Advancements in Agricultural Nanotechnology: An Updated Review
Abstract
1. Introduction
2. From Interaction to Innovation: Nanoparticles in Plant Science and Sustainable Agriculture
3. Nanotechnology in Plant Drug Delivery
3.1. Biopolymeric Nanoparticles
3.2. Carbon-Based Nanoparticles
3.3. Dendrimers
3.4. Metal Oxide Nanoparticles
3.5. Stimuli-Responsive Nanocarriers in Agriculture
3.6. Nanoemulsions
4. Nanotechnology for Efficient Use of Fertilizers
5. Nanotechnology for Efficient Water Use and Soil Health Maintenance
6. Nanotechnology for Reducing Pesticide Use
7. Mitigating Plant Stress Using Nanomolecular Techniques
8. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, D.; Fuller, D. Agriculture: Definition and Overview. In Encyclopedia of Global Archaeology; Springer: New York, NY, USA, 2014; pp. 104–113. [Google Scholar] [CrossRef]
- Koohafkan, P.; Altieri, M. Forgotten Agricultural Heritage: Reconnecting Food Systems and Sustainable Development; Routledge: Oxford, UK, 2016; p. 271. ISBN 978-1-315-47009-2. [Google Scholar]
- Kumar, A.; Singh, G.A.; Gourkhede, P.; Goutam, P.; Laxman, T.; Pandey, S.; Singh, P. Revolutionizing Agriculture: A Comprehensive Review of Nanotechnology Applications. Int. J. Environ. Clim. Change 2023, 13, 3586–3603. [Google Scholar] [CrossRef]
- O’Hara, S.; Toussaint, E. Food Access in Crisis: Food Security and COVID-19. Ecol. Econ. 2021, 180, 106859. [Google Scholar] [CrossRef]
- El-Bendary, H.; El-Helaly, A. First Record Nanotechnology in Agricultural: Silica Nano- Particles a Potential New Insecticide for Pest Control. Appl. Sci. Rep. 2013, 4, 241–246. [Google Scholar]
- Manjunatha, S.B.; Biradar, D.; Aladakatti, Y. Nanotechnology and Its Applications in Agriculture: A Review. J. Farm Sci. 2016, 29, 1–13. [Google Scholar]
- Abd-Elsalam, K.A. Special Issue: Agricultural Nanotechnology. Plants 2024, 13, 489. [Google Scholar] [CrossRef]
- Sangeetha, J.; Thangadurai, D.; Hospet, R.; Purushotham, P.; Karekalammanavar, G.; Mundaragi, A.C.; David, M.; Shinge, M.R.; Thimmappa, S.C.; Prasad, R.; et al. Agricultural Nanotechnology: Concepts, Benefits, and Risks. In Nanotechnology: An Agricultural Paradigm; Prasad, R., Kumar, M., Kumar, V., Eds.; Springer: Singapore, 2017; pp. 1–17. ISBN 978-981-10-4573-8. [Google Scholar]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K.A. Exploring the Potential of Nanofertilizers for a Sustainable Agriculture. Plant Nano Biol. 2023, 5, 100044. [Google Scholar] [CrossRef]
- Ball, P. Natural Strategies for the Molecular Engineer. Nanotechnology 2002, 13, R15. [Google Scholar] [CrossRef]
- Medina-Pérez, G.; Fernández-Luqueño, F.; Campos-Montiel, R.G.; Sánchez-López, K.B.; Afanador-Barajas, L.N.; Prince, L. Nanotechnology in Crop Protection: Status and Future Trends. In Nano-Biopesticides Today and Future Perspectives; Koul, O., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 17–45. ISBN 978-0-12-815829-6. [Google Scholar]
- Jampílek, J.; Kráľová, K. 3—Nanopesticides: Preparation, Targeting, and Controlled Release. In New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 81–127. ISBN 978-0-12-804299-1. [Google Scholar]
- Kapoor, P.; Dhaka, R.K.; Sihag, P.; Mehla, S.; Sagwal, V.; Singh, Y.; Langaya, S.; Balyan, P.; Singh, K.P.; Xing, B.; et al. Nanotechnology-Enabled Biofortification Strategies for Micronutrients Enrichment of Food Crops: Current Understanding and Future Scope. NanoImpact 2022, 26, 100407. [Google Scholar] [CrossRef]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology Applications in Sustainable Agriculture: An Emerging Eco-Friendly Approach. Plant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Pereira, A.E.S.; Grillo, R.; Mello, N.F.S.; Rosa, A.H.; Fraceto, L.F. Application of Poly(Epsilon-Caprolactone) Nanoparticles Containing Atrazine Herbicide as an Alternative Technique to Control Weeds and Reduce Damage to the Environment. J. Hazard. Mater. 2014, 268, 207–215. [Google Scholar] [CrossRef]
