Deciphering Seed Deterioration: Molecular Insights and Priming Strategies for Revitalizing Aged Seeds
Abstract
:1. Introduction
2. Determinants of Seed Deterioration
2.1. External Factors
2.2. Internal Factors
3. Morphological, Anatomical, and Physiological-Biochemical Changes in Aged Seeds
3.1. Morphological Changes
3.2. Ultrastructural Changes
3.3. Physiological and Biochemical Changes
4. Seed Anti-Deterioration Mechanisms
4.1. Protective and Detoxification Mechanisms
4.2. Repair Mechanisms
5. Genetic Regulation of Seed Deterioration
Candidate Genes | Function | Plant | References |
---|---|---|---|
HSF9A | Controls the process of seed aging | Medicago truncatula | [34] |
ABI3 | Activation of HSFA9 expression and conferral of desiccation tolerance | Medicago truncatula | [30] |
LEC1 | Affect multiple processes of maturation and consequently seed longevity | Arabidopsis | [108] |
ABI5 | Regulation of RFOs and LEAs levels, as well as the expression of photosynthesis-related nuclear genes | Arabidopsis | [92] |
HIRA | Reduction in histone H3 levels leading to shortened seed life | Arabidopsis | [105] |
OGG1 | DNA damage repair | Arabidopsis | [42] |
RSL1 | Enhance GA-induced response dynamics | Arabidopsis | [109] |
TIP3 | Prolonged seed longevity via ABA pathway mediation | Arabidopsis | [109] |
ASPG1 | Seed longevity, dormancy, and germination through mechanisms involving SSP degradation and GA signaling modulation | Arabidopsis | [109] |
VTE1 VTE2 | Regulation of tocopherol biosynthesis | Arabidopsis | [110] |
RAP2-12 | Control oxidative stress situations | Arabidopsis | [111] |
Rc | Results in accumulation of proanthocyanidins | Rice (Oryza sativa L.) | [112] |
bZIP23 PER1A | Clear ROS | Rice (Oryza sativa L.) | [113] |
miR156 | Regulation of IPA1 expression to inhibit the GA biosynthesis pathway, enhancing seed dormancy and resistance to deterioration | Rice (Oryza sativa L.) | [114] |
miR164 miR6260 miR5929 | Activation of stress responses and the antioxidant system | Orange (Citrus sinensis L.) | [107] |
α-GAL, RAFS | Provide energy and reduce excessive reactive oxygen species | Maize (Zea mays L.) | [115] |
ZmAGA1 | Hydrolyzing RFOs as well as a precursor, galactinol | Maize (Zea mays L.) | [116] |
LOX | Modulate lipid peroxidation | Maize (Zea mays L.) | [117] |
P5CS1 | Catalyzed Proline Biosynthesis | Oat (Avena sativa L.) | [118] |
AsDMP1 AsDMP19 | Maintain redox steady state | Oat (Avena sativa L.) | [119] |
AMY1, BMY1 CTR1, NPR1 | Regulation of CAT, SOD, and GPx activities | Onion (Allium cepa L.) | [75] |
GolS1_A, GolS2_B | RFOs Biosynthesis | Soybean (Glycine max L.) | [120] |
RS1, RS3 | RFOs Biosynthesis | Soybean (Glycine max L.) | [121] |
RS2_B | RFOs Biosynthesis | Soybean (Glycine max L.) | [122] |
SS | Stachyose Biosynthesis | Soybean (Glycine max L.) | [123] |
RS2 | RFOs and Stachyose Biosynthesis | Soybean (Glycine max L.) | [124] |
MDH | Organic acid synthesis | Carthamus tinctorius L. | [125] |
Clpb1 Clpb4 | Regulating Chaperonins | Apple (Malus domestica Borkh.) | [126] |
PLD | Membrane lipid degradation and damage | Dawn Redwood (Metasequoia glyptostroboides Hu.) | [127] |
BnLIP1 | Participate in lipid metabolism | Cabbage (Brassica napus L.) | [128] |
SSIIIb | Starch synthesis | Wheat (Triticum aestivum L.) | [129] |
PsAKR1 | Detoxifies reactive carbonyl compounds | Tobacco (Nicotiana tabacum L.) | [130] |
AhSOD | Clear ROS | Peanut (Arachis hypogaea L.) | [131] |
6. Seed Priming Enhances the Vigor of Deteriorated Seeds
6.1. The Principle of Seed Priming Technology
6.2. Vigor-Enhancing Priming Technologies for Deteriorated Seeds
Method | Agent | Description | Crop | Aging Test | References |
---|---|---|---|---|---|
Hydro-priming | Water | Priming 10 h, improve germination rate | Napa cabbage (Brassica rapa var. glabra Regel) | NA * (3 years) | [143] |
Priming 12 h, improve germination rate | Maize (Zea mays L.) | AA * (57 °C, 24 h) | [134] | ||
Osmo-priming | PEG | Priming 3 days, improve antioxidant enzyme activity and germination rate | Pinus thunbergii | AA | [41] |
KNO3 | Priming 12 h, improve seedling length, dry weight, and germination rate | Milk Thistle (Silybum marianum (L.) Gaertn) | AA (45 °C, 2 days) | [144] | |
CaCl2 | Priming 6 h, improve antioxidant enzyme activity and germination rate | Safflower (Carthamus tinctorius L.) | AA (43 ± 1 °C, 100% RH *, 12 h) | [145] | |
Hormone priming | GA | Priming 12 h, improve germination rate | Maize (Zea mays L.) | AA (45 °C, 95% RH for 4, 7 days) | [12] |
Improve germination rate, promote seedling growth | Wheat (Triticum aestivum L.) | AA (40 °C, 100% RH, 72 h) | [133] | ||
