barbarum) Using Hyperspectral Imaging and Multi-Task 1DCNN with Attention Mechanism. LWT 2024, 204, 116436. [Google Scholar] [CrossRef]
- Sun, J.; Yao, K.; Cheng, J.; Xu, M.; Zhou, X. Nondestructive Detection of Saponin Content in Panax Notoginseng Powder Based on Hyperspectral Imaging. J. Pharm. Biomed. Anal. 2024, 242, 116015. [Google Scholar] [CrossRef]
- Kusumiyati, K.; Putri, I.E.; Hadiwijaya, Y.; Kartika, A.; Maulana, Y.E.; Sutari, W. Quality Assurance of Total Carotenoids and Quercetin in Marigold Flowers (Tagetes erecta L.) as Edible Flowers. Int. J. Food Sci. 2025, 2025, 3277288. [Google Scholar] [CrossRef]
- He, J.; Zhang, C.; Zhou, L.; He, Y. Simultaneous Determination of Five Micro-Components in Chrysanthemum morifolium (Hangbaiju) Using near-Infrared Hyperspectral Imaging Coupled with Deep Learning with Wavelength Selection. Infrared Phys. Technol. 2021, 116, 103802. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, H.; Zhang, T.; Wang, Z.; Wang, H.; Zhou, L.; Dai, Y.; Liu, Z. Small-Sample Authenticity Identification and Variety Classification of Anoectochilus roxburghii (Wall.) Lindl. Using Hyperspectral Imaging and Machine Learning. Plants 2025, 14, 1177. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y. Near-Infrared Spectroscopy—Its Versatility in Analytical Chemistry. Anal. Sci. 2012, 28, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Bonn, G.K.; Popp, M.; Huck, C.W. Principles and Applications of Vibrational Spectroscopic Imaging in Plant Science: A Review. Front. Plant Sci. 2020, 11, 1226. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Song, L.; Xie, J.; Zhang, C.; Li, C.; Zhao, J. Recognition of Various Biomolecules by the Environment-Sensitive Spectral Responses of Hypocrellin B. Photochem. Photobiol. Sci. 2007, 6, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jiang, Y.; Jin, B.; Sun, C.; Wang, L. Hyperspectral Imaging Combined with Deep Transfer Learning to Evaluate Flavonoids Content in Ginkgo biloba Leaves. IJMS 2024, 25, 9584. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, L.; Chu, B.; Zhang, C. Determination of Total Polysaccharides and Total Flavonoids in Chrysanthemum morifolium Using Near-Infrared Hyperspectral Imaging and Multivariate Analysis. Molecules 2018, 23, 2395. [Google Scholar] [CrossRef] [PubMed]
Wavelength (nm) | Pearson r | |r| |
---|---|---|
967.3 | 0.543 | 0.543 |
1638.7 | −0.185 | 0.185 |
1192.9 | 0.16 | 0.16 |
1351.9 | 0.29 | 0.29 |
1403.4 | −0.134 | 0.134 |
1235.8 | 0.253 | 0.253 |
923 | 0.696 | 0.696 |
1135.1 | 0.594 | 0.594 |
1536.7 | −0.165 | 0.165 |
1176.3 | 0.365 | 0.365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Ding, H.; Zhao, S.; Wang, H.; Xu, Y. Exploring the Hyperspectral Response of Quercetin in Anoectochilus roxburghii (Wall.) Lindl. Using Standard Fingerprints and Band-Specific Feature Analysis. Plants 2025, 14, 3141. https://doi.org/10.3390/plants14203141
Liu Z, Ding H, Zhao S, Wang H, Xu Y. Exploring the Hyperspectral Response of Quercetin in Anoectochilus roxburghii (Wall.) Lindl. Using Standard Fingerprints and Band-Specific Feature Analysis. Plants. 2025; 14(20):3141. https://doi.org/10.3390/plants14203141
Chicago/Turabian StyleLiu, Ziyuan, Haoyuan Ding, Sijia Zhao, Hongzhen Wang, and Yiqing Xu. 2025. "Exploring the Hyperspectral Response of Quercetin in Anoectochilus roxburghii (Wall.) Lindl. Using Standard Fingerprints and Band-Specific Feature Analysis" Plants 14, no. 20: 3141. https://doi.org/10.3390/plants14203141
APA StyleLiu, Z., Ding, H., Zhao, S., Wang, H., & Xu, Y. (2025). Exploring the Hyperspectral Response of Quercetin in Anoectochilus roxburghii (Wall.) Lindl. Using Standard Fingerprints and Band-Specific Feature Analysis. Plants, 14(20), 3141. https://doi.org/10.3390/plants14203141