- Kheiri, A.; Moosawi Jorf, S.A.; Malihipour, A.; Saremi, H.; Nikkhah, M. Application of Chitosan and Chitosan Nanoparticles for the Control of Fusarium Head Blight of Wheat (Fusarium graminearum) in Vitro and Greenhouse. Int. J. Biol. Macromol. 2016, 93, 1261–1272. [Google Scholar] [CrossRef]
- de Oliveira, J.L.; Campos, E.V.R.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Application of Nanotechnology for the Encapsulation of Botanical Insecticides for Sustainable Agriculture: Prospects and Promises. Biotechnol. Adv. 2014, 32, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, W. Plant Growth Regulators: Backgrounds and Uses in Plant Production. J. Plant Growth Regul. 2015, 34, 845–872. [Google Scholar] [CrossRef]
- Hoang, N.H.; Le Thanh, T.; Thepbandit, W.; Treekoon, J.; Saengchan, C.; Sangpueak, R.; Papathoti, N.K.; Kamkaew, A.; Buensanteai, N. Efficacy of Chitosan Nanoparticle Loaded-Salicylic Acid and -Silver on Management of Cassava Leaf Spot Disease. Polymers 2022, 14, 660. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.; Gogos, A.; Bucheli, T. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Pascoli, M.; Lopes Oliveira, P.J.; Fraceto, L.; Seabra, A.; Oliveira, H. State of the Art of Polymeric Nanoparticles as Carrier Systems with Agricultural Applications: A Minireview. Energy Ecol. Environ. 2018, 3, 137–148. [Google Scholar] [CrossRef]
- Rathore, A.; Hasan, W.; Ramesha, N.M.; Pujar, K.; Singh, R.; Panotra, N.; Satapathy, S.N. Nanotech for Crop Protection: Utilizing Nanoparticles for Targeted Pesticide Delivery. Uttar Pradesh J. Zool. 2024, 45, 46–71. [Google Scholar] [CrossRef]
- Yin, J.; Su, X.; Yan, S.; Shen, J. Multifunctional Nanoparticles and Nanopesticides in Agricultural Application. Nanomaterials 2023, 13, 1255. [Google Scholar] [CrossRef]
- Haydar, M.S.; Ghosh, D.; Roy, S. Slow and Controlled Release Nanofertilizers as an Efficient Tool for Sustainable Agriculture: Recent Understanding and Concerns. Plant Nano Biol. 2024, 7, 100058. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent Advances in Stimuli-Response Mechanisms of Nano-Enabled Controlled-Release Fertilizers and Pesticides. Eco-Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef]
- Kaveh, H. Enhancing Saffron (Crocus sativus L.) Cormlet Production under High-Temperature Stress: Integration of Biological and Nanoparticle Treatments. Plant Physiol. Biochem. 2025, 222, 109702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kumar, P.; Dubey, R.C. Nanomaterials in Soil Science for Agricultural Productivity and Environmental Sustainability. Discov. Environ. 2025, 3, 27. [Google Scholar] [CrossRef]
- Zhang, K.; Song, X.; Liu, M.; Chen, M.; Li, J.; Han, J. Review on the Use of Magnetic Nanoparticles in the Detection of Environmental Pollutants. Water 2023, 15, 3077. [Google Scholar] [CrossRef]
- Raja, M.A.; Husen, A. Role of Nanomaterials in Soil and Water Quality Management. In Nanomaterials for Agriculture and Forestry Applications; Husen, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 491–503. ISBN 978-0-12-817852-2. [Google Scholar]
- She, L.; Cheng, X.; Jiang, P.; Shen, S.; Dai, F.; Run, Y.; Zhu, M.; Tavakoli, M.; Yang, X.; Wang, X.; et al. Modified Carbon Dot-Mediated Transient Transformation for Genomic and Epigenomic Studies in Wheat. Plant Biotechnol. J. 2025, 23, 1139–1152. [Google Scholar] [CrossRef]
- Miteu, G.D.; Emmanuel, A.A.; Addeh, I.; Ojeokun, O.; Olayinka, T.; Godwin, J.S.; Adeyemo, O.I.; Benneth, E.O. Nanoscience and Technology as a Pivot for Sustainable Agriculture and Its One Health Approach Awareness. Sci. One Health 2023, 2, 100020. [Google Scholar] [CrossRef]
- Bouhadi, M.; Javed, Q.; Jakubus, M.; Elkouali, M.; Fougrach, H.; Ansar, A.; Ban, S.G.; Ban, D.; Heath, D.; Černe, M. Nanoparticles for Sustainable Agriculture: Assessment of Benefits and Risks. Agronomy 2025, 15, 1131. [Google Scholar] [CrossRef]
