Macrostructure of Malus Leaves and Its Taxonomic Significance
Abstract
1. Introduction
2. Results
2.1. Diversity and Variability of Leaf Phenotypic Traits in Malus Germplasm
2.2. Principal Component Analysis of Leaf Phenotypic Traits in Malus Germplasm
2.3. Pearson Correlation Analysis of Leaf Phenotypic Traits in Malus Germplasm
2.4. Cluster Analysis of Leaf Phenotypic Traits in Malus Germplasm
2.5. Analysis of Ancestor-Inclined Distribution Characteristic in Malus Germplasm
3. Discussion
3.1. Screening System for Macrostructural Classification Traits of Malus Leaves
3.2. Taxonomic Significance of Malus Leaf Macrostructures
3.3. Evolutionary Trends in Malus Leaf Macrostructure and Breeding Implications
4. Materials and Methods
4.1. Experimental Site and Materials
4.2. Trait Measurement, Description, and Encoding
4.3. Selection of Categorical Traits
4.4. Cluster Analysis and Ancestor-Inclined Distribution Characteristic
4.5. Data Processing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, T.; Shen, X.C.; Zhou, D.J.; Fan, J.J.; Zhao, M.M.; Zhang, W.X.; Cao, F.L. Advances in the Classification of Crabapple Cultivars. Acta Hortic. Sin. 2018, 45, 380. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, W.X.; Di, C.Y.; Lu, X.J. Leaf Color and Pigments of 48 Ornamental Crabapple Germplasms Leaves. Fujian J. Agric. Sci. 2022, 37, 1167–1175. [Google Scholar] [CrossRef]
- Qian, G.Z.; Tang, G.G. A Review on the Plant Taxonomic Study on the Genus Malus Miller. J. Nanjing For. Univ. (Nat. Sci. Ed.). 2005, 29, 94–98. [Google Scholar]
- Chu, W.Y.; Fan, J.J.; Zhang, W.X. Phenological stability of ornamental crabapple and its response to temperature change. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 49–54. [Google Scholar] [CrossRef]
- Qian, G.Z. Research on the Taxonomy of the Genus Malus Mill. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2005. [Google Scholar]
- Li, J.C.; Liu, J.Q.; Gao, X.F. A Revision of the Genus Malus Mill. (Rosaceae). Eur. J. Taxon. 2022, 853, 1–127. [Google Scholar] [CrossRef]
- Liu, B.B.; Ren, C.; Kwak, M.; Hodel, R.G.J.; Xu, C.; He, J.; Zhou, W.B.; Huang, C.H.; Ma, H.; Qian, G.Z.; et al. Phylogenomic Conflict Analyses in the Apple Genus Malus s.l. Reveal Widespread Hybridization and Allopolyploidy Driving Diversification, with Insights into the Complex Biogeographic History in the Northern Hemisphere. J. Integr. Plant Biol. 2022, 64, 1020–1043. [Google Scholar] [CrossRef]
- Forte, A.V.; Ignatov, A.N.; Ponomarenko, V.V.; Dorokhov, D.B.; Savelyev, N.I. Phylogeny of the Malus (Apple Tree) Species, Inferred from the Morphological Traits and Molecular DNA Analysis. Russ. J. Genet. 2002, 38, 1150–1161. [Google Scholar] [CrossRef]
- Patzak, J.; Paprštein, F.; Henychová, A.; Sedlák, J. Comparison of Genetic Diversity Structure Analyses of SSR Molecular Marker Data within Apple (Malus × Domestica) Genetic Resources. Genome 2012, 55, 647–665. [Google Scholar] [CrossRef]
- Kišek, M.; Jarni, K.; Brus, R. Hybridisation of Malus Sylvestris (L.) Mill. with Malus × Domestica Borkh. and Implications for the Production of Forest Reproductive Material. Forests 2021, 12, 367. [Google Scholar] [CrossRef]
- Simo Santalla, P.; Chu, N.T.; Georges, D. Characterisation of crabapple Clones by Isozyme Electrophoresis. Acta Hortic. 2000, 508, 301–302. [Google Scholar] [CrossRef]