SA | Priming 12 h, improved seed quality | Lentil (Lablab purpureus L.) | AA (35 °C, 90% RH, 2 days) | [7] | |
Priming 8 h, increasing enzyme activity and reducing malondialdehyde (MDA) content | Soybean (Glycine max L.) | AA (40 °C, 100% RH, 2 days) | [146] | ||
Solid matrix priming | Vermiculite | Priming 36 h, improve antioxidant enzymes and seed quality | Bitter gourd (Momordica charantia L.) | AA (40 °C, 100% RH for 3, 6, 9 days) | [147] |
Priming 16 h, improved the germination rate | Cabbage (Brassica oleracea var. capitata L.) | NA | [148] | ||
Micro-Cel E | Priming 5 days, improve germination rate and decreased mean germination time | Switchgrass (Panicum virgatum L.) | AA (42 °C, 95% RH for 10, 20 days) | [149] | |
Bio-priming | Azotobacter | Priming 16 h, improve germination rate and vigor | Onion (Allium cepa L.) | NA (1, 2, 3 year) | [136] |
Bacillus megaterium | Priming 5 h, improve shoot length, root length, and seedling vigor index | Soybean (Glycine max L.) | AA (42 °C, 95% RH, 72 h) | [150] | |
Caffeic acid | Caffeic acid | Priming 6 h, improve germination rate | Soybean (Glycine max L.) | AA (45 °C, 95% RH, 24 h) | [135] |
Melatonin | Melatonin | Priming 24 h, improve antioxidant enzymes | Oat (Avena sativa L.) | NA (48 days) | [118] |
Spermidine | Spermidine | Priming 24 h, improve antioxidant enzymes activity and GA content | Rice (Oryza sativa L.) | AA (43 °C, 98% RH, 4 days) | [151] |
Nano | AgNPs | Priming 24 h, improve germination rate | Rice (Oryza sativa L.) | NA (25–30 °C, 3 years) | [11] |
Priming 24 h, increased the total phenolic content of seedlings and CAT activity | Broad bean (Vicia faba L.) | NA (5 ± 1.5 °C, 50% RH, 7 years) | [152] | ||
Plant-derived smoke | Karrikinolide | Priming 16 h, improve germination rate, fresh and dry weight | Marrow (Cucurbita pepo L.), Cabbage (Brassica oleracea var. capitata L.) and Pepper (Piper nigrum L.) | AA (40 °C,100% RH, 48 h) | [153] |
Union priming | PEG+GA3, PEG+ABA | Priming 6 h, improve germination rate | Moench (Abelmoschus esculentus L.) | AA (40 ± 10 °C, 100% RH, 72 h) | [154] |
KH2PO4 + KNO3 | Priming 12 h, promote germination | Muskmelon (Cucumis sativus L.) | NA (2 years) | [155] | |
Physical priming | HVEF (High-voltage electrostatic field) | Priming 55 min, improve antioxidant enzyme activity, reduce leakage rate | Rice (Oryza sativa L.) | AA (40 °C, 100% RH, 8 days) | [156] |
PAW (Plasma activated water) | Improve germination rate | Pepper (Capsicum annuum L.) | NA (2 years) | [157] |
6.3. Mechanisms Underlying Seed Priming-Mediated Enhancement of Vigor in Deteriorated Seeds
7. Conclusions and Future Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Zhang, Y.; Sun, J.; Meng, J.; Tao, J. Deterioration of Orthodox Seeds during Ageing: Influencing Factors, Physiological Alterations and the Role of Reactive Oxygen Species. Plant Physiol. Biochem. 2021, 158, 475–485. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.B. Seed Quality Assessment. Seed Sci. Res. 1998, 8, 265–276. [Google Scholar] [CrossRef]
- Han, P.; Li, Y.; Liu, Z.; Zhou, W.; Yang, F.; Wang, J.; Yan, X.; Lin, J. The Physiology of Plant Seed Aging: A Review. Sheng Wu Gong Cheng Xue Bao Chin. J. Biotechnol. 2022, 38, 77–88. [Google Scholar]
- Pérez-García, F.; González-Benito, M.E.; Gómez-Campo, C. High Viability Recorded in Ultra-Dry Seeds of 37 Species of Brassicaceae after Almost 40 Years of Storage. Seed Sci. Technol. 2007, 35, 143–153. [Google Scholar] [CrossRef]
- Deepa, G.T.; Chetti, M.B.; Khetagoudar, M.C.; Adavirao, G.M. Influence of Vacuum Packaging on Seed Quality and Mineral Contents in Chilli (Capsicum annuum L.). J. Food Sci. Technol. 2011, 50, 153–158. [Google Scholar] [CrossRef]
- Zanotti, R.F.; Motta, L.B.; Bragatto, J.; Labate, C.A.; Salomão, A.N.; Vendrame, W.A.; Cuzzuol, G.R.F. Germination, Carbohydrate Composition and Vigor of Cryopreserved Caesalpinia echinata Seeds. Braz. Arch. Biol. Technol. 2012, 55, 661–669. [Google Scholar] [CrossRef]
- Kumari, N.; Mishra, S.N.; Chaurasia, A.K. Impact of Salicylic and Gibberellic Acid Seed Invigoration on Seed Health Status under (Artificial Ageing) Accelerated Ageing Test in Lentil (Lens culinaris Medik.). Legume Res. 2022, 47, 952–957. [Google Scholar] [CrossRef]
- Rakshit, A.; Singh, H.B. Advances in Seed Priming; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-981-13-0031-8. [Google Scholar]