- Machado, T.O.; Grabow, J.; Sayer, C.; de Araújo, P.H.H.; Ehrenhard, M.L.; Wurm, F.R. Biopolymer-Based Nanocarriers for Sustained Release of Agrochemicals: A Review on Materials and Social Science Perspectives for a Sustainable Future of Agri- and Horticulture. Adv. Colloid Interface Sci. 2022, 303, 102645. [Google Scholar] [CrossRef]
- Kusumavathi, K.; Rautaray, S.K.; Sarkar, S.; Dash, S.; Sahoo, T.R.; Swain, S.K.; Sethi, D. Nano-Herbicides a Sustainable Strategy for Weed Control. Plant Nano Biol. 2025, 11, 100132. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, C.; Zhao, M.; Li, J.; Zhang, X.; Yang, Z.; Yang, Z.; Algopishi, U.; Ahmed, W. Nanoparticles in Sustainable Agriculture: Enhancing Nutrient Use Efficiency and Abiotic Stress Resilience Under Climate Change. Plant Stress 2025, 17, 100982. [Google Scholar] [CrossRef]
- Islam, S. Toxicity and Transport of Nanoparticles in Agriculture: Effects of Size, Coating, and Aging. Front. Nanotechnol. 2025, 7, 1622228. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Joshi, A.S.; Perumalsamy, H.; Mijakovic, I.; Singh, P. Advancing Sustainable Agriculture: A Critical Review of Smart and Eco-Friendly Nanomaterial Applications. J. Nanobiotechnol. 2023, 21, 372. [Google Scholar] [CrossRef]
- Fincheira, P.; Hoffmann, N.; Tortella, G.; Ruiz, A.; Cornejo, P.; Diez, M.C.; Seabra, A.B.; Benavides-Mendoza, A.; Rubilar, O. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. Nanomaterials 2023, 13, 1978. [Google Scholar] [CrossRef]
- Safdar, M.; Kim, W.; Park, S.; Gwon, Y.; Kim, Y.-O.; Kim, J. Engineering Plants with Carbon Nanotubes: A Sustainable Agriculture Approach. J. Nanobiotechnol. 2022, 20, 275. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Gu, H.; Chen, H.; Huang, K.; Wang, J.; Xu, H.; Zhang, Y.; Li, W. Preparation and Application of Core–Shell Nanocarbon-Based Slow-Release Foliar Fertilizer. Nanomaterials 2025, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, L.; Gu, J.; Ma, H.; Wu, H. Carbon-Based Nanomaterials for Sustainable Agriculture: Their Application as Light Converters, Nanosensors, and Delivery Tools. Plants 2022, 11, 511. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as Efficient Nanocarriers for the Protection and Delivery of Bioactive Phytochemicals. Adv. Colloid Interface Sci. 2020, 278, 102125. [Google Scholar] [CrossRef] [PubMed]
- Bunderson, L.D.; Hunter, B.L.; Isaacson, K.J. PAMAM Dendrimers for Fertilizer Delivery. U.S. Patent 11,390,571B2, 19 July 2022. [Google Scholar]
- Hussain, H.; Yi, Z.; Rookes, J.; Kong, L.; Cahill, D. Mesoporous Silica Nanoparticles as a Biomolecule Delivery Vehicle in Plants. J. Nanopart. Res. 2013, 15, 1676. [Google Scholar] [CrossRef]
- Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.-W.; Lin, V.S.-Y. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278–1288. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.-S.M.; Babalghith, A.O.; El-Tahan, A.M.; Ibrahim, O.M.; Ebrahim, A.A.M.; Abd El-Mageed, T.A.; et al. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. [Google Scholar] [CrossRef]
- Kovács, K.; Szierer, Á.; Mészáros, E.; Molnár, Á.; Rónavári, A.; Kónya, Z.; Feigl, G. Species-Specific Modulation of Nitro-Oxidative Stress and Root Growth in Monocots by Silica Nanoparticle Pretreatment under Copper Oxide Nanoparticle Stress. BMC Plant Biol. 2025, 25, 188. [Google Scholar] [CrossRef]
- Rezghiyan, A.; Esmaeili, H.; Farzaneh, M.; Rezadoost, H. The Interaction Effect of Water Deficit Stress and Nanosilicon on Phytochemical and Physiological Characteristics of Hemp (Cannabis sativa L.). Plant Physiol. Biochem. 2024, 217, 109298. [Google Scholar] [CrossRef]
- Kaningini, A.G.; Nelwamondo, A.M.; Azizi, S.; Maaza, M.; Mohale, K.C. Metal Nanoparticles in Agriculture: A Review of Possible Use. Coatings 2022, 12, 1586. [Google Scholar] [CrossRef]
- Ahmad, Z.; Niyazi, S.; Firdoos, A.; Wang, C.; Manzoor, M.A.; Ramakrishnan, M.; Upadhyay, A.; Ding, Y. Enhancing Plant Resilience: Nanotech Solutions for Sustainable Agriculture. Heliyon 2024, 10, e40735. [Google Scholar] [CrossRef]