- Zhang, W.X.; Zhao, M.M.; Fan, J.J.; Zhou, T.; Chen, Y.X.; Cao, F.L. Study on Relationship between Pollen Exine Ornamentation Pattern and Germplasm Evolution in Flowering Crabapple. Sci. Rep. 2017, 7, 39759. [Google Scholar] [CrossRef] [PubMed]
- Soltis, E.D.; Soltis, P.S. Contributions of Plant Molecular Systematics to Studies of Molecular Evolution. In Plant Molecular Evolution; Doyle, J.J., Gaut, B.S., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 45–75. ISBN 978-94-010-5833-9. [Google Scholar]
- Fan, J.J.; Wang, Y.; Hao, Z.P.; Peng, Y.; Ma, J.Z.; Zhang, W.X.; Zhao, M.M.; Zai, X.M. Characteristics of Phenotypic Variation of Malus Pollen at Infrageneric Scale. Plants 2024, 13, 2522. [Google Scholar] [CrossRef]
- Zhou, T.; Ning, K.; Zhang, W.X.; Chen, H.; Lu, X.Q.; Zhang, D.L.; El-Kassaby, Y.A.; Bian, J. Phenotypic Variation of Floral Organs in Flowering Crabapples and Its Taxonomic Significance. Plant Biol. 2021, 21, 503. [Google Scholar] [CrossRef]
- Wang, B.Q.; Wang, Y.K.; Shen, K.; Jiang, Y.; Wang, L.; Yang, W.Q. Study on Venation Characteristics of 25 Sorbus Species. Wild Plant Resour. 2022, 41, 8–14+24. [Google Scholar] [CrossRef]
- Blonder, B.; Violle, C.; Bentley, L.P.; Enquist, B.J. Venation Networks and the Origin of the Leaf Economics Spectrum. Ecol. Lett. 2011, 14, 91–100. [Google Scholar] [CrossRef]
- Tian, J.; Yu, X.L.; Li, J.X. Characteristcs of the leave venation for species of styrax from Hunan and their significances on plant classification. J. Cent. South Univ. For. Technol. 2010, 30, 101–104. [Google Scholar] [CrossRef]
- Shi, X.G.; Li, Y.Q.; Li, C.R.; Song, X.H.; Ye, C. Leaf Architecture of Eurya and its Taxonomic Significance. Bull. Bot. Res. 2009, 29, 517–523. [Google Scholar]
- Cao, L.M.; Wang, Z.X.; Cao, M.; Liu, J.H.; Lin, Q.; Xia, N.H. Leaf Venation and Its Systematic Significance in Sapindaceae of China. Plant Divers. Resour. 2014, 36, 419–432. Available online: https://kns.cnki.net/kcms2/article/abstract?v=GkDm8A2i92Ua6vqCVyzpyk10ne67G_oolEuBGUmG_hABK5RdP0wIQc-vzstNhxOoN3NTPITXkwal7GFQ-z66BEWzJjq282qNAzm77GPr7D-_-31ZdMAXAFweKGjE0KK9cXx0CDt-ecMPKBbbShYRTbQkbJ-9APA_y1vkbDxCJdneLGZcmpPc9w==&uniplatform=NZKPT&language=CHS (accessed on 19 June 2025).
- Huang, W.X. Leaf Architecture of Genus Prunus L. sensulato (s. l.) and Its Taxonomic Significance. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2017. [Google Scholar]
- Tian, C.F.; Li, M.; Huang, Y.J.; Zhou, Y.; Wang, X.R. Leaf venation characteristics of simple-leavedtaxa of Sorbus in China. Guihaia 2022, 42, 122–132. [Google Scholar] [CrossRef]
- Wang, B.Q.; Liu, P.L.; Shen, K.; Wang, Y.K.; Jiang, Y.; Wang, L.; Yang, W.Q. Leaf Venation Patterns of Fourteen Species of Berberis in Shaanxi Province. Shaanxi For. Sci. Technol. 2021, 49, 1–7. [Google Scholar]
- Song, J.Y.; Luo, T.; Zhang, N. Leaf Structure Characteristics of Five Species of Cymbidium. Plant Sci. J. 2019, 37, 422–433. [Google Scholar] [CrossRef]
- Ji, N.N. The Taxonomic Significance of Embryo Sac Development, Leaf Vein Type and Carpel Number to Malus hupehensis and Its Related Species. Master’s Thesis, Liaocheng University, Liaocheng, China, 2022. [Google Scholar]
- Kumar, C.; Singh, S.K.; Pramanick, K.K.; Verma, M.K.; Srivastav, M.; Singh, R.; Bharadwaj, C.; Naga, K.C. Morphological and Biochemical Diversity among the Malus Species Including Indigenous Himalayan Wild Apples. Sci. Hortic. 2018, 233, 204–219. [Google Scholar] [CrossRef]
- Höfer, M.; Eldin Ali, M.A.M.S.; Sellmann, J.; Peil, A. Phenotypic Evaluation and Characterization of a Collection of Malus Species. Genet. Resour. Crop Evol. 2014, 61, 943–964. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Li, Q.Y.; Huang, J.H.; Hu, S.Q. Numerical classification of 25 color-leafed Osmanthus fragrans clones (cultivars). J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 107–115. [Google Scholar] [CrossRef]
- Wang, Y.N.; Feng, T.J.; Sun, L.; Liu, X.R.; Liu, Y.B.; Wang, P. Differences and influencing factors of understory vegetation species diversity between typical plantations and natural forests in the loess area of western Shanxi Province, northern China. J. Beijing For. Univ. 2025, 47, 103–116. [Google Scholar]
- Xu, J.F.; Zhang, W.X.; Zhu, L.L.; Jiang, H.; Sun, T.T.; Yu, W.W. Phenotypic diversity analysis of fruit traits of 78 North American crabapple cultivars. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2024, 1–12. Available online: https://link.cnki.net/urlid/32.1161.S.20240428.0943.002 (accessed on 28 April 2024).
- Koehne, B.A.E. Deutsche Dendrologie; Verlag von Ferdinand Enke: Stuttgart, Germany, 1893. [Google Scholar]
- Rehder. Manual of Cultivated Trees and Shrubs in North America; Macmillan Company: New York, NY, USA, 1940. [Google Scholar]
- Yu, D.J. Taxonomy of Deciduous Fruit Trees; Shanghai Scientific & Technical Publishers: Shanghai, China, 1984. [Google Scholar]
- Li, Y.N. Research of Germplasm Resources of Malus Mill; China Agriculture Press: Beijing, China, 2001; ISBN 7-109-06805-6. [Google Scholar]
- Li, Y.N. Progress in Research on the Origin and Evolution of Genus Malus in the World. J. Fruit Sci. 1999, 16, 8–19. [Google Scholar] [CrossRef]
- Fiala, J.L.; Daniels, G.S. Flowering Crabapples: The Genus Malus; Timber Press: Portland, OR, USA, 1994. [Google Scholar]
- Zheng, Y.; Qu, X.L.; Guo, L.; Sun, F.Y.; Mao, Z.Q.; Shen, X. Advances on Ornamental Crabapple Resources. J. Shandong Agric. Univ. (Nat. Sci.) 2008, 39, 152–160. [Google Scholar]
- Guo, L.; Zhou, S.L.; Zhang, Z.S.; Shen, X.; Cao, Y.; Zhang, D.L.; Shu, H.R. Relationships of Species, Hybrid Species and Cultivars in Genus Malus Revealed by AFLP Markers. Sci. Silvae Sin. 2009, 45, 33–40. [Google Scholar]
- Bodor-Pesti, P.; Taranyi, D.; Deák, T.; Nyitrainé Sárdy, D.Á.; Varga, Z. A Review of Ampelometry: Morphometric Characterization of the Grape (Vitis Spp.) Leaf. Plants 2023, 12, 452. [Google Scholar] [CrossRef]
- Li, D.S.; Shi, Z.M.; Feng, Q.H.; Liu, F. Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China. Chin. J. Plant Ecol. 2013, 37, 793–802. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Ni, X.L.; Li, J. Study on the Developmental Anatomy of Structures and AerenchymaFormation in Potamogeton perfoliatus Stems and Leaves. Acta Bot. Boreal.-Occident. Sin. 2018, 38, 1279–1287. [Google Scholar]
- Zhou, L.Y.; Wang, Y.Q.; Zhang, L.; Hu, Z.M. Mathematic Classification of 46 Species in Rhododendron with the Morphologic Characters. Sci. Silvae Sin. 2009, 45, 67–75. [Google Scholar]
- Chu, A.X.; Yang, Y.J.; Tang, G.G.; Tong, L.L. Studies on Numerical Taxonomy of the Malus halliana Koehne Cultivars in Henan. Acta Hortic. Sin. 2009, 36, 377–384. [Google Scholar] [CrossRef]
- Roth Nebelsick, A.; Uhl, D.; Mosbrugger, V.; Kerp, H. Evolution and Function of Leaf Venation Architecture: A Review. Ann. Bot. 2001, 87, 553–566. [Google Scholar] [CrossRef]
- Peng, G.Q.; Xiong, Y.J.; Yin, M.Q.; Wang, X.L.; Zhou, W.; Cheng, Z.F.; Zhang, Y.J.; Yang, D.M. Leaf Venation Architecture in Relation to Leaf Size Across Leaf Habits and Vein Types in Subtropical Woody Plants. Front. Plant Sci. 2022, 13, 873036. [Google Scholar] [CrossRef]
- Mollman, R.; Çiftçi, A.; Kaleli, B.S.; Erol, O. Teasing out Elevational Trends in Infraspecific Prunus Taxa: A Vein Analysis Approach. Microsc. Res. Tech. 2023, 86, 1699–1711. [Google Scholar] [CrossRef]
- Cho, M.-S.; Kim, J.H.; Yamada, T.; Maki, M.; Kim, S.-C. Plastome Characterization and Comparative Analyses of Wild Crabapples (Malus Baccata and M. Toringo): Insights into Infraspecific Plastome Variation and Phylogenetic Relationships. Tree Genet. Genomes 2021, 17, 41. [Google Scholar] [CrossRef]
- Wang, X.B.; Cao, Y.; Guo, W.; Ma, L.; Liu, X.L. Morphological Characteristics of Pollen from 44 Species of Subgen. Yulania. Acta Hortic. Sin. 2023, 50, 2417–2434. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, W.X.; Zhang, D.L.; El-Kassaby, Y.A.; Fan, J.J.; Jiang, H.; Wang, G.B.; Cao, F.L. A Binary-Based Matrix Model for Malus Corolla Symmetry and Its Variational Significance. Front. Plant Sci. 2020, 11, 416. [Google Scholar] [CrossRef]
- Reich, P.B.; Wright, I.J.; Cavender-Bares, J.; Craine, J.M.; Oleksyn, J.; Westoby, M.; Walters, M.B. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 2003, 164, S143–S164. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, J.; Zhao, C.; Fan, J.J.; Jiang, W.L.; Zhang, W.X.; Wang, G.P. Analysis and evaluation on flower color characteristics of the Malus ‘Purple Prince’ half- sib progenies. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 43, 18–24. [Google Scholar]
- Fan, J.J.; Zhang, W.X.; Zhou, T.; Zhang, D.D.; Zhang, D.L.; Zhang, L.; Wang, G.B.; Cao, F.L. Discrimination of Malus Taxa with Different Scent Intensities Using Electronic Nose and Gas Chromatography–Mass Spectrometry. Sensors 2018, 18, 3429. [Google Scholar] [CrossRef]
- Zhang, L.L.; Mao, Y.F.; Zhang, C.H.; Zhang, D.J.; Shen, X. A New Ornamental Crabapple Cultivar ‘Duojiao’. Acta Hortic. 2019, 46, 2908–2909. [Google Scholar] [CrossRef]
- Ge, H.J.; Huang, Y.; Wan, S.W.; Zhang, R.F.; Ma, R.Q.; Sun, J.L.; Sha, G.L. Malus ‘Datang Tingliang’: A new ornamental crabapple cultivar. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2022, 46, 247–248. [Google Scholar] [CrossRef]
- Li, N.; Zhang, W.X.; Jiang, H.; Zhang, Q.Q.; Zhao, P.P. Changes of Leaf Color and Dynamics of Pigment Componentsin Ornamental Crabapple. North. Hortic. 2021, 4, 57–63. Available online: http://bfyy.paperonce.org/oa/DArticle.aspx?type=view&id=20201172 (accessed on 19 June 2025).
- Han, W.X.; Jiang, H.; Bian, J.; Yun, J.H.; Sun, Y.Y.; Zhang, W.X.; Peng, Y. Leaf color change and its correlation with pigment content in 10 ornamental crabapple varieties in spring. J. Zhejiang Univ. Agric. Life Sci. 2020, 46, 562–570. [Google Scholar]
- Ellis, B.; Daly, D.; Hickey, L.; Johnson, K.; Mitchell, J.; Wilf, P.; Wing, S. Manual of Leaf Architecture; Cornell University Press: Ithaca, NY, USA, 2009; ISBN 978-1-84593-584-9. [Google Scholar]
- IBM Corp. IBM SPSS Statistics forWindows; Armonk: New York, NY, USA, 2019. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix. 2021. Available online: https://github.com/taiyun/corrplot (accessed on 19 June 2025).
- Xiao, N. Ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for “Ggplot2”. 2024. Available online: https://CRAN.R-project.org/package=ggsci (accessed on 19 June 2025).
Phenotypic Traits of Leaves | Principal Component | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Total leaf lobes | 0.95 | −0.07 | −0.05 | −0.09 | 0.04 | −0.07 | 0.02 | −0.07 | −0.02 | 0.04 | 0.09 | 0.01 |
Leaf lobe depth | 0.93 | −0.05 | −0.08 | 0.07 | 0.01 | 0.04 | −0.01 | 0.01 | −0.07 | 0.03 | 0.10 | 0.03 |
Leaf widest distance/Leaf length | −0.72 | 0.09 | −0.24 | −0.05 | 0.06 | 0.15 | 0.08 | 0.09 | −0.29 | 0.01 | 0.27 | 0.19 |
Leaf length/leaf width | −0.56 | 0.13 | −0.36 | 0.28 | 0.17 | −0.24 | −0.22 | 0.02 | 0.00 | 0.01 | −0.38 | −0.29 |
Leaf shape | −0.49 | −0.10 | −0.35 | 0.02 | 0.12 | 0.00 | 0.02 | 0.01 | −0.29 | 0.13 | 0.37 | −0.07 |
Leaf length | −0.08 | 0.93 | −0.03 | 0.02 | 0.01 | −0.09 | −0.17 | −0.08 | 0.05 | 0.02 | −0.22 | −0.03 |
Leaf area | 0.03 | 0.92 | 0.23 | −0.19 | −0.10 | 0.02 | −0.01 | −0.09 | 0.07 | −0.01 | 0.03 | 0.13 |
Leaf widest distance | −0.48 | 0.81 | −0.19 | −0.02 | 0.04 | 0.02 | −0.10 | −0.04 | −0.12 | 0.01 | 0.00 | 0.10 |
Leaf width | 0.47 | 0.69 | 0.31 | −0.24 | −0.12 | 0.10 | 0.10 | −0.06 | 0.08 | 0.04 | 0.10 | 0.22 |
Leaf base shape | 0.02 | 0.05 | 0.95 | 0.01 | −0.02 | 0.00 | 0.06 | 0.07 | 0.02 | −0.06 | 0.05 | 0.10 |
Leaf base angle | 0.06 | 0.09 | 0.92 | 0.01 | 0.04 | −0.08 | 0.09 | 0.04 | 0.04 | −0.05 | 0.11 | 0.07 |
Petiole pubescence | −0.12 | 0.00 | −0.09 | 0.81 | 0.21 | 0.15 | 0.00 | 0.12 | −0.09 | −0.01 | −0.12 | −0.18 |
Mature leaf lower pubescence | −0.01 | −0.12 | 0.10 | 0.78 | 0.18 | −0.09 | 0.00 | 0.13 | −0.12 | 0.08 | −0.11 | −0.18 |
Quaternary fabric | 0.13 | −0.40 | 0.03 | 0.64 | 0.08 | 0.14 | 0.15 | −0.15 | 0.14 | 0.03 | 0.06 | 0.23 |
Young leaf color | −0.07 | −0.04 | −0.05 | 0.15 | 0.90 | −0.08 | −0.01 | 0.21 | −0.02 | −0.08 | 0.03 | −0.05 |
Petiole color | 0.00 | −0.09 | 0.00 | 0.25 | 0.86 | −0.06 | −0.02 | 0.08 | −0.02 | −0.11 | 0.02 | 0.03 |
Mature leaf color | 0.06 | 0.08 | 0.10 | −0.02 | 0.61 | 0.58 | −0.02 | −0.19 | −0.23 | 0.02 | −0.07 | −0.01 |
Major secondary spacing | 0.07 | 0.07 | −0.11 | 0.26 | 0.00 | 0.82 | −0.04 | 0.03 | 0.12 | −0.04 | −0.03 | −0.03 |
Major secondary quantity | 0.17 | 0.12 | −0.01 | 0.13 | 0.12 | −0.81 | −0.18 | −0.07 | −0.11 | 0.07 | −0.03 | 0.06 |
Epimedial tertiary fabric | −0.10 | −0.13 | 0.11 | −0.05 | −0.06 | 0.07 | 0.91 | 0.06 | −0.02 | −0.01 | 0.06 | 0.00 |
Intercostal tertiary fabric | 0.13 | −0.04 | 0.06 | 0.12 | 0.02 | 0.05 | 0.89 | −0.08 | 0.12 | −0.09 | −0.02 | 0.04 |
Intersecondary frequency | −0.10 | −0.07 | 0.16 | 0.12 | 0.17 | 0.03 | −0.13 | 0.78 | 0.00 | 0.02 | 0.17 | −0.15 |
Intersecondary length | 0.49 | −0.14 | −0.11 | −0.02 | 0.13 | −0.03 | 0.28 | 0.59 | −0.15 | 0.11 | −0.12 | 0.21 |
Intersecondary distal course | −0.43 | −0.13 | 0.08 | 0.11 | 0.05 | 0.08 | 0.03 | 0.58 | −0.24 | −0.07 | 0.10 | 0.34 |
Variation of major secondary angle to midvein | 0.09 | 0.00 | −0.02 | −0.17 | 0.00 | 0.17 | 0.12 | −0.04 | 0.83 | 0.02 | −0.12 | −0.03 |
Connection pattern between major secondary and midvein | −0.05 | 0.09 | 0.19 | 0.19 | −0.29 | −0.03 | −0.01 | −0.23 | 0.62 | 0.10 | 0.45 | 0.14 |
Areole development | 0.09 | 0.01 | −0.05 | −0.09 | −0.09 | −0.08 | −0.04 | −0.13 | −0.03 | 0.88 | −0.01 | 0.08 |
Freely ending veinlets branching | −0.01 | 0.03 | −0.12 | 0.33 | −0.09 | −0.03 | −0.10 | 0.26 | 0.16 | 0.67 | −0.05 | −0.17 |
Major secondary framework | −0.26 | −0.03 | 0.37 | 0.08 | −0.24 | 0.27 | 0.11 | 0.16 | −0.22 | 0.38 | −0.20 | −0.28 |
Leaf apex shape | 0.06 | −0.17 | 0.20 | −0.28 | 0.07 | −0.05 | 0.04 | 0.26 | −0.04 | −0.13 | 0.78 | −0.13 |
Leaf margin shape | −0.01 | 0.25 | 0.19 | −0.23 | −0.04 | −0.11 | 0.04 | 0.03 | 0.02 | −0.03 | −0.10 | 0.79 |
Eigen value | 4.82 | 4.16 | 2.92 | 2.56 | 2.27 | 2.04 | 1.61 | 1.48 | 1.18 | 1.00 | 0.96 | 0.90 |
Variance contribution rate | 15.53 | 13.41 | 9.42 | 8.27 | 7.33 | 6.57 | 5.21 | 4.78 | 3.80 | 3.23 | 3.08 | 2.91 |
Cumulative contribution rate | 15.53 | 28.95 | 38.36 | 46.63 | 53.97 | 60.53 | 65.74 | 70.52 | 74.32 | 77.55 | 80.63 | 83.54 |
Quantitative Traits | Subgroups | ||||
---|---|---|---|---|---|
A1 | A2 | A3 | B1 | B2 | |
Major secondary quantity | 7.89 ± 1.37 b | 7.21 ± 1.16 bc | 6.94 ± 0.98 c | 9.90 ± 1.93 a | 6.72 ± 0.78 c |
Leaf widest distance (cm) | 2.96 ± 0.68 b | 3.24 ± 0.75 b | 2.95 ± 0.66 b | 3.31 ± 0.64 b | 4.17 ± 0.56 a |
Leaf area (cm2) | 23.26 ± 6.78 b | 24.98 ± 7.72 b | 26.59 ± 9.23 b | 35.06 ± 8.07 a | 39.75 ± 8.01 a |
Leaf widest distance/Leaf length | 0.38 ± 0.07 b | 0.43 ± 0.04 a | 0.41 ± 0.06 ab | 0.38 ± 0.03 ab | 0.42 ± 0.05 a |
Species | Species | Cultivars | Cultivars |
---|---|---|---|
Malus angustifolia | M. × prunifolia | M. ‘America Salute’ | M. ‘Louisa Contort’ |
M. asiatica | M. pumila | M. ‘Ballet’ | M. ‘Makamik’ |
M. baccata | M. rockii | M. ‘Brandywine’ | M. ‘Mary Potter’ |
M. baccata var. baccata | M. × sargenttii | M. ‘Butterball’ | M. ‘May’s Delight’ |
M. baccata var. mandshurica | M. sieversii f. niedzwetzkyana | M. ‘Candymint’ | M. ‘Molten Lav’ |
M. coronaria | M. sieversii subsp. xinjinensis | M. ‘Cardinal’ | M. ‘Orange Dream’ |
M. daochengensis | M. sikkimensis | M. ‘Centurion’ | M. ‘Pink Prince’ |
M. domestica | M. spectabilis | M. ‘Chestnut’ | M. ‘Praire Rose’ |
M. domestica var. binzi | M. sylvestris | M. ‘Cinderella’ | M. ‘Professor Sprenger’ |
M. doumeri | M. toringo | M. ‘Coralburst’ | M. ‘Purple Prince’ |
M. ×floribunda | M. transitoria | M. ‘Donald Wyman’ | M. ‘Red Sentinel’ |
M. fusca | M. tschonoskii | M. ‘Fairytail Gold’ | M. ‘Roger’s Selection’ |
M. halliana | M. turkmenorum | M. ‘Firebird’ | M. ‘Royal Raindrop’ |
M. hupehensis | M. yunnanensis | M. ‘Golden Raindrop’ | M. ‘Selkirk’ |
M. ioensis | M. ‘Harvest Gold’ | M. ‘Show Time’ | |
M. ×kaido | M. ‘Indian Summer’ | M. ‘Sugar Tyme’ | |
M. kirghisorum | M. ‘King Arthur’ | M. ‘Sweet Sugar tyme’ | |
M. orientalis | M. ‘Klehm’s Improved Bechtel’ | M. ‘Velvet Pillar’ | |
M. parttii | M. ‘Lancelot’ | M.× zumi ‘Calocarpa’ | |
M. ×platycarpa | M. ‘Lollipop’ |
Leaf Phenotypic Traits | Description (Grades) and Encoding |
---|---|
Leaf texture | Papery: 0; Leathery: 1 |
Leaf surface state | Flat: 0; Wavy: 1 |
Young leaf color | Green: 0; Yellow-green: 1; Brown-red: 2; Purple-red: 3; Purple: 4 |
Young leaf upper pubescence | Dense: 0; Sparse: 1; None: 2 |
Young leaf lower pubescence | Dense: 0; Sparse: 1; None: 2 |
Mature leaf color | Light green: 0; Medium green: 1; Dark green: 2; Purple: 3 |
Mature leaf upper pubescence | Dense: 0; Sparse: 1; None: 2 |
Mature leaf lower pubescence | Dense: 0; Sparse: 1; None: 2 |
Leaf shape | Broad ovate: 0; Ovate: 1; Narrow ovate: 2; Suborbicular: 3; Broad elliptic: 4; Elliptic: 5; Narrow elliptic: 6 |
Leaf apex shape | Caudate: 0; Acuminate: 1; Acute: 2; Abruptly acuminate: 3; Obtuse: 4 |
Leaf base shape | Cuneate: 0; Convex: 1; Rounded: 2; Cordate: 3 |
Leaf base angle | Acute angle: 0; Obtuse angle: 1; Reflex angle: 2 |
Leaf margin shape | Sharply serrate: 0; Bluntly serrate: 1; Doubly serrate: 2 |
Total leaf lobes | None: 0; Few: 1 (<40%); Moderate: 2 (40–70%); Many: 3 (70–100%); All: 4 |
Leaf lobe depth | None: 0; Shallowly lobed: 1; Moderately lobed: 2; Deeply lobed: 3 |
Anthocyanin pigmentation | None: 0; Weak: 1; Moderate: 2; Strong: 3 |
Petiole color | Green: 0; Red-green: 1; Red: 2; Purple: 3 |
Petiole pubescence | Dense: 0; Sparse: 1; None: 2 |
Stipule state | Deciduous: 0; Residual: 1; Persistent: 2 |
Midvein color | Yellow-green: 0; Red-green: 1; Purple-red: 2 |
Main venation | Pinnate straight veins: 0; Pinnate looped veins: 1; Pinnate ternate veins: 2 |
Lateral veins color | Yellow-green: 0; Red-green: 1; Purple-red: 2 |
Primary fabric | Monopodial: 0; Sympodial: 1; Monopodial proximally, sympodial distally: 2 |
Minor secondary | None: 0; Present: 1 |
Major secondary framework | Craspedodromous: 0; Semicraspedodromous: 1; Festooned semicraspedodromous: 2; Craspedodromous proximally, semicraspedodromous distally: 3 |
Connection pattern between major secondary and midvein | Decurrent: 0; Secondary veins at base decurrent: 1; Straight: 2; Curved: 3Decurrent: 0; Decurrent proximally: 1; Straight: 2; Curved: 3 |
Major secondary spacing | Regular: 0; Irregular: 1; Decreasing proximally: 2; Gradually increasing proximally: 3; Abruptly increasing proximally: 4 |
Variation of major secondary angle to midvein | Consistent: 0; Inconsistent: 1; Decreasing proximally: 2; Increasing proximally: 3 |
Intersecondary proximal course | None: 0; Parallel to major secondary veins: 1; Perpendicular to midvein: 2 |
Intersecondary distal course | None: 0; Reticulate or branched: 1; Parallel to major secondary veins: 2; Curved: 3 |
Intersecondary length | None: 0; Less than half the length of the proximal secondary veins: 1; More than half the length of the proximal secondary veins: 2 |
Intersecondary frequency | None: 0; Less than one per intercostal area: 1; Usually one per intercostal area: 2; More than one per intercostal area: 3 |
Intercostal tertiary fabric | Opposite percurrent: 0; Alternate percurrent: 1; Mixed percurrent: 2 |
Intercostal tertiary angle variability | Consistent: 0; Inconsistent: 1; Decreasing exmedially: 2; Increasing exmedially: 3 |
Epimedial tertiary fabric | Opposite percurrent: 0; Alternate percurrent: 1; Mixed percurrent: 2 |
Proximal course of the epimedial tertiary | Perpendicular: 0; Not perpendicular: 1 |
Quaternary fabric | Opposite percurrent: 0; Alternate percurrent: 1; Mixed percurrent: 2 |
Areole development | Poor: 0; Medium: 1; Good: 2; Excellent: 3 |
Freely ending veinlets branching | Mostly unbranched: 0; Mostly with one branch: 1; Dichotomous: 2; Dendritic: 3 |
Lateral vein angle | The angle between major secondary vein and midvein, unit: ° |
Major secondary quantity | Number of all massive secondary vein in the leaf |
Leaf vein density | Total length of all veins per unit leaf area, unit: mm/mm2 |
Leaf length | The maximum distance from the leaf base to any point on the leaf margin, unit: cm |
Leaf width | The maximum leaf width perpendicular to the leaf length, unit: cm |
Leaf widest distance | The straight-line distance from the widest part of the leaf to the base, unit: cm |
Petiole length | The straight-line distance from the base to the tip of the petiole, unit: cm |
Leaf area | Surface area of a single leaf, unit: cm2 |
Leaf length/leaf width | The ratio of leaf length to width |
Leaf widest distance/Leaf length | The ratio of leaf widest distance to leaf length |
Leaf widest distance/Leaf width | The ratio of leaf widest distance to leaf width |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Li, H.; Ma, J.; Zhou, T.; Fan, J.; Zhang, W. Macrostructure of Malus Leaves and Its Taxonomic Significance. Plants 2025, 14, 1918. https://doi.org/10.3390/plants14131918
Fan Y, Li H, Ma J, Zhou T, Fan J, Zhang W. Macrostructure of Malus Leaves and Its Taxonomic Significance. Plants. 2025; 14(13):1918. https://doi.org/10.3390/plants14131918
Chicago/Turabian StyleFan, Yuerong, Huimin Li, Jingze Ma, Ting Zhou, Junjun Fan, and Wangxiang Zhang. 2025. "Macrostructure of Malus Leaves and Its Taxonomic Significance" Plants 14, no. 13: 1918. https://doi.org/10.3390/plants14131918
APA StyleFan, Y., Li, H., Ma, J., Zhou, T., Fan, J., & Zhang, W. (2025). Macrostructure of Malus Leaves and Its Taxonomic Significance. Plants, 14(13), 1918. https://doi.org/10.3390/plants14131918