- Nile, S.H.; Thiruvengadam, M.; Wang, Y.; Samynathan, R.; Shariati, M.A.; Rebezov, M.; Nile, A.; Sun, M.; Venkidasamy, B.; Xiao, J.; et al. Nano-Priming as Emerging Seed Priming Technology for Sustainable Agriculture—Recent Developments and Future Perspectives. J. Nanobiotechnol. 2022, 20, 254. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. New Chall. Seed Biol. Basic Transl. Res. Driv. Seed Technol. 2016, 46, 64420. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming Technology for Enhancing Germination and Starch Metabolism of Aged Rice Seeds Using Phytosynthesized Silver Nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef]
- Siadat, S.A.; Moosavi, S.A.; Zadeh, M.S.; Fotouhi, F.; Zirezadeh, M. Effects of Halo and Phytohormone Seed Priming on Germination and Seedling Growth of Maize under Different Duration of Accelerated Ageing Treatment. Afr. J. Agric. Res. 2011, 6, 6453–6462. [Google Scholar] [CrossRef]
- Pirredda, M.; Fañanás-Pueyo, I.; Oñate-Sánchez, L.; Mira, S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. Plants 2023, 13, 41. [Google Scholar] [CrossRef]
- Ellis, R.H.; Hong, T.D.; Roberts, E.H.; Soetisna, U. Seed Storage Behaviour in Elaeis guineensis. Seed Sci. Res. 1991, 1, 99–104. [Google Scholar] [CrossRef]
- Li, L.; Meng, Z.; Long, G.; Zhang, G.; Yang, S.; Chen, J. Advances on Recalcitrant Seeds of Plants. J. Trop. Subtrop. Bot. 2016, 24, 106–118. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development and Germination; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Ellis, R.H.; Hong, T.D.; Roberts, E.H.; Tao, K.-L. Low Moisture Content Limits to Relations Between Seed Longevity and Moisture. Ann. Bot. 1990, 65, 493–504. [Google Scholar] [CrossRef]
- Ellis, R.H.; Hong, T.D.; Roberts, E.H. Seed Moisture Content, Storage, Viability and Vigour. Seed Sci. Res. 1991, 1, 275–279. [Google Scholar] [CrossRef]
- Corbineau, F. The Effects of Storage Conditions on Seed Deterioration and Ageing: How to Improve Seed Longevity. Seeds 2024, 3, 56–75. [Google Scholar] [CrossRef]
- Hay, F.R.; Davies, R.M.; Dickie, J.B.; Merritt, D.J.; Wolkis, D.M. More on Seed Longevity Phenotyping. Seed Sci. Res. 2022, 32, 144–149. [Google Scholar] [CrossRef]
- Walters, C.; Patricia, B.; Norman, P.; Kennedy, K.; Raven, P. Preservation of Recalcitrant Seeds. Science 2013, 339, 915–916. [Google Scholar] [CrossRef]
- Ranganathan, U.; Groot, S.P.C. Seed Longevity and Deterioration. In Seed Science and Technology: Biology, Production, Quality; Dadlani, M., Yadava, D.K., Eds.; Springer Nature: Singapore, 2023; pp. 91–108. [Google Scholar]
- Bueso, E.; Serrano, R.; Pallás, V.; Sánchez-Navarro, J.A. Seed Tolerance to Deterioration in Arabidopsis Is Affected by Virus Infection. Plant Physiol. Biochem. 2017, 116, 1–8. [Google Scholar] [CrossRef]
- Ranathunge, K.; Shao, S.; Qutob, D.; Gijzen, M.; Peterson, C.A.; Bernards, M.A. Properties of the Soybean Seed Coat Cuticle Change during Development. Planta 2010, 231, 1171–1188. [Google Scholar] [CrossRef] [PubMed]
- Kuchlan, M.K.; Kuchlan, P.; Onkar, M.; Ramesh, A.; Husain, S.M. Influence of Seed Coat Compactness around Cotyledons, Protein and Mineral Composition on Mechanical Strength of Soybean [Glycine max (L.) Merrill] Seed Coat. Legume Res. Int. J. 2018, 41, 246–252. [Google Scholar]
- Ramtekey, V.; Cherukuri, S.; Kumar, S.; Kudekallu, V.S.; Sheoran, S.; Bhaskar, K.U.; Naik, K.B.; Kumar, S.; Singh, A.N.; Singh, H.V. Seed Longevity in Legumes: Deeper Insights into Mechanisms and Molecular Perspectives. Front. Plant Sci. 2022, 13, 918206. [Google Scholar] [CrossRef]
- Ballesteros, D.; Pritchard, H.W.; Walters, C. Dry Architecture: Towards the Understanding of the Variation of Longevity in Desiccation-Tolerant Germplasm. Seed Sci. Res. 2020, 30, 142–155. [Google Scholar] [CrossRef]
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 2015, 57, 660–674. [Google Scholar] [CrossRef]
- Zanakis, G.N.; Ellis, R.H.; Summerfield, R.J. Seed Quality in Relation to Seed Development and Maturation in Three Genotypes of Soyabean (Glycine max). Exp. Agric. 1994, 30, 139–156. [Google Scholar] [CrossRef]
- Verdier, J.; Lalanne, D.; Pelletier, S.; Torres-Jerez, I.; Righetti, K.; Bandyopadhyay, K.; Leprince, O.; Chatelain, E.; Vu, B.L.; Gouzy, J.; et al. A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds. Plant Physiol. 2013, 163, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Leprince, O.; Pellizzaro, A.; Berriri, S.; Buitink, J. Late Seed Maturation: Drying without Dying. J. Exp. Bot. 2017, 68, 827–841. [Google Scholar] [CrossRef]
- Ekpong, B.; Sukprakarn, S. Seed Physiological Maturity in Dill (Anethum graveolens L.). Agric. Nat. Resour. 2008, 42, 1–6. [Google Scholar]
- Miquel, J. An Integrated Theory of Aging as the Result of Mitochondrial-DNA Mutation in Differentiated Cells. Arch. Gerontol. Geriatr. 1991, 12, 99–117. [Google Scholar] [CrossRef]
- Zinsmeister, J.; Leprince, O.; Buitink, J. Molecular and Environmental Factors Regulating Seed Longevity. Biochem. J. 2020, 477, 305–323. [Google Scholar] [CrossRef]
- Copeland, L.O.; Mcdonald, M.B. Principles of Seed Science and Technology; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-1-4613-5644-8. [Google Scholar]
- Ahmed, M.R.; Yasmin, J.; Collins, W.; Lohumi, S.; Cho, B.-K. Assessment of the Morphological Structure of Watermelon and Muskmelon Seeds as Related to Viability. J. Biosyst. Eng. 2019, 44, 77–86. [Google Scholar] [CrossRef]
- Bailly, C. Active Oxygen Species and Antioxidants in Seed Biology. Seed Sci. Res. 2004, 14, 93–107. [Google Scholar] [CrossRef]
- Wesley-Smith, J.; Berjak, P.; Pammenter, N.W.; Vertucci, C.W. Ultrastructural Evidence for the Effects of Freezing in Embryonic Axes of Pisum sativum L. at Various Water Contents. Ann. Bot. 1995, 76, 59–64. [Google Scholar] [CrossRef]
- Kurek, K.; Plitta-Michalak, B.; Ratajczak, E. Reactive Oxygen Species as Potential Drivers of the Seed Aging Process. Plants 2019, 8, 174. [Google Scholar] [CrossRef]
- Kaur, R.; Yadu, B.; Chauhan, N.S.; Parihar, A.S.; Keshavkant, S. Nano Zinc Oxide Mediated Resuscitation of Aged Cajanus cajan via Modulating Aquaporin, Cell Cycle Regulatory Genes and Hormonal Responses. Plant Cell Rep. 2024, 43, 110. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Han, S.; Lee, J. Germination and Biochemical Changes in Accelerated Aged and Osmoprimed Pinus thunbergii Seeds. J. Korean Soc. For. Sci. 2010, 99, 244–250. [Google Scholar]
- Chen, H.; Chu, P.; Zhou, Y.; Li, Y.; Liu, J.; Ding, Y.; Tsang, E.W.T.; Jiang, L.; Wu, K.; Huang, S. Overexpression of AtOGG1, a DNA Glycosylase/AP Lyase, Enhances Seed Longevity and Abiotic Stress Tolerance in Arabidopsis. J. Exp. Bot. 2012, 63, 4107–4121. [Google Scholar] [CrossRef]
- Dourado, A.M.; Roberts, E.H. Chromosome Aberrations Induced during Storage in Barley and Pea Seeds. Ann. Bot. 1984, 54, 767–779. [Google Scholar] [CrossRef]
- Waterworth, W.M.; Footitt, S.; Bray, C.M.; Finch-Savage, W.E.; West, C.E. DNA Damage Checkpoint Kinase ATM Regulates Germination and Maintains Genome Stability in Seeds. Proc. Natl. Acad. Sci. USA 2016, 113, 9647–9652. [Google Scholar] [CrossRef]
- El-Maarouf-Bouteau, H.; Meimoun, P.; Job, C.; Job, D.; Bailly, C. Role of Protein and mRNA Oxidation in Seed Dormancy and Germination. Front. Plant Sci. 2013, 4, 77. [Google Scholar] [CrossRef] [PubMed]
- Rajjou, L.; Gallardo, K.; Debeaujon, I.; Vandekerckhove, J.; Job, C.; Job, D. The Effect of α-Amanitin on the Arabidopsis Seed Proteome Highlights the Distinct Roles of Stored and Neosynthesized mRNAs during Germination. Plant Physiol. 2004, 134, 1598–1613. [Google Scholar] [CrossRef] [PubMed]
- Sano, N.; Rajjou, L.; North, H.M. Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. Plants 2020, 9, 347. [Google Scholar] [CrossRef]
- Bai, B.; van der Horst, S.; Cordewener, J.H.G.; America, T.A.H.P.; Hanson, J.; Bentsink, L. Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination. Plant Physiol. 2019, 182, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.M.; Dasgupta, J. Ribonucleic Acid Synthesis and Loss of Viability in Pea Seed. Planta 1976, 132, 103–108. [Google Scholar] [CrossRef]
- Kranner, I.; Chen, H.; Pritchard, H.W.; Pearce, S.R.; Birtić, S. Inter-Nucleosomal DNA Fragmentation and Loss of RNA Integrity during Seed Ageing. Plant Growth Regul. 2010, 63, 63–72. [Google Scholar] [CrossRef]
- Fleming, M.B.; Patterson, E.L.; Reeves, P.A.; Richards, C.M.; Gaines, T.A.; Walters, C. Exploring the Fate of mRNA in Aging Seeds: Protection, Destruction, or Slow Decay? J. Exp. Bot. 2018, 69, 4309–4321. [Google Scholar] [CrossRef]
- Tetreault, H.; Fleming, M.; Hill, L.; Dorr, E.; Yeater, K.; Richards, C.; Walters, C. A Power Analysis for Detecting Aging of Dry-stored Soybean Seeds: Germination versus RNA Integrity Assessments. Crop Sci. 2023, 63, 1481–1493. [Google Scholar] [CrossRef]
- Fu, Y.-B.; Ahmed, Z.; Diederichsen, A. Towards a Better Monitoring of Seed Ageing under Ex Situ Seed Conservation. Conserv. Physiol. 2015, 3, cov026. [Google Scholar] [CrossRef]
- Yao, R.; Liu, H.; Zhao, G.; Wang, J.; Wang, Q.; Dong, K.; Zhang, R. Effects of Seed Storage Time on Seed Germination and Cytological Structure of Covered Oats and Naked Oats. Acta Prataculturae Sin. 2024, 33, 154. [Google Scholar]
- Małecka, A.; Ciszewska, L.; Staszak, A.; Ratajczak, E. Relationship Between Mitochondrial Changes and Seed Aging as a Limitation of Viability for the Storage of Beech Seed (Fagus sylvatica L.). PeerJ 2021, 9, e10569. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.; Shah, N.; Kotecha, M.; Robin, P. Evaluation of Biochemical and Physiological Changes in Seeds of Jatropha Curcas L. Under Natural Aging, Accelerated Aging and Saturated Salt Accelerated Aging. Sci. Hortic. 2019, 255, 21–29. [Google Scholar] [CrossRef]
- Matthews, S.; Powell, A. Electrical Conductivity Vigour Test: Physiological Basis and Use. Seed Test. Int. 2006, 131, 32–35. [Google Scholar]
- Kim, D.H.; Han, S.H.; Song, J.H. Evaluation of the Inorganic Compound Leakage and Carbohydrates as Indicator of Physiological Potential of Ulmus Parvifolia Seeds. New For. 2010, 41, 3–11. [Google Scholar] [CrossRef]
- Ghezzi, P.; Bonetto, V. Redox Proteomics: Identification of Oxidatively Modified Proteins. Proteom. Int. Ed. 2003, 3, 1145–1153. [Google Scholar] [CrossRef]
- Møller, I.M.; Jensen, P.E.; Hansson, A. Oxidative Modifications to Cellular Components in Plants. Annu. Rev. Plant Biol. 2007, 58, 459–481. [Google Scholar] [CrossRef] [PubMed]
- Rinalducci, S.; Murgiano, L.; Zolla, L. Redox Proteomics: Basic Principles and Future Perspectives for the Detection of Protein Oxidation in Plants. J. Exp. Bot. 2008, 59, 3781–3801. [Google Scholar] [CrossRef]
- Demidchik, V. Reactive Oxygen Species and Their Role in Plant Oxidative Stress. In Plant Stress Physiology; CABI: Wallingford, UK, 2017; pp. 64–96. [Google Scholar]
- Shacter, E. Quantification and Significance of Protein Oxidation in Biological Samples. Drug Metab. Rev. 2000, 32, 307–326. [Google Scholar] [CrossRef]
- Anjum, N.A.; Sofo, A.; Scopa, A.; Roychoudhury, A.; Gill, S.S.; Iqbal, M.; Lukatkin, A.S.; Pereira, E.; Duarte, A.C.; Ahmad, I. Lipids and Proteins—Major Targets of Oxidative Modifications in Abiotic Stressed Plants. Environ. Sci. Pollut. Res. 2014, 22, 4099–4121. [Google Scholar] [CrossRef]
- Garcia, I.S.; Souza, A.; Barbedo, C.J.; Dietrich, S.M.C.; Figueiredo-Ribeiro, R.C.L. Changes in Soluble Carbohydrates During Storage of Caesalpinia echinata LAM. (Brazilwood) Seeds, an Endangered Leguminous Tree from the Brazilian Atlantic Forest. Braz. J. Biol. 2006, 66, 739–745. [Google Scholar] [CrossRef]
- Corte, V.B.; Borges, E.E.D.L.; Gonçalves, J.F.D.C.; Silva, M.S. Alterations in the Lipid and Soluble Sugar Content of Melanoxylon brauna Seeds during Natural and Accelerated Ageing. Rev. Bras. Sementes 2010, 32, 152–162. [Google Scholar] [CrossRef]
- Job, C.; Rajjou, L.; Lovigny, Y.; Belghazi, M.; Job, D. Patterns of Protein Oxidation in Arabidopsis Seeds and during Germination. Plant Physiol. 2005, 138, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Arc, E.; Galland, M.; Cueff, G.; Godin, B.; Lounifi, I.; Job, D.; Rajjou, L. Reboot the System Thanks to Protein Post-translational Modifications and Proteome Diversity: How Quiescent Seeds Restart Their Metabolism to Prepare Seedling Establishment. Proteomics 2011, 11, 1606–1618. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Lin, X.; Zhou, Y.; Chen, X.; Liu, X.; Lu, X. Proteome Analysis of Maize Seeds: The Effect of Artificial Ageing. Physiol. Plant. 2011, 143, 126–138. [Google Scholar] [CrossRef]
- Gerna, D.; Ballesteros, D.; Arc, E.; Stöggl, W.; Seal, C.E.; Marami-Zonouz, N.; Na, C.S.; Kranner, I.; Roach, T. Does Oxygen Affect Ageing Mechanisms of Pinus densiflora Seeds? A Matter of Cytoplasmic Physical State. J. Exp. Bot. 2022, 73, 2631–2649. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Alegre, L. The Function of Tocopherols and Tocotrienols in Plants. Crit. Rev. Plant Sci. 2002, 21, 31–57. [Google Scholar] [CrossRef]
- Mène-Saffrané, L.; Jones, A.D.; DellaPenna, D. Plastochromanol-8 and Tocopherols Are Essential Lipid-Soluble Antioxidants during Seed Desiccation and Quiescence in Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 17815–17820. [Google Scholar] [CrossRef]
- Colville, L.; Kranner, I. Desiccation Tolerant Plants as Model Systems to Study Redox Regulation of Protein Thiols. Plant Growth Regul. 2010, 62, 241–255. [Google Scholar] [CrossRef]
- Smirnoff, N.; Wheeler, G.L. Ascorbic Acid in Plants: Biosynthesis and Function. Crit. Rev. Plant Sci. 2000, 19, 267–290. [Google Scholar] [CrossRef]
- Kamaei, R.; Kafi, M.; Afshari, R.T.; Shafaroudi, S.M.; Nabati, J. Physiological and Molecular Changes of Onion (Allium cepa L.) Seeds Under Different Aging Conditions. BMC Plant Biol. 2024, 24, 85. [Google Scholar] [CrossRef]
- Lv, T.; Li, J.; Zhou, L.; Zhou, T.; Pritchard, H.W.; Ren, C.; Chen, J.; Yan, J.; Pei, J. Aging-Induced Reduction in Safflower Seed Germination via Impaired Energy Metabolism and Genetic Integrity Is Partially Restored by Sucrose and DA-6 Treatment. Plants 2024, 13, 659. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen Peroxide Metabolism and Functions in Plants. New Phytol. 2018, 221, 1197–1214. [Google Scholar] [CrossRef] [PubMed]
- Mullineaux, P.M.; Exposito-Rodriguez, M.; Laissue, P.P.; Smirnoff, N. ROS-Dependent Signalling Pathways in Plants and Algae Exposed to High Light: Comparisons with Other Eukaryotes. Free Radic. Biol. Med. 2018, 122, 52–64. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Mohammad, F.; Corpas, F.J. Nitric Oxide in Plants: Metabolism and Role in Stress Physiology; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Ciacka, K.; Krasuska, U.; Otulak-Kozieł, K.; Gniazdowska, A. Dormancy Removal by Cold Stratification Increases Glutathione and S-Nitrosoglutathione Content in Apple Seeds. Plant Physiol. Biochem. 2019, 138, 112–120. [Google Scholar] [CrossRef]
- Krasuska, U.; Gniazdowska, A. Nitric Oxide and Hydrogen Cyanide as Regulating Factors of Enzymatic Antioxidant System in Germinating Apple Embryos. Acta Physiol. Plant 2011, 34, 683–692. [Google Scholar] [CrossRef]
- Ciacka, K.; Tyminski, M.; Gniazdowska, A.; Krasuska, U. Nitric Oxide as a Remedy against Oxidative Damages in Apple Seeds Undergoing Accelerated Ageing. Antioxidants 2021, 11, 70. [Google Scholar] [CrossRef]
- Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant–Microbe Interactions. Antioxidants 2023, 12, 268. [Google Scholar] [CrossRef]
- Boudet, J.; Buitink, J.; Hoekstra, F.A.; Rogniaux, H.; Larré, C.; Satour, P.; Leprince, O. Comparative Analysis of the Heat Stable Proteome of Radicles of Medicago truncatula Seeds during Germination Identifies Late Embryogenesis Abundant Proteins Associated with Desiccation Tolerance. Plant Physiol. 2006, 140, 1418–1436. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Dapena, P.; Castaño, R.; Almoguera, C.; Jordano, J. Improved Resistance to Controlled Deterioration in Transgenic Seeds. Plant Physiol. 2006, 142, 1102–1112. [Google Scholar] [CrossRef]
- Tejedor-Cano, J.; Prieto-Dapena, P.; Almoguera, C.; Carranco, R.; Hiratsu, K.; Ohme-Takagi, M.; Jordano, J. Loss of Function of the HSFA9 Seed Longevity Program. Plant Cell Amp. Environ. 2010, 33, 1408–1417. [Google Scholar] [CrossRef]
- Chatelain, E.; Hundertmark, M.; Leprince, O.; Gall, S.L.; Satour, P.; Deligny-Penninck, S.; Rogniaux, H.; Buitink, J. Temporal Profiling of the Heat-stable Proteome during Late Maturation of Medicago truncatula Seeds Identifies a Restricted Subset of Late Embryogenesis Abundant Proteins Associated with Longevity. Plant Cell Amp. Environ. 2012, 35, 1440–1455. [Google Scholar] [CrossRef] [PubMed]
- Busk, P.K.; Pagès, M. Regulation of Abscisic Acid-Induced Transcription. Plant Mol. Biol. 1998, 37, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, R.R.; Gampala, S.S.L.; Rock, C.D. Abscisic Acid Signaling in Seeds and Seedlings. Plant Cell 2002, 14, S15–S45. [Google Scholar] [CrossRef] [PubMed]
- Bizouerne, E.; Buitink, J.; Vu, B.L.; Vu, J.L.; Esteban, E.; Pasha, A.; Provart, N.; Verdier, J.; Leprince, O. Gene Co-Expression Analysis of Tomato Seed Maturation Reveals Tissue-Specific Regulatory Networks and Hubs Associated with the Acquisition of Desiccation Tolerance and Seed Vigour. BMC Plant Biol. 2021, 21, 124. [Google Scholar] [CrossRef]
- Kotak, S.; Vierling, E.; Bäumlein, H.; Koskull-Döring, P. A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis. Plant Cell 2007, 19, 182–195. [Google Scholar] [CrossRef]
- Dekkers, B.J.W.; He, H.; Hanson, J.; Willems, L.A.J.; Jamar, D.C.L.; Cueff, G.; Rajjou, L.; Hilhorst, H.W.M.; Bentsink, L. The Arabidopsis DELAY OF GERMINATION 1 Gene Affects ABSCISIC ACID INSENSITIVE 5 (ABI5) Expression and Genetically Interacts with ABI3 during Arabidopsis Seed Development. Plant J. 2016, 85, 451–465. [Google Scholar] [CrossRef]
- Righetti, K.; Vu, J.L.; Pelletier, S.; Vu, B.L.; Glaab, E.; Lalanne, D.; Pasha, A.; Patel, R.V.; Provart, N.J.; Verdier, J. Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways. Plant Cell 2015, 27, 2692–2708. [Google Scholar] [CrossRef]
- Carranco, R.; Espinosa, J.M.; Prieto-Dapena, P.; Almoguera, C.; Jordano, J. Repression by an Auxin/Indole Acetic Acid Protein Connects Auxin Signaling with Heat Shock Factor-Mediated Seed Longevity. Proc. Natl. Acad. Sci. USA 2010, 107, 21908–21913. [Google Scholar] [CrossRef]
- Kalemba, E.M.; Pukacka, S. Possible Roles of LEA Proteins and sHSPs in Seed Protection: A Short Review. Biol. Lett. 2007, 44, 3–16. [Google Scholar]
- Kaur, H.; Petla, B.P.; Kamble, N.U.; Singh, A.; Rao, V.; Salvi, P.; Ghosh, S.; Majee, M. Differentially Expressed Seed Aging Responsive Heat Shock Protein OsHSP18.2 Implicates in Seed Vigor, Longevity and Improves Germination and Seedling Establishment under Abiotic Stress. Front. Plant Sci. 2015, 6, 713. [Google Scholar] [CrossRef]
- Ventura, L.; Donà, M.; Macovei, A.; Carbonera, D.; Buttafava, A.; Mondoni, A.; Rossi, G.; Balestrazzi, A. Understanding the Molecular Pathways Associated with Seed Vigor. Plant Physiol. Biochem. 2012, 60, 196–206. [Google Scholar] [CrossRef]
- Macovei, A.; Balestrazzi, A.; Confalonieri, M.; Faé, M.; Carbonera, D. New Insights on the Barrel Medic MtOGG1 and MtFPG Functions in Relation to Oxidative Stress Response in Planta and during Seed Imbibition. Plant Physiol. Biochem. 2011, 49, 1040–1050. [Google Scholar] [CrossRef]
- Taylor, R.E.; Waterworth, W.; West, C.E.; Foyer, C.H. WHIRLY Proteins Maintain Seed Longevity by Effects on Seed Oxygen Signalling during Imbibition. Biochem. J. 2023, 480, 941–956. [Google Scholar] [CrossRef]
- Rajjou, L.; Debeaujon, I. Seed Longevity: Survival and Maintenance of High Germination Ability of Dry Seeds. Comptes Rendus Biol. 2008, 331, 796–805. [Google Scholar] [CrossRef]
- Verma, P.; Kaur, H.; Petla, B.P.; Rao, V.; Saxena, S.C.; Majee, M. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 Is Differentially Expressed in Chickpea and Enhances Seed Vigor and Longevity by Reducing Abnormal Isoaspartyl Accumulation Predominantly in Seed Nuclear Proteins. Plant Physiol. 2013, 161, 1141–1157. [Google Scholar] [CrossRef]
- Petla, B.P.; Kamble, N.U.; Kumar, M.; Verma, P.; Ghosh, S.; Singh, A.; Rao, V.; Salvi, P.; Kaur, H.; Saxena, S.C.; et al. Rice PROTEIN L-ISOASPARTYL METHYLTRANSFERASE Isoforms Differentially Accumulate during Seed Maturation to Restrict Deleterious isoAsp and Reactive Oxygen Species Accumulation and Are Implicated in Seed Vigor and Longevity. New Phytol. 2016, 211, 627–645. [Google Scholar] [CrossRef]
- Gazzarrini, S.; Song, L. LAFL Factors in Seed Development and Phase Transitions. Annu. Rev. Plant Biol. 2024, 75, 459–488. [Google Scholar] [CrossRef]
- Michalak, M.; Plitta-Michalak, B.P.; Suszka, J.; Naskręt-Barciszewska, M.Z.; Kotlarski, S.; Barciszewski, J.; Chmielarz, P. Identification of DNA Methylation Changes in European Beech Seeds during Desiccation and Storage. Int. J. Mol. Sci. 2023, 24, 3557. [Google Scholar] [CrossRef]
- Layat, E.; Bourcy, M.; Cotterell, S.; Zdzieszyńska, J.; Desset, S.; Duc, C.; Tatout, C.; Bailly, C.; Probst, A.V. The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. Int. J. Mol. Sci. 2021, 22, 4031. [Google Scholar] [CrossRef]
- Zhao, T.; Lu, J.; Zhang, H.; Xue, M.; Pan, J.; Ma, L.; Berger, F.; Jiang, D. Histone H3.3 Deposition in Seed Is Essential for the Post-Embryonic Developmental Competence in Arabidopsis. Nat. Commun. 2022, 13, 7728. [Google Scholar] [CrossRef]
- Lu, Y.-B.; Qi, Y.-P.; Yang, L.-T.; Peng, G.; Yan, L.; Chen, L.-S. Boron-Deficiency-Responsive microRNAs and Their Targets in Citrus sinensis Leaves. BMC Plant Biol. 2015, 15, 271. [Google Scholar] [CrossRef]
- Sugliani, M.; Rajjou, L.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J. Natural Modifiers of Seed Longevity in the Arabidopsis Mutants Abscisic Acid. Insensitive3-5 (Abi3-5) and Leafy Cotyledon1-3 (Lec1-3). N. Phytol. 2009, 184, 898–908. [Google Scholar] [CrossRef]
- Arif, M.A.R.; Afzal, I.; Börner, A. Genetic Aspects and Molecular Causes of Seed Longevity in Plants—A Review. Plants 2022, 11, 598. [Google Scholar] [CrossRef]
- Tan, S.; Cao, J.; Li, S.; Li, Z. Unraveling the Mechanistic Basis for Control of Seed Longevity. Plants 2025, 14, 805. [Google Scholar] [CrossRef]
- Paul, M.V.; Iyer, S.; Amerhauser, C.; Lehmann, M.; van Dongen, J.T.; Geigenberger, P. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia. Plant Physiol. 2016, 172, 141–153. [Google Scholar] [CrossRef]
- Prasad, C.T.M.; Kodde, J.; Angenent, G.C.; Hay, F.R.; McNally, K.L.; Groot, S.P.C. Identification of the Rice Rc Gene as a Main Regulator of Seed Survival under Dry Storage Conditions. Plant Cell Amp. Environ. 2023, 46, 1962–1980. [Google Scholar] [CrossRef]
- Wang, W.; Xu, D.; Sui, Y.; Ding, X.; Song, X. A Multiomic Study Uncovers a bZIP23-PER1A–Mediated Detoxification Pathway to Enhance Seed Vigor in Rice. Proc. Natl. Acad. Sci. USA 2022, 119, e2026355119. [Google Scholar] [CrossRef]
- Miao, C.; Wang, Z.; Zhang, L.; Yao, J.; Hua, K.; Liu, X.; Shi, H.; Zhu, J.-K. The Grain Yield Modulator miR156 Regulates Seed Dormancy through the Gibberellin Pathway in Rice. Nat. Commun. 2019, 10, 3822. [Google Scholar] [CrossRef]
- Zhu, M.; Xiao, R.; Yu, T.; Guo, T.; Zhong, X.; Qu, J.; Du, W.; Xue, W. Raffinose Priming Improves Seed Vigor by ROS Scavenging, RAFS, and α-GAL Activity in Aged Waxy Corn. Agronomy 2024, 14, 2843. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Dirk, L.M.A.; Downie, A.B.; Zhao, T. ZmAGA1 Hydrolyzes RFOs Late during the Lag Phase of Seed Germination, Shifting Sugar Metabolism toward Seed Germination Over Seed Aging Tolerance. J. Agric. Food Chem. 2021, 69, 11606–11615. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yu, Z.; Wang, Y.; Yang, Y.; Liu, Z.; Jiang, J.; Song, M.; Wu, Y. Superior Storage Stability in Low Lipoxygenase Maize Varieties. J. Stored Prod. Res. 2007, 43, 530–534. [Google Scholar] [CrossRef]
- Yan, H.; Jia, S.; Mao, P. Melatonin Priming Alleviates Aging-Induced Germination Inhibition by Regulating β-Oxidation, Protein Translation, and Antioxidant Metabolism in Oat (Avena sativa L.) Seeds. Int. J. Mol. Sci. 2020, 21, 1898. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, H.; Wang, J.; Zhao, G.; Niu, K.; Zhou, X.; Zhang, R.; Yao, R. Genomic Identification and Expression Profiling of DMP Genes in Oat (Avena sativa) Elucidate Their Responsiveness to Seed Aging. BMC Genom. 2024, 25, 863. [Google Scholar] [CrossRef]
- Le, H.; Nguyen, N.H.; Ta, D.T.; Le, T.N.T.; Bui, T.P.; Le, N.T.; Nguyen, C.X.; Rolletschek, H.; Stacey, G.; Stacey, M.G.; et al. CRISPR/Cas9-Mediated Knockout of Galactinol Synthase-Encoding Genes Reduces Raffinose Family Oligosaccharide Levels in Soybean Seeds. Front. Plant Sci. 2020, 11, 612942. [Google Scholar] [CrossRef]
- Dierking, E.C.; Bilyeu, K.D. Association of a Soybean Raffinose Synthase Gene with Low Raffinose and Stachyose Seed Phenotype. Plant Genome 2008, 1, 135–145. [Google Scholar] [CrossRef]
- de Koning, R.; Kiekens, R.; Toili, M.E.M.; Angenon, G. Identification and Expression Analysis of the Genes Involved in the Raffinose Family Oligosaccharides Pathway of Phaseolus vulgaris and Glycine max. Plants 2021, 10, 1465. [Google Scholar] [CrossRef]
- Qiu, D.; Vuong, T.; Valliyodan, B.; Shi, H.; Guo, B.; Shannon, J.G.; Nguyen, H.T. Identification and Characterization of a Stachyose Synthase Gene Controlling Reduced Stachyose Content in Soybean. Theor. Appl. Genet. 2015, 128, 2167–2176. [Google Scholar] [CrossRef]
- Valentine, M.F.; De Tar, J.R.; Mookkan, M.; Firman, J.D.; Zhang, Z.J. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed. Front. Plant Sci. 2017, 8, 692. [Google Scholar] [CrossRef]
- Yonemoto, Y.; Chowdhury, A.K.; Kato, H.; Macha, M.M. Cultivars Identification and Their Genetic Relationships in Dimocarpus longan Subspecies Based on RAPD Markers. Sci. Hortic. 2006, 109, 147–152. [Google Scholar] [CrossRef]
- Ciacka, K.; Tyminski, M.; Wal, A.; Gniazdowska, A.; Krasuska, U. Nitric Oxide–an Antidote to Seed Aging Modifies Meta-Tyrosine Content and Expression of Aging-Linked Genes in Apple Embryos. Front. Plant Sci. 2022, 13, 929245. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, Y.; Le, J.; Li, Q.; Mou, J.; Deng, S.; Li, J.; Wang, R.; Deng, Z.; Liu, J. Full-Length Transcriptome Sequencing Reveals the Molecular Mechanism of Metasequoia glyptostroboides Seed Responding to Aging. Antioxidants 2023, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Zuo, K.; Zhao, J.; Qin, J.; Qiu, C.; Sun, X.; Tang, K. Isolation and Characterization of a Homologous to Lipase Gene from Brassica napus. Russ. J. Plant Physiol. 2006, 53, 366–372. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, J.; Gao, F.; Yin, G.; Wang, Z.; Chen, F.; Li, X.; Xu, J.; Chen, T.; Li, L.; et al. Genome-Wide Linkage Mapping Reveals QTLs for Seed Vigor-Related Traits Under Artificial Aging in Common Wheat (Triticum aestivum). Front. Plant Sci. 2018, 9, 1101. [Google Scholar] [CrossRef]
- Nisarga, K.N.; Vemanna, R.S.; Kodekallu Chandrashekar, B.; Rao, H.; Vennapusa, A.R.; Narasimaha, A.; Makarla, U.; Basavaiah, M.R. Aldo-Ketoreductase 1 (AKR1) Improves Seed Longevity in Tobacco and Rice by Detoxifying Reactive Cytotoxic Compounds Generated during Ageing. Rice 2017, 10, 11. [Google Scholar] [CrossRef]
- Yu, S.; Wang, C.; Wang, Q.; Sun, Q.; Zhang, Y.; Dong, J.; Yin, Y.; Zhang, S.; Yu, G. Identification and Analysis of SOD Family Genes in Peanut (Arachis hypogaea L.) and Their Potential. Roles in Stress Responses. Agronomy 2023, 13, 1959. [Google Scholar] [CrossRef]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed Priming: State of the Art and New Perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Moori, S.; Eisvand, H.R. Plant Growth Regulators and Ascorbic Acid Effects on Physiological Quality of Wheat Seedlings Obtained from Deteriorated Seeds. Pak. J. Bot. 2017, 49, 1811–1819. [Google Scholar]
- Colombo, F.; Pagano, A.; Sangiorgio, S.; Macovei, A.; Balestrazzi, A.; Araniti, F.; Pilu, R. Study of Seed Ageing in Lpa1-1 Maize Mutant and Two Possible Approaches to Restore Seed Germination. Int. J. Mol. Sci. 2023, 24, 732. [Google Scholar] [CrossRef]
- Li, G.; Xie, J.; Zhang, W.; Meng, F.; Yang, M.; Fan, X.; Sun, X.; Zheng, Y.; Zhang, Y.; