Seasonal Dynamic Changes in the Nutrient Elements and Antioxidant Activity of Ilex vomitoria Leaf
Abstract
:1. Introduction
2. Results
2.1. Analysis of Mineral Nutrients in the Leaves of I. vomitoria
2.2. Analysis of Soluble Sugar and Vitamin C Content in Leaves of I. vomitoria
2.3. Analysis of Amino Acid Content and Its Flavor in Leaves of I. vomitoria
2.4. Analysis of Antioxidant Content and Antioxidant Activity in Leaves of I. vomitoria
2.5. Analysis of Aroma Components in Leaves of Different Seasons of I. vomitoria
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Determination of Nutrient Elements in Leaves
4.2.2. Determination of Soluble Sugar and Vitamin C in Leaves
4.2.3. Determination of Amino Acids in Leaves
4.2.4. Determination of Flavonoids and Polyphenols in Leaves
4.2.5. Determination of Saponins in Leaves
4.2.6. Determination of Caffeine and Catechins in Leaves
4.2.7. Determination of Antioxidant Capacity in Leaves
4.2.8. Determination of Aroma Components in Leaves
4.2.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, X.; Zhao, S.; Yang, J.; Xie, X.; Lin, C.; Liu, Y. A New Framework for the Research of Tea Consumption: Based on the Two-way change of Tea Drinking Habit. Tea Commun. 2019, 46, 48–54. [Google Scholar]
- Sun, L.; Zhang, J.; Lu, X.; Zhang, L.; Zhang, Y. Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem. Toxicol. 2011, 49, 2689–2696. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Xie, Z.; Xu, X.; Yang, D. Persimmon (Diospyros kaki L.) leaves: A review on traditional uses, phytochemistry and pharmacological properties. J. Ethnopharmacol. 2015, 163, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, F.; Xing, J.; Tsao, R.; Liu, Z. Screening and structural characterization of α-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MS n and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom. 2009, 20, 1496–1503. [Google Scholar] [CrossRef]
- Rao, F.; Zhang, Y.; Tong, P.; Guo, Y.; Chen, F. Phenolic Composition and Effects on Allergic Contact Dermatitis of Phenolic Extracts Sapium sebiferum (L.) Roxb. Leaves. J. Ethnopharmacol. 2015, 162, 176–180. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, T.; Zhang, C.; Yan, Y.; Zhang, L.; Liu, Q.; Liu, Y.; Qiao, Q. Analysis of leaf forage value and screening of different populations of Pteroceltis tatarinowii, a rare and endemic species in China. Front. Plant Sci. 2023, 14, 1164451. [Google Scholar] [CrossRef]
- Souilem, S.; Fki, I.; Kobayashi, I.; Khalid, N.; Neves, M.; Isoda, H.; Sayadi, S.; Nakajima, M. Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food Bioprocess Technol. 2017, 10, 229–248. [Google Scholar] [CrossRef]
- Liao, C.Y.; Bustasmanteroman, M. Techno-economic analysis and life cycle assessment of pineapple leaves utilization in costa rica. Energies 2017, 15, 5784. [Google Scholar] [CrossRef]
- Palumbo, M.J.; Talcott, S.T.; Putz, F.E. Ilex Vomitoria Ait. (Yaupon): A native North American source of a caffeinated and antioxidant-rich tea. Econ. Bot. 2009, 63, 130–137. [Google Scholar] [CrossRef]
- Palumbo, M.J.; Putz, F.E.; Talcott, S.T. Nitrogen fertilizer and gender effects on the secondary metabolism of yaupon a caffeine-containing North American holly. Oecologia 2007, 151, 1–9. [Google Scholar] [CrossRef]
- Folch, C. Ceremony, medicine, caffeinated tea: Unearthing the forgotten faces of the North American stimulant Yaupon (Ilex vomitoria). Comp. Stud. Soc. Hist. 2021, 63, 464–498. [Google Scholar] [CrossRef]
- Kim, Y.; Talcott, S.T. Tea creaming in nonfermented teas from Camellia sinensis and Ilex vomitoria. J. Agric. Food Chem. 2012, 60, 11793–11799. [Google Scholar] [CrossRef] [PubMed]
- Fawad, Z.; Zhang, E.; Ali, W.K.; Li, J.; Muhammad, I.; Deng, X.; Muhammad, I.; Guo, F.; Wang, P.; Wang, M.; et al. Natural variations and dynamics of macronutrients for 87 tea plant (Camellia sinensis) varieties throughout the growing seasons in Wuhan. Sci. Hortic. 2022, 306, 111425. [Google Scholar] [CrossRef]
- Ruan, G. Absorption of foliar-applied urea-15N and the impact of low nitrogen, potassium, magnesium and sulfur nutritional status in tea (Camellia sinensis L.) plants. Soil Sci. Plant Nutr. 2015, 61, 653–663. [Google Scholar] [CrossRef]
- Mudau, N.F.; Soundy, P.; Du Toit, E.S. Plant growth and development of bush tea as affected by nitrogen, phosphorus, and potassium nutrition. HortScience 2005, 40, 1898–1901. [Google Scholar] [CrossRef]
- Venkatesan, S.; Ganapathy, M. Impact of nitrogen and potassium fertiliser application on quality of CTC teas. Food Chem. 2004, 84, 325–328. [Google Scholar] [CrossRef]
- Ding, Z.; Jia, S.; Wang, Y.; Xiao, J.; Zhang, Y. Phosphate stresses affect ionome and metabolome in tea plants. Plant Physiol. Biochem. 2017, 120, 30–39. [Google Scholar] [CrossRef]
- Lin, Z.; Qi, Y.; Chen, R.; Zhang, F.; Chen, L. Effects of phosphorus supply on the quality of green tea. Food Chem. 2012, 130, 908–914. [Google Scholar] [CrossRef]
- Li, J.; Xia, J. Summary on nitrogen (N), phosphorus (P), potassium (K) and tea quality. Chinese Agric. Sci. Bull. 2005, 21, 62–65. [Google Scholar]
- Maja, W.; Anna, S.; Pawel, P. Novel ICP-OES-Based Method for the Reliable Determination of the Total Content of 15 Elements in Yerba Mate Drinks along with the Determination of Caffeine and the In Vitro Bioaccessibility of the Compounds. Molecules 2023, 28, 3374. [Google Scholar] [CrossRef]
- Orit, S. Magnesium transport and function in plants: The tip of the iceberg. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2002, 15, 309–323. [Google Scholar] [CrossRef]
- Waraich, A.E.; Ahmad, R.; Ashraf, Y.M.; Saifullah; Ahmad, M. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2011, 61, 291–304. [Google Scholar] [CrossRef]
- Tewari, K.R.; Kumar, P.; Sharma, N.P. Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci. Hortic. 2005, 108, 7–14. [Google Scholar] [CrossRef]
- Palta, J.P. Stress Interactions at the Cellular and Membrane Levels. Hort. Sci. 2000, 25, 1377. [Google Scholar] [CrossRef]
- Lombi, E.; Tearall, K.L.; Howarth, J.R.; Zhao, F.; Hawkesford, M.J.; McGrath, S.P. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 2002, 128, 1359–1367. [Google Scholar] [CrossRef]
- Suganya, A.; Saravanan, A.; Manivannan, N. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Qiao, C.; Xu, B.; Han, Y.; Wang, J.; Wang, X.; Liu, L.; Liu, W.; Wan, S.; Tan, H.; Liu, Y.; et al. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis. Agron. Sustain. Dev. 2018, 38, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, K.; Jiang, W.; Cheng, H.; Zhou, J.; He, W.; Zhang, C. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 2011, 233, 1049–1055. [Google Scholar] [CrossRef]
- Klotz, L.K.; Campbell, L.G. Sucrose Catabolism in Developing Roots of Three Beta vulgaris Genotypes with Different Yield and Sucrose Accumulating Capacities. J. Sugarbeet Res. 2004, 41, 73–88. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Chen, R.; Sun, L.; Lai, X.; Li, Q.; Hao, M.; Zhang, S.; Li, Q.; Sun, S.; et al. Metabolomics-based analysis of the effects of differences in soluble sugars on the sweetness quality of six major tea types in China. J. Food Funct. 2025, 16, 3707–3720. [Google Scholar] [CrossRef]
- Romain, D.D.; Philippe, B.; Peggy, S.; Audrey, G.; Daniel, Y.; Christian, T.; Véronique, C.; Charles, G.; Luc, S.; Caroline, T. Vitamin C Prevents Ultraviolet-induced Pigmentation in Healthy Volunteers: Bayesian Meta-analysis Results from 31 Randomized Controlled versus Vehicle Clinical Studies. J. Clin. Aesthetic Dermatol. 2019, 12, E53–E59. [Google Scholar]
- Liu, C.; Li, J.; Li, H.; Xue, J.; Wang, M.; Jian, G.; Zhu, C.; Zeng, L. Differences in the quality of black tea (Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chem. X 2023, 20, 100998. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ho, C.T.; Wilfried, S.; Wan, X. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, Y.; Yang, P.; Liu, Z.; Huang, J.; Xiong, L.; Li, J. Relationship between theanine, catechins and related genes reveals accumulation mechanism during spring and summer in tea plant (Camellia sinensis L.). Sci. Hortic. 2022, 302, 111142. [Google Scholar] [CrossRef]
- Xu, W.; Song, Q.; Li, D.; Wan, X. Discrimination of the production season of Chinese green tea by chemical analysis in combination with supervised pattern recognition. J. Agric. Food Chem. 2012, 60, 7064–7070. [Google Scholar] [CrossRef]
- Yao, L.; Liu, X.; Jiang, Y.; Caffin, N.; D’Arcy, B.; Singanusong, R.; Datta, N.; Xu, Y. Compositional analysis of teas from Australian supermarkets. Food Chem. 2004, 94, 115–122. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, H.; Li, C.; Wang, Y.; Zhang, J.; Tang, X.; Zhang, T.; Liu, Y. A combined drying process involving hot air and roasting for improving summer congou black tea quality. Food Res. Int. 2025, 201, 115584. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef]
- Susanne, S.; Thomas, H. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Yang, T.; Li, H.; Hu, X.; Li, J.; Hu, J.; Liu, R.; Deng, Z. Effects of fertilizing with N, p, se, and zn on regulating the element and functional component contents and antioxidant activity of tea leaves planted in red soil. J. Agric. Food Chem. 2014, 62, 3823–3830. [Google Scholar] [CrossRef]
- Wang, K.; Ruan, J. Analysis of chemical components in green tea in relation with perceived quality, a case study with Longjing teas. Int. J. Food Sci. Technol. 2009, 44, 2476–2484. [Google Scholar] [CrossRef]
- Labuda, I. Flavor compound. In Encyclopedia of Microbiology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 305–320. [Google Scholar]
- Chen, Y.; Duan, J.; Jiang, Y.; Shi, J.; Peng, L.; Xue, S.; Kakuda, Y. Production, Quality, and Biological Effects of Oolong Tea (Camellia sinensis). Food Rev. Int. 2011, 27, 1–15. [Google Scholar] [CrossRef]
- Xu, R.; Ye, H.; Sun, Y.; Tu, Y.; Zeng, X. Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food Chem. Toxicol. 2012, 50, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Rees, A.; Dodd, G.F.; Spencer, J.P. The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients 2018, 10, 1852. [Google Scholar] [CrossRef]
- Koes, R.; Verweij, W.; Quattrocchio, F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef]
- Lorena, C.; Vasile, M.; Octavia, R.; Cristian, V.; Liana, R.; Vasile, N.; MirelaGeorgiana, P.; Ioan, D.; TeodoraGabriela, A.; Ioana, P.; et al. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef]
- Costas, I.; Victoria, Y. Antimutagenic activity of tea: Role of polyphenols. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 649–656. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, C.; Liang, J. Effect of esterification condensation on the Folin-Ciocalteu method for the quantitative measurement of total phenols. Food Chem. 2015, 170, 10–15. [Google Scholar] [CrossRef]
- Uladzimir, B.; Martina, W.; Zdeněk, W. Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals 2023, 16, 386. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, S.; Du, Z.; Jin, S.; Yang, Z.; Xu, T.; Zheng, C.; Liu, Y. Seasonal variations and sensory profiles of oolong tea: Insights from metabolic analysis of Tieguanyin cultivar. Food Chem. 2024, 462, 140977. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Jurga, B.; Marija, D.K. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, D.; Zhang, Q.; Qin, D.; Jiang, X.; Li, H.; Fang, K.; Cao, J.; Wu, H. Volatile components and nutritional qualities of Viscum articulatum Burm.f. parasitic on ancient tea trees. Food Sci. Nutr. 2019, 7, 3017–3029. [Google Scholar] [CrossRef]
- Yu, P.; Huang, Y.; Li, Z.; Zhao, X.; Huang, H.; Zhong, N.; Zheng, H.; Chen, Q. Difference in Aroma Components of Black Teas Processed on Different Dates in the Spring Season. Foods 2023, 12, 4368. [Google Scholar] [CrossRef]
- Bernard, N.; Li, Y.; He, C.; Yu, X.; Zhou, J.; Chen, Y.; Yu, Z.; Ni, D. Different Withering Times Affect Sensory Qualities, Chemical Components, and Nutritional Characteristics of Black Tea. Foods 2021, 10, 2627. [Google Scholar] [CrossRef]
- Wang, B.; Chen, H.; Qu, F.; Song, Y.; Di, T.; Wang, P.; Zhang, X. Identification of aroma-active components in black teas produced by six Chinese tea cultivars in high-latitude region by GC-MS and GC-O analysis. Eur. Food Res. Technol. 2021, 248, 647–657. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Wu, Y.; Qu, F.; Liu, L.; Wang, B.; Wang, P.; Zhang, X. HS-SPME/GC-MS Reveals the Season Effects on Volatile Compounds of Green Tea in High-Latitude Region. Foods 2022, 11, 3016. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.; Li, J.L.; Zhou, X.; Xiao, Y.; Liao, Y.; Tang, J.; Dong, F.; Zeng, L. Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food Res. Int. 2022, 161, 111882. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, Y.; Ma, L.; Yi, X.; Ruan, J. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PLoS ONE 2017, 9, e112572. [Google Scholar] [CrossRef]
- Natalia, D.; Antje, K.; Muhlemann, J.K.; Ian, K. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Ho, C.T.; Zheng, X.; Li, S.M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.; Zhang, Y.; Dai, W.; Guo, L.; Tan, J.; Peng, Q.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Zhang, L.; Granvogl, M.; Ho, C.; Wan, X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, B.; Cheng, B.; Han, Y.; Luo, L.; Pan, H.; Zhang, Q. Studies on the volatile compounds in flower extracts of Rosa odorata and R. chinensis. Ind. Crops Prod. 2020, 146, 112143. [Google Scholar] [CrossRef]
- Yue, C.; Cao, H.; Zhang, S.; Hao, Z.; Wu, Z.; Luo, L.; Zeng, L. Aroma characteristics of Wuyi rock tea prepared from 16 different tea plant varieties. Food Chem. X 2023, 17, 100586. [Google Scholar] [CrossRef]
- Albakaa, A.R.M.; Ameen, D.S.M.; Abed, N.K.; Jabbar, Z.A.; Musaa, L.A. Quantification of Ca, K, Mg, Zn and Fe elements in grape leaves from different regions of Iraq by atomic absorption spectroscopy. J. Phys. Conf. Ser. 2021, 1853, 012018. [Google Scholar] [CrossRef]
- Borodulina, D.; Vorotyntseva, M.; Makarova, G.A.; Zemtsova, A.; Sokolova, G.G. The Content of Vitamin C in the Grape Grown under the Conditions of Southwestern Siberia. Russ. J. Bioorg. Chem. 2021, 47, 1451–1456. [Google Scholar] [CrossRef]
- Raimova, V.; Berdiev, S.; Ishimov, U.; Turdieva, V.; Abdullajanova, G.; Matchanov, D.; Di, A.; Luczaj, L.; Quave, L.; Redzic, S.; et al. Comparative study of the total protein and free amino acids of plants Urtica dioica and Crataegus pontica. Asian J. Multidimens. Res. 2021, 10, 504–510. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Fan, S.; Mi, S.; Zhang, Y. Comparison of the Nutritional and Taste Characteristics of 5 Edible Fungus Powders Based on the Composition of Hydrolyzed Amino Acids and Free Amino Acids. J. Food Qual. 2022, 2022, 3618002. [Google Scholar] [CrossRef]
- TranThi, N.; QuocDuy, N.; Nguyen, C.; LeThi, A.; Philippe, B. Characteristics and Relationships between Total Polyphenol and Flavonoid Contents, Antioxidant Capacities, and the Content of Caffeine, Gallic Acid, and Major Catechins in Wild/Ancient and Cultivated Teas in Vietnam. Molecules 2023, 28, 3470. [Google Scholar] [CrossRef]
Season | Macroelement (g/kg) | Microelement (mg/kg) | Soluble Sugar (mg/g) | Vitamin C (mg/g) | |||||
---|---|---|---|---|---|---|---|---|---|
N | P | K | Mg | Ca | Fe | Zn | |||
Spring | 17.00 ±0.15 a | 1.89 ±0.05 a | 14.09 ±0.14 a | 2.94 ±0.02 a | 3.74 ±0.04 b | 81.09 ±2.76 a | 232.03 ±2.05 a | 447.79 ±4.45 a | 17.11 ±0.43 c |
Summer | 11.90 ±0.45 b | 0.72 ±0.03 c | 13.16 ±0.26 a | 1.75 ±0.19 b | 4.07 ±0.55 b | 66.82 ±2.45 b | 182.00 ±24.35 b | 269.81 ±0.17 c | 22.30 ±0.33 b |
Autumn | 11.86 ±0.17 b | 1.15 ±0.02 b | 12.51 ±0.17 a | 2.69 ±0.02 a | 5.47 ±0.02 a | 71.73 ±0.07 b | 276.17 ±0.39 a | 324.66 ±10.30 b | 29.10 ±0.54 a |
Amino Acid | Content(µg/g) | ||
---|---|---|---|
Spring | Summer | Autumn | |
Asp | 72.87 ± 7.92 b | 324.17 ± 6.66 a | 21.88 ± 3.63 c |
Glu | 157.45 ± 5.72 b | 323.71 ± 4.59 a | 89.85 ± 1.95 b |
Ser | 36.62 ± 9.51 ab | 66.56 ± 1.41 a | 11.22 ± 0.91 b |
Gly | 39.68 ± 2.06 a | 12.15 ± 0.83 b | 9.378 ± 0.82 b |
His | 28.70 ± 3.10 b | 121.97 ± 1.67 a | 9.28 ± 0.66 b |
Arg | 402.81 ± 6.85 a | 16.31 ± 0.28 c | 106.76 ± 0.33 b |
Thr | 37.33 ± 0.82 a | 33.02 ± 1.86 b | 9.39 ± 0.79 c |
Ala | 130.62 ± 1.37 a | 88.44 ± 3.47 b | 36.50 ± 0.79 c |
Pro | 76.40 ± 3.93 a | 23.03 ± 1.01 b | 11.71 ± 0.50 c |
Tyr | 73.06 ± 2.49 a | 42.00 ± 2.03 b | 17.56 ± 0.76 c |
Val | 78.62 ± 2.81 a | 33.23 ± 1.98 b | 14.71 ± 0.37 c |
Met | 21.62 ± 1.98 a | 20.15 ± 1.06 a | 9.48 ± 0.05 b |
Cys | 20.36 ± 1.17 a | 11.96 ± 1.12 b | 15.09 ± 0.31 a |
Ile | 169.92 ± 8.81 a | 110.05 ± 3.13 b | 116.34 ± 4.38 b |
Leu | 174.84 ± 8.24 a | 99.53 ± 3.05 b | 41.45 ± 4.31 c |
Phe | 89.91 ± 3.64 a | 61.17 ± 2.59 b | 21.81 ± 0.93 c |
Lys | 36.35 ± 0.50 a | 37.66 ± 2.80 a | 12.01 ± 0.40 b |
Essential amino acid | 571.62 | 394.81 | 225.19 |
Total amino acids | 1645.14 | 1425.10 | 554.81 |
Class | Type of Amino Acids | Taste Threshold (µg/g) | Spring | Summer | Autumn | |||
---|---|---|---|---|---|---|---|---|
Content (µg/g) | TAV | Content (µg/g) | TAV | Content (µg/g) | TAV | |||
Sweet amino acids | Ala | 600 | 130.62 | 0.3 | 88.44 | 0.15 | 36.50 | 0.06 |
Pro | 3000 | 76.40 | 0.03 | 23.03 | 0.01 | 11.71 | 0.01 | |
His | 200 | 28.70 | 1.43 | 121.97 | 0.61 | 9.28 | 0.05 | |
Thr | 2600 | 37.33 | 0.01 | 33.02 | 0.01 | 9.39 | 0.01 | |
Ser | 1500 | 36.62 | 0.02 | 66.56 | 0.04 | 11.22 | 0.01 | |
Gly | 1100 | 39.68 | 0.04 | 12.15 | 0.01 | 9.38 | 0.01 | |
Bitter amino acids | Val | 1500 | 78.62 | 0.05 | 33.23 | 0.02 | 14.71 | 0.01 |
Leu | 3800 | 174.84 | 0.04 | 99.53 | 0.03 | 41.45 | 0.01 | |
Ile | 900 | 169.92 | 0.18 | 110.05 | 0.12 | 116.34 | 0.13 | |
Met | 300 | 21.62 | 0.07 | 20.15 | 0.07 | 9.48 | 0.31 | |
Thr | 2600 | 37.33 | 0.01 | 33.02 | 0.01 | 9.39 | 0.01 | |
Arg | 100 | 402.81 | 4.03 | 16.31 | 0.16 | 106.76 | 1.06 | |
Umami amino acids | Lys | 500 | 36.35 | 0.07 | 37.66 | 0.07 | 12.01 | 0.02 |
Asp | 30 | 72.87 | 2.43 | 324.17 | 10.81 | 21.88 | 0.73 | |
Glu | 50 | 157.45 | 3.15 | 323.71 | 6.47 | 89.85 | 1.8 | |
Aromatic amino acids | Phe | 1500 | 89.91 | 0.06 | 61.17 | 0.01 | 21.81 | 0.01 |
Tyr | 2600 | 73.06 | 0.03 | 42.00 | 0.02 | 17.56 | 0.01 | |
Cys | 20 | 20.36 | 1.01 | 11.96 | 0.05 | 15.09 | 0.01 | |
Total | - | - | 1601.13 | - | 1458.48 | - | 526.8 | - |
Season | Flavonoid (mg/g) | Polyphenol (mg/g) | Saponins (mg/g) | Caffeine (µg/g) | Catechins (µg/g) |
---|---|---|---|---|---|
Spring | 64.86 ±1.10 a | 35.45 ±0.34 a | 130.45 ±6.95 ab | 2982.30 ±41.07 a | 1083.84 ±37.53 a |
Summer | 46.48 ±0.28 b | 26.64 ±1.68 b | 144.56 ±13.06 a | 2853.98 ±33.07 a | 215.31 ±18.32 b |
Autumn | 20.40 ±0.47 c | 19.94 ±0.49 c | 110.10 ±1.06 b | 932.03 ±93.05 b | 115.17 ±1.38 c |
Season | DPPH Free Radical Scavenging Ability (µmol TE/g) | ABTS+ Free Radical Scavenging Ability (µmol TE/g) | FRAP Iron Ion Reducing Ability (µmol TE/g) |
---|---|---|---|
Spring | 305.58 ± 9.73 a | 43.04 ± 1.93 a | 375.23 ± 2.82 a |
Summer | 146.85 ± 3.24 b | 42.23 ± 0.51 a | 342.95 ± 4.90 c |
Autumn | 96.84 ± 10.50 c | 36.72 ± 0.39 b | 329.54 ± 3.50 b |
Correlation Factors | ABTS | FRAP | DPPH | ||||||
---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Spring | Summer | Autumn | Spring | Summer | Autumn | |
Caffeine | 0.956 ** | 0.946 ** | 0.947 ** | 0.955 ** | 0.954 ** | 0.832 ** | 0.953 ** | 0.976 ** | 0.859 ** |
Catechins | 0.976 ** | 0.937 ** | 0.954 ** | 0.975 ** | 0.956 ** | 0.954 ** | 0.975 ** | 0.955 ** | 0.943 ** |
Polyphenol | 0.989 ** | 0.969 ** | 0.979 ** | 0.985 ** | 0.988 ** | 0.973 ** | 0.988 ** | 0.976 ** | 0.974 ** |
Flavonoid | 0.996 ** | 0.975 ** | 0.969 ** | 0.984 ** | 0.983 ** | 0.974 ** | 0.999 ** | 0.998 ** | 0.995 ** |
Saponins | 0.865 ** | 0.863 ** | 0.820 ** | 0.893 ** | 0.853 ** | 0.840 ** | 0.854 ** | 0.831 ** | 0.820 ** |
DPPH | 0.885 ** | 0.856 ** | 0.856 ** | 0.775 * | 0.735 * | 0.765 * | |||
FRAP | 0.893 ** | 0.913 ** | 0.934 ** | ||||||
ABTS |
Season | Alcohols | Ketones | Aldehydes | Esters | Other Types | Olefins | Acids |
---|---|---|---|---|---|---|---|
Spring | 66.08 | 48.07 | 38.51 | 9.91 | 9.00 | 6.58 | 1.63 |
Summer | 55.04 | 17.63 | 22.74 | 4.89 | 4.91 | 2.99 | 1.22 |
Autumn | 54.98 | 23.57 | 21.27 | 4.40 | 4.90 | 4.72 | 1.03 |
Average contents | 58.70 | 29.75 | 27.50 | 6.40 | 5.83 | 4.76 | 1.38 |
Serial Number | CAS | The Name of the Compound | Molecular Formula | Relative Content(%) | R.T. (Minutes) | ||
---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | |||||
1 | 87-44-5 | 4,11,11-trimethyl-8-methylidenebicyclo [7.2.0]undec-4-ene | C15H24 | 0.19 | 0.16 | 0.16 | 20.894 |
2 | 78-85-3 | 2-methylprop-2-enal | C4H6O | 2.43 | 0.68 | 1.60 | 2.643 |
3 | 55683-21-1 | 3,4,5-trimethylcyclopent-2-en-1-one | C8H12O | 0.39 | 0.27 | 0.34 | 3.387 |
4 | 80-56-8 | 2,6,6-trimethylbicyclo [3.1.1]hept-2-ene | C10H16 | 2.14 | 0.95 | 1.03 | 5.101 |
5 | 106-24-1 | (2E)-3,7-dimethylocta-2,6-dien-1-ol | C10H18O | 14.06 | 13.68 | 18.53 | 26.622 |
6 | 600-14-6 | pentane-2,3-dione | C5H8O2 | 1.24 | 1.25 | 0.90 | 6.155 |
7 | 122-78-1 | 2-phenylacetaldehyde | C8H8O | 14.29 | 11.08 | 10.66 | 21.807 |
8 | 104-93-8 | 1-methoxy-4-methylbenzene | C8H10O | 0.86 | 0.09 | 0.49 | 11.58 |
9 | 71-41-0 | pentan-1-ol | C5H12O | 12.77 | 12.41 | 8.26 | 11.951 |
10 | 41519-23-7 | [(Z)-hex-3-enyl] 2-methylpropanoate | C10H18O2 | 0.36 | 0.24 | 0.28 | 28.649 |
11 | 142-92-7 | hexyl acetate | C8H16O2 | 0.51 | 0.49 | 0.50 | 12.407 |
12 | 586-62-9 | 1-methyl-4-propan-2-ylidenecyclohexene | C10H16 | 0.26 | 0.11 | 0.08 | 12.514 |
13 | 111-13-7 | octan-2-one | C8H16O | 11.46 | 5.32 | 9.21 | 12.725 |
14 | 106-72-9 | 2,6-dimethylhept-5-enal | C9H16O | 1.78 | 0.38 | 1.36 | 14.612 |
15 | 4132-48-3 | 1-methoxy-4-propan-2-ylbenzene | C10H14O | 0.59 | 0.11 | 0.44 | 14.919 |
16 | 111-11-5 | methyl octanoate | C9H18O2 | 0.32 | 0.08 | 0.19 | 15.695 |
17 | 31081-18-2 | 3-methyl-5-propylnonane | C13H28 | 0.54 | 0.20 | 0.19 | 16.016 |
18 | 104-76-7 | 2-ethylhexan-1-ol | C8H18O | 13.06 | 25.12 | 13.35 | 18.43 |
19 | 4117-10-6 | hept-6-en-1-ol | C7H14O | 11.26 | 1.15 | 4.59 | 18.922 |
20 | 932-66-1 | 1-(cyclohexen-1-yl)ethanone | C8H12O | 0.25 | 0.09 | 0.10 | 7.913 |
21 | 629-50-5 | tridecane | C13H28 | 2.74 | 0.96 | 1.17 | 13.205 |
22 | 5337-72-4 | 2,6-dimethylcyclohexan-1-ol | C8H16O | 13.62 | 6.41 | 7.43 | 20.98 |
23 | 4412-91-3 | furan-3-ylmethanol | C5H6O2 | 1.69 | 0.39 | 1.41 | 22.397 |
24 | 106-68-3 | octan-3-one | C8H16O | 1.02 | 0.77 | 0.50 | 11.841 |
25 | 116-09-6 | 1-hydroxypropan-2-one | C3H6O2 | 12.10 | 3.06 | 10.86 | 13.054 |
26 | 502-47-6 | 3,7-dimethyloct-6-enoic acid | C10H18O2 | 0.89 | 0.49 | 0.40 | 25.29 |
27 | 1576-95-0 | (Z)-pent-2-en-1-ol | C5H10O | 0.59 | 0.00 | 0.49 | 13.89 |
28 | 543-49-7 | heptan-2-ol | C7H16O | 0.50 | 0.30 | 0.43 | 13.955 |
29 | 4363-93-3 | quinoline-4-carbaldehyde | C10H7NO | 0.23 | 0.12 | 0.21 | 37.265 |
30 | 13894-63-8 | methyl (E)-hex-2-enoate | C7H12O2 | 2.12 | 1.72 | 2.31 | 12.843 |
31 | 591-93-5 | penta-1,4-diene | C5H8 | 1.25 | 0.75 | 1.3 | 1.631 |
32 | 74-93-1 | methanethiol | CH4S | 0.39 | 0.62 | 0.40 | 1.64 |
33 | 75-07-0 | acetaldehyde | C2H4O | - | 0.12 | 0.14 | 1.683 |
34 | 110-00-9 | furan | C4H4O | 0.02 | 0.3 | 0.08 | 2.03 |
35 | 142-82-5 | heptane | C7H16 | 0.03 | 0.21 | 0.63 | 1.69 |
36 | 78-93-3 | butan-2-one | C4H8O | - | - | 0.16 | 2.86 |
37 | 111-84-2 | nonane | C9H20 | - | - | 0.08 | 2.877 |
38 | 75-18-3 | methylsulfanylmethane | C2H6S | 0.85 | 0.31 | 1.85 | 1.834 |
39 | 123-38-6 | propanal | C3H6O | - | - | 1.16 | 1.999 |
40 | 111-65-9 | octane | C8H18 | - | 0.33 | 0.59 | 2.056 |
41 | 78-84-2 | 2-methylpropanal | C4H8O | - | - | - | 2.12 |
42 | 107-02-8 | prop-2-enal | C3H4O | 0.49 | 0.31 | 0.92 | 2.338 |
43 | 123-72-8 | butanal | C4H8O | - | - | 0.14 | 2.603 |
44 | 106-61-6 | 2,3-dihydroxypropyl acetate | C5H10O4 | - | 1.92 | 0.02 | 9.08 |
45 | 67-56-1 | methanol | CH4O | - | - | 0.01 | 2.847 |
46 | 96-17-3 | 2-methylbutanal | C5H10O | - | 0.47 | 0.15 | 3.023 |
47 | 590-86-3 | 3-methylbutanal | C5H10O | - | 0.02 | 0.17 | 3.081 |
48 | 109-86-4 | 2-methoxyethanol | C3H8O2 | 0.95 | 0.01 | 0.56 | 3.319 |
49 | 64-17-5 | ethanol | C2H6O | 0.77 | - | - | 3.402 |
50 | 78-94-4 | but-3-en-2-one | C4H6O | 0.14 | 0.26 | - | 3.504 |
51 | 110-62-3 | pentanal | C5H10O | 0.84 | 0.60 | - | 4.139 |
52 | 124-18-5 | decane | C10H22 | 0.06 | - | - | 4.69 |
53 | 1629-58-9 | pent-1-en-3-one | C5H8O | 0.34 | - | 0.08 | 5.077 |
54 | 78-92-2 | butan-2-ol | C4H10O | 0.28 | 0.09 | - | 5.393 |
55 | 71-23-8 | propan-1-ol | C3H8O | 0.19 | - | 0.04 | 5.717 |
56 | 872-05-9 | dec-1-ene | C10H20 | 0.02 | 0.11 | 0.17 | 5.766 |
57 | 7452-79-1 | ethyl 2-methylbutanoate | C7H14O2 | 0.14 | - | - | 6.013 |
58 | 66-25-1 | hexanal | C6H12O | 7.76 | 4.43 | 0.52 | 6.711 |
59 | 497-03-0 | (E)-2-methylbut-2-enal | C5H8O | 0.12 | 0.04 | - | 6.982 |
60 | 1120-21-4 | undecane | C11H24 | - | - | 0.03 | 7.104 |
61 | 5878-19-3 | 1-methoxypropan-2-one | C4H8O2 | - | 0.76 | 0.43 | 7.317 |
62 | 78-83-1 | 2-methylpropan-1-ol | C4H10O | 1.37 | 0.45 | - | 7.493 |
63 | 1576-87-0 | (E)-pent-2-enal | C5H8O | 2.65 | 1.34 | 0.76 | 8.041 |
64 | 3848-24-6 | hexane-2,3-dione | C6H10O2 | 4.95 | 0.35 | - | 8.129 |
65 | 4440-65-7 | (E)-hex-3-enal | C6H10O | 1.45 | 0.89 | - | 8.324 |
66 | 6032-29-7 | pentan-2-ol | C5H12O | 0.48 | 0.43 | 0.06 | 8.317 |
67 | 71-36-3 | butan-1-ol | C4H10O | 11.21 | 16.26 | - | 8.947 |
68 | 616-25-1 | pent-1-en-3-ol | C5H10O | 0.78 | 0.67 | - | 9.336 |
69 | 108-11-2 | 4-methylpentan-2-ol | C6H14O | - | 1.28 | - | 9.607 |
70 | 110-43-0 | heptan-2-one | C7H14O | 7.63 | 2.49 | - | 9.67 |
71 | 112-40-3 | dodecane | C12H26 | - | - | 0.42 | 10.124 |
72 | 6728-26-3 | (E)-hex-2-enal | C6H10O | 4.95 | 0.15 | 0.02 | 10.75 |
73 | 111-90-0 | 2-(2-ethoxyethoxy)ethanol | C6H14O3 | 0.78 | 0.5 | 0.01 | 21.516 |
74 | 929-22-6 | (E)-hept-4-enal | C7H12O | 1.52 | 2.11 | 3.46 | 11.246 |
75 | 928-68-7 | 6-methylheptan-2-one | C8H16O | 2.31 | 3.08 | - | 11.339 |
76 | 6728-31-0 | (Z)-hept-4-enal | C7H12O | 0.25 | 0.05 | 0.13 | 11.415 |
77 | 1120-06-5 | decan-2-ol | C10H22O | 4.72 | 2.21 | 1.39 | 11.658 |
78 | 763-32-6 | 3-methylbut-3-en-1-ol | C5H10O | 9.65 | 3.27 | 0.03 | 11.833 |
79 | 513-86-0 | 3-hydroxybutan-2-one | C4H8O2 | 2.28 | 0.36 | 1.34 | 12.683 |
80 | 13894-63-8 | methyl (E)-hex-2-enoate | C7H12O2 | 0.03 | 1.25 | - | 12.843 |
81 | 2918-13-0 | hept-1-en-3-one | C7H12O | 5.56 | 0.35 | 0.02 | 13.181 |
82 | 4798-45-2 | 4-methylpent-1-en-3-ol | C6H12O | 0.03 | 0.21 | 0.45 | 13.655 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, L.; Yin, Y.; Xue, Y.; Zou, X.; Zheng, B.; Zhang, J.; Yan, D. Seasonal Dynamic Changes in the Nutrient Elements and Antioxidant Activity of Ilex vomitoria Leaf. Plants 2025, 14, 1919. https://doi.org/10.3390/plants14131919
Sha L, Yin Y, Xue Y, Zou X, Zheng B, Zhang J, Yan D. Seasonal Dynamic Changes in the Nutrient Elements and Antioxidant Activity of Ilex vomitoria Leaf. Plants. 2025; 14(13):1919. https://doi.org/10.3390/plants14131919
Chicago/Turabian StyleSha, Luqiong, Yanyan Yin, Yilin Xue, Xue Zou, Bingsong Zheng, Jianhong Zhang, and Daoliang Yan. 2025. "Seasonal Dynamic Changes in the Nutrient Elements and Antioxidant Activity of Ilex vomitoria Leaf" Plants 14, no. 13: 1919. https://doi.org/10.3390/plants14131919
APA StyleSha, L., Yin, Y., Xue, Y., Zou, X., Zheng, B., Zhang, J., & Yan, D. (2025). Seasonal Dynamic Changes in the Nutrient Elements and Antioxidant Activity of Ilex vomitoria Leaf. Plants, 14(13), 1919. https://doi.org/10.3390/plants14131919