- Feng, Y.; Kreslavski, V.D.; Shmarev, A.N.; Ivanov, A.A.; Zharmukhamedov, S.K.; Kosobryukhov, A.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Effects of Iron Oxide Nanoparticles (Fe3O4) on Growth, Photosynthesis, Antioxidant Activity and Distribution of Mineral Elements in Wheat (Triticum aestivum) Plants. Plants 2022, 11, 1894. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhang, Y.; Gu, X.; He, C.; Wang, Z.; Du, H.; Liang, Y.; Cao, D.; Liu, J. Mechanisms for Iron Oxide Nanoparticle Alleviation of Nanoplastic-Induced Stress in Perilla Frutescens Revealed by Integrated Physiological and Transcriptomic Analysis. Plant Physiol. Biochem. 2025, 222, 109712. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Zahoor, M.; Sher Khan, R.; Ikram, M.; Islam, N.U. The Impact of Silver Nanoparticles on the Growth of Plants: The Agriculture Applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef]
- Mahawar, L.; Živčák, M.; Barboricova, M.; Kovár, M.; Filaček, A.; Ferencova, J.; Vysoká, D.M.; Brestič, M. Effect of Copper Oxide and Zinc Oxide Nanoparticles on Photosynthesis and Physiology of Raphanus sativus L. under Salinity Stress. Plant Physiol. Biochem. 2024, 206, 108281. [Google Scholar] [CrossRef]
- Guo, X.; Li, H.; Li, Z.; Cui, Z.; Ma, G.; Nassor, A.K.; Guan, Y.; Pan, X. Multi-Stimuli-Responsive Pectin-Coated Dendritic Mesoporous Silica Nanoparticles with Eugenol as a Sustained Release Nanocarrier for the Control of Tomato Bacterial Wilt. J. Nanobiotechnol. 2025, 23, 191. [Google Scholar] [CrossRef]
- Gupta, R.; Malik, P.; Rani, R.; Solanki, R.; Ameta, R.K.; Malik, V.; Mukherjee, T.K. Recent Progress on Nanoemulsions Mediated Pesticides Delivery: Insights for Agricultural Sustainability. Plant Nano Biol. 2024, 8, 100073. [Google Scholar] [CrossRef]
- Rys, M.; Miastkowska, M.; Łętocha, A.; Wajs-Bonikowska, A.; Lorenzo, P.; Synowiec, A. The Effect of Caraway Oil-Loaded Bio-Nanoemulsions on the Growth and Performance of Barnyard Grass and Maize. Sci. Rep. 2024, 14, 4313. [Google Scholar] [CrossRef] [PubMed]
- Ahari, H.; Golestan, L.; Anvar, S.A.A.; Cacciotti, I.; Garavand, F.; Rezaei, A.; Sani, M.A.; Jafari, S.M. Bio-Nanocomposites as Food Packaging Materials; the Main Production Techniques and Analytical Parameters. Adv. Colloid Interface Sci. 2022, 310, 102806. [Google Scholar] [CrossRef]
- Carbone, K.; Paliotta, M.; Micheli, L.; Mazzuca, C.; Cacciotti, I.; Nocente, F.; Ciampa, A.; Dell’Abate, M.T. A Completely Green Approach to the Synthesis of Dendritic Silver Nanostructures Starting from White Grape Pomace as a Potential Nanofactory. Arab. J. Chem. 2019, 12, 597–609. [Google Scholar] [CrossRef]
- Carbone, K.; De Angelis, A.; Mazzuca, C.; Santangelo, E.; Macchioni, V.; Cacciotti, I.; Petrella, G.; Cicero, D.O.; Micheli, L. Microwave-Assisted Synthesis of Catalytic Silver Nanoparticles by Hyperpigmented Tomato Skins: A Green Approach. LWT 2020, 133, 110088. [Google Scholar] [CrossRef]
- Mazzinelli, E.; Favuzzi, I.; Messina, M.; Fratocchi, G.; Vincenzoni, F.; Santo Stefano, E.; Cecconi, F.; Lajolo, C.; Basco, A.; Castagnola, R.; et al. Development of an Innovative Dual Construct for Targeted Drug Delivery in the Oral Cavity. Pharmaceutics 2025, 17, 272. [Google Scholar] [CrossRef]
- Mgadi, K.; Ndaba, B.; Roopnarain, A.; Rama, H.; Adeleke, R. Nanoparticle Applications in Agriculture: Overview and Response of Plant-Associated Microorganisms. Front. Microbiol. 2024, 15, 1354440. [Google Scholar] [CrossRef] [PubMed]
- Nalini, T.; Basha, S.K.; Mohamed Sadiq, A.M.; Kumari, V.S.; Kaviyarasu, K. Development and Characterization of Alginate/Chitosan Nanoparticulate System for Hydrophobic Drug Encapsulation. J. Drug Deliv. Sci. Technol. 2019, 52, 65–72. [Google Scholar] [CrossRef]
- Badiali, C.; Beccaccioli, M.; Sciubba, F.; Chronopoulou, L.; Petruccelli, V.; Palocci, C.; Reverberi, M.; Miccheli, A.; Pasqua, G.; Brasili, E. Pterostilbene-Loaded PLGA Nanoparticles Alter Phenylpropanoid and Oxylipin Metabolism in Solanum lycopersicum L. Leaves. Sci. Rep. 2024, 14, 21941. [Google Scholar] [CrossRef]
- Olad, A.; Zebhi, H.; Salari, D.; Mirmohseni, A.; Reyhani Tabar, A. Slow-Release NPK Fertilizer Encapsulated by Carboxymethyl Cellulose-Based Nanocomposite with the Function of Water Retention in Soil. Mater. Sci. Eng. C 2018, 90, 333–340. [Google Scholar] [CrossRef]
- Al-Surhanee, A.A.; Afzal, M.; Bouqellah, N.A.; Ouf, S.A.; Muhammad, S.; Jan, M.; Kaleem, S.; Hashem, M.; Alamri, S.; Abdel Latef, A.A.; et al. The Antifungal Activity of Ag/CHI NPs against Rhizoctonia Solani Linked with Tomato Plant Health. Plants 2021, 10, 2283. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Carbon and Fullerene Nanomaterials in Plant System. J. Nanobiotechnol. 2014, 12, 16. [Google Scholar] [CrossRef]
- Evy Alice Abigail, M. Biochar-Based Nanocarriers: Fabrication, Characterization, and Application as 2,4-Dichlorophenoxyacetic Acid Nanoformulation for Sustained Release. 3 Biotech 2019, 9, 317. [Google Scholar] [CrossRef]
- Boas, U.; Heegaard, P.M.H. Dendrimers in Drug Research. Chem. Soc. Rev. 2004, 33, 43–63. [Google Scholar] [CrossRef]
- Lidich, N.; Francesca Ottaviani, M.; Hoffman, R.E.; Aserin, A.; Garti, N. Docosahexaenoic Acid Triglyceride-Based Microemulsions with an Added Dendrimer—Structural Considerations. J. Colloid Interface Sci. 2016, 483, 374–384. [Google Scholar] [CrossRef]
- Markatou, E.; Gionis, V.; Chryssikos, G.D.; Hatziantoniou, S.; Georgopoulos, A.; Demetzos, C. Molecular Interactions between Dimethoxycurcumin and Pamam Dendrimer Carriers. Int. J. Pharm. 2007, 339, 231–236. [Google Scholar] [CrossRef]
- Cvjetko, P.; Milošić, A.; Domijan, A.-M.; Vinković Vrček, I.; Tolić, S.; Peharec Štefanić, P.; Letofsky-Papst, I.; Tkalec, M.; Balen, B. Toxicity of Silver Ions and Differently Coated Silver Nanoparticles in Allium Cepa Roots. Ecotoxicol. Environ. Saf. 2017, 137, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of Silver Nanoparticle Exposure on Germination and Early Growth of Eleven Wetland Plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef] [PubMed]
- Thema, F.T.; Manikandan, E.; Dhlamini, M.S.; Maaza, M. Green Synthesis of ZnO Nanoparticles via Agathosma Betulina Natural Extract. Mater. Lett. 2015, 161, 124–127. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of Copper Oxide Nanoparticles for Antimicrobial Applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef]
- Askary, M.; Talebi, S.; Amini, F.; Bangan, A. Effects of Iron Nanoparticles on Mentha piperita L. under Salinity Stress. Biologija 2017, 63, 65–75. [Google Scholar] [CrossRef]
- Rajiv, P.; Bavadharani, B.; Kumar, M.N.; Vanathi, P. Synthesis and Characterization of Biogenic Iron Oxide Nanoparticles Using Green Chemistry Approach and Evaluating Their Biological Activities. Biocatal. Agric. Biotechnol. 2017, 12, 45–49. [Google Scholar] [CrossRef]
- Irshad, M.A.; Nawaz, R.; Zia-Ur-Rehman, M.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, Characterization and Advanced Sustainable Applications of Titanium Dioxide Nanoparticles: A Review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, H.; Yuan, Z.; Wei, D.; Ye, Y. Evaluation of Antioxidant Activity of Chrysanthemum Extracts and Tea Beverages by Gold Nanoparticles-Based Assay. Colloids Surf. B Biointerfaces 2012, 92, 348–352. [Google Scholar] [CrossRef]
- Anand, K.; Anugraga, A.R.; Kannan, M.; Singaravelu, G.; Govindaraju, K. Bio-Engineered Magnesium Oxide Nanoparticles as Nano-Priming Agent for Enhancing Seed Germination and Seedling Vigour of Green Gram (Vigna radiata L.). Mater. Lett. 2020, 271, 127–792. [Google Scholar] [CrossRef]
- Gupta, S.; Kant, K.; Kaur, N.; Jindal, P.; Ali, A.; Naeem, M. Nano-Calcium Applications in Modern Agriculture: A Review. Plant Nano Biol. 2025, 12, 100147. [Google Scholar] [CrossRef]
- Hua, K.-H.; Wang, H.-C.; Chung, R.-S.; Hsu, J.-C. Calcium Carbonate Nanoparticles Can Enhance Plant Nutrition and Insect Pest Tolerance. J. Pestic. Sci. 2015, 40, 208–213. [Google Scholar] [CrossRef]
- Gil, E.S.; Hudson, S.M. Stimuli-Reponsive Polymers and Their Bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. [Google Scholar] [CrossRef]
- Feng, C.; Lü, S.; Gao, C.; Wang, X.; Xu, X.; Bai, X.; Gao, N.; Liu, M.; Wu, L. “Smart” Fertilizer with Temperature- and pH-Responsive Behavior via Surface-Initiated Polymerization for Controlled Release of Nutrients. ACS Sustain. Chem. Eng. 2015, 3, 3157–3166. [Google Scholar] [CrossRef]
- Hou, X.; Pan, Y.; Xiao, H.; Liu, J. Controlled Release of Agrochemicals Using pH and Redox Dual-Responsive Cellulose Nanogels. J. Agric. Food Chem. 2019, 67, 6700–6707. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.; Beckers, S.J.; Yiamsawas, D.; Thines, E.; Landfester, K.; Wurm, F.R. Targeted Drug Delivery in Plants: Enzyme-Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca. Adv. Sci. 2019, 6, 1802315. [Google Scholar] [CrossRef]
- Yadav, V.; Dhumal, N.; Borkar, S. Nanoemulsion as Novel Drug Delivery System: Development, Characterization and Application. Asian J. Pharm. Res. Dev. 2022, 10, 120–127. [Google Scholar] [CrossRef]
- Thirumalaisamy, R.; Nimithap, S.; Harini, S.; Rajiniganth, R.; Haritha, S.; Vadivel, P.; Thangaswamy, S. Potential Application of Nanoemulsion in Agriculture: A Current Perspective. Int. J. Adv. Sci. Eng. 2025, 11, 4328–4350. [Google Scholar] [CrossRef]
- Kookana, R.S.; Boxall, A.B.A.; Reeves, P.T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T.F.; Gan, J.; Kah, M.; et al. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62, 4227–4240. [Google Scholar] [CrossRef]
- Kapeleka, J.A.; Mwema, M.F. State of Nano Pesticides Application in Smallholder Agriculture Production Systems: Human and Environmental Exposure Risk Perspectives. Heliyon 2024, 10, e39225. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; ur Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Cocozza, C.; Perone, A.; Giordano, C.; Salvatici, M.C.; Pignattelli, S.; Raio, A.; Schaub, M.; Sever, K.; Innes, J.L.; Tognetti, R.; et al. Silver Nanoparticles Enter the Tree Stem Faster through Leaves than through Roots. Tree Physiol. 2019, 39, 1251–1261. [Google Scholar] [CrossRef]
- Ballikaya, P.; Brunner, I.; Cocozza, C.; Grolimund, D.; Kaegi, R.; Murazzi, M.E.; Schaub, M.; Schönbeck, L.C.; Sinnet, B.; Cherubini, P. First Evidence of Nanoparticle Uptake through Leaves and Roots in Beech (Fagus sylvatica L.) and Pine (Pinus sylvestris L.). Tree Physiol. 2023, 43, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Abou El-Nasr, M.K.; Hassan, K.M.; Abd-Elhalim, B.T.; Kucher, D.E.; Rebouh, N.Y.; Ansabayeva, A.; Abdelkader, M.; Ali, M.A.A.; Nasser, M.A. The Emerging Roles of Nanoparticles in Managing the Environmental Stressors in Horticulture Crops—A Review. Plants 2025, 14, 2192. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. In Plant, Soil and Microbes: Volume 1: Implications in Crop Science; Hakeem, K.R., Akhtar, M.S., Abdullah, S.N.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 253–269. ISBN 978-3-319-27455-3. [Google Scholar]
- Varghese, J.V.; Sebastian, E.M.; Iqbal, T.; Tom, A.A. Pesticide Applicators and Cancer: A Systematic Review. Rev. Environ. Health 2021, 36, 467–476. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Blair, A.; Ritz, B.; Wesseling, C.; Beane Freeman, L. Pesticides and Human Health. Occup. Environ. Med. 2015, 72, 81. [Google Scholar] [CrossRef]
- Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G. Nanotechnology-Based Recent Approaches for Sensing and Remediation of Pesticides. J. Environ. Manag. 2018, 206, 749–762. [Google Scholar] [CrossRef]
- Bond, G.C. Heterogeneous Catalysis; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef]
- Saw, G.; Nagdev, P.; Jeer, M.; Murali-Baskaran, R.K. Silica Nanoparticles Mediated Insect Pest Management. Pestic. Biochem. Physiol. 2023, 194, 105524. [Google Scholar] [CrossRef]
- Iqbal, S.; Waheed, Z.; Naseem, A. Nanotechnology and Abiotic Stresses. In Nanoagronomy; Javad, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 37–52. ISBN 978-3-030-41275-3. [Google Scholar]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; AlMutairi, K.A.; Siddiqui, Z.H. Role of Nanomaterials in Plants under Challenging Environments. Eff. Nanomater. Plants 2017, 110, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Aseel, D.G.; Rabie, M.; El-Far, A.; Abdelkhalek, A. Antiviral Properties and Molecular Docking Studies of Eco-Friendly Biosynthesized Copper Oxide Nanoparticles against Alfalfa Mosaic Virus. BMC Plant Biol. 2024, 24, 1089. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.; Doxey, S.; Potter, M.; Adams, J.; Britt, D.; McManus, P.; McLean, J.; Anderson, A. Interactions Between a Plant Probiotic and Nanoparticles on Plant Responses Related to Drought Tolerance. Ind. Biotechnol. 2018, 14, 148–156. [Google Scholar] [CrossRef]
- Elbanna, H.M.; Ahmed, O.K.; Fayed, S.A.-K.; Hammam, K.A.-M.; Yousef, R.S. Enhancing French Basil Growth through Synergistic Foliar Treatment with Copper Nanoparticles and Spirulina sp. BMC Plant Biol. 2024, 24, 512. [Google Scholar] [CrossRef] [PubMed]
- Jaberzadeh, A.; Moaveni, P.; Tohidi Moghadam, H.R.; Zahedi, H. Influence of Bulk and Nanoparticles Titanium Foliar Application on Some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 201–207. [Google Scholar] [CrossRef]
- Shandila, P.; Mahatmanto, T.; Hsu, J.-L. Metal-Based Nanoparticles as Nanopesticides: Opportunities and Challenges for Sustainable Crop Protection. Processes 2025, 13, 1278. [Google Scholar] [CrossRef]
- Bonatto, C.C.; Reis, I.G.; Ribeiro, D.J.; Almeida, R.D.; Corrêa, R.; Dourado, L.P.; Pasquarelli-do-Nascimento, G.; Magalhães, K.G.; Silva, L.P. Nanotoxicological Assessment of Green-Synthesized Silver Nanoparticles from Brazilian Cerrado Plant in a Murine Model. Pharmaceuticals 2025, 18, 993. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C.; et al. Guidance on Risk Assessment of Nanomaterials to Be Applied in the Food and Feed Chain: Human and Animal Health. EFSA J. 2021, 19, e06768. [Google Scholar] [CrossRef] [PubMed]
- National Science and Technology Council. National Nanotechnology Initiative Environmental, Health, and Safety Research Strategy: 2024 Update; Executive Office of the President of the United States: Washington, DC, USA, 2024; p. 53.
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of Nanoparticles in the Soil-Plant Systems and Their Effects on Human Health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Rienzie, R.; Adassooriya, N. Toxicological Concerns of Nanomaterials in Agriculture. In Nanotechnology in Plant Growth Promotion and Protection; Wiley: Hoboken, NJ, USA, 2021; pp. 304–330. ISBN 978-1-119-74588-4. [Google Scholar]
- Quintarelli, V.; Ben Hassine, M.; Radicetti, E.; Stazi, S.R.; Bratti, A.; Allevato, E.; Mancinelli, R.; Jamal, A.; Ahsan, M.; Mirzaei, M.; et al. Advances in Nanotechnology for Sustainable Agriculture: A Review of Climate Change Mitigation. Sustainability 2024, 16, 9280. [Google Scholar] [CrossRef]
- Cummings, C.L.; Kuzma, J.; Kokotovich, A.; Glas, D.; Grieger, K. Barriers to Responsible Innovation of Nanotechnology Applications in Food and Agriculture: A Study of US Experts and Developers. NanoImpact 2021, 23, 100326. [Google Scholar] [CrossRef]
- Gao, S.; Guo, X.; Li, F.; Zhang, Y.; Yu, Y.; Fu, Y.; Ye, F. Delivery of Hexaconazole by the Carboxymethylcellulose Grafting and Cellulase/pH Responsiveness Hollow Mesoporous Silica Nanoparticles. Carbohydr. Polym. 2025, 365, 123822. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A. Role of Nanotechnology in Agriculture with Special Reference to Management of Insect Pests. Appl. Microbiol. Biotechnol. 2012, 94, 287–293. [Google Scholar] [CrossRef]
- Rickman, D.; Luvall, J.; Mask, P.; Shaw, J.; Kissel, D.; Sullivan, D.G. Precision Agriculture: Changing the Face of Farming. 2003. Available online: https://www.researchgate.net/publication/23592101_Precision_Agriculture_Changing_the_Face_of_Farming (accessed on 23 June 2025).
- Vinci, G.; Savastano, M.; Restuccia, D.; Ruggeri, M. Nanobiopesticides: Sustainability Aspects and Safety Concerns. Environments 2025, 12, 74. [Google Scholar] [CrossRef]
Nanotechnology Approach | Key Features | Applications | References |
---|---|---|---|
Nanoparticles |
|
| [16,19,20,21] |
Nano-formulated agrochemicals (herbicides, insecticides, fungicides, plant growth regulators) |
|
| [15,17,18,22,23] |
Nano-fertilizers |
|
| [24,25] |
Nanomaterials for soil and water improvement (nano-clays, TiO2 NPs, Fe3O4) |
|
| [26,27,28] |
Nano-enabled sensors |
|
| [29] |
NPs in plant bioengineering |
|
| [30] |
Nanotechnology Approach | Composition | Advantages | Applications | Main Outcomes | References |
---|---|---|---|---|---|
Biopolymeric Nanoparticles |
|
|
| Chitosan NPs 1000–5000 ppm: reduced Fusarium infection in wheat by 40–60%, with lower phytotoxicity vs. bulk chitosan. | [16,19,20,21] |
Carbon-based Nanoparticles |
|
|
| CNTs applied at 20–100 mg/L increased N, P, K uptake and biomass in maize vs. conventional fertilization. | [39,40,41] |
Dendrimers |
|
|
| 2–3.5, at 1–10 ppb PAMAM with urea + Fe/Mn fertilizer: improved fertilizer mobility and foliar growth. | [42,43] |
Mesoporous Silica Nanoparticles (MSNs) |
|
| Controlled delivery of pesticides or nutrients | MSNs 20 nm, 2 nm pores: absorbed by wheat, lupin, Arabidopsis; no phytotoxicity; localized in roots, xylem, leaves. | [44,45] |
Silica-based NPs (SiO2 NPs) |
|
| SiO2 NPs pretreatment (100–800 mg/L): alleviated CuO-NP-induced root inhibition (50% reduction in root growth otherwise); effect reversed in triticale. | [46,47,48] | |
Metal/Metal Oxide Nanoparticles |
|
|
| Fe3O4 NPs (200–500 mg/L): enhanced wheat growth, photosynthesis, pigments; increased ascorbate peroxidase, reduced MDA; higher leaf Fe, P, K. | [24,28,49,50,51,52,53,54] |
Stimuli-responsive Nanocarriers |
| Release triggered by:
|
| Eu@DMSNs/Pec 50–500 mg/L (tomato): enhanced root growth at low doses; no effect on seed germination; antibacterial activity (EC50 = 126 mg/L for B. subtilis, 165 mg/L for E. coli). | [25,55] |
Nanoemulsions |
|
|
| Caraway oil nanoemulsion up to 10%: safe for maize; caused 50% damage at 5.1% and 90% at 13% in barnyard grass; relative water content ↓ to ~85% (maize) and ~80% (weed). | [56,57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagano, M.; Lunetta, E.; Belli, F.; Mocarli, G.; Cocozza, C.; Cacciotti, I. Advancements in Agricultural Nanotechnology: An Updated Review. Plants 2025, 14, 2939. https://doi.org/10.3390/plants14182939
Pagano M, Lunetta E, Belli F, Mocarli G, Cocozza C, Cacciotti I. Advancements in Agricultural Nanotechnology: An Updated Review. Plants. 2025; 14(18):2939. https://doi.org/10.3390/plants14182939
Chicago/Turabian StylePagano, Mario, Erika Lunetta, Francesco Belli, Giacomo Mocarli, Claudia Cocozza, and Ilaria Cacciotti. 2025. "Advancements in Agricultural Nanotechnology: An Updated Review" Plants 14, no. 18: 2939. https://doi.org/10.3390/plants14182939
APA StylePagano, M., Lunetta, E., Belli, F., Mocarli, G., Cocozza, C., & Cacciotti, I. (2025). Advancements in Agricultural Nanotechnology: An Updated Review. Plants, 14(18), 2939. https://doi.org/10.3390/plants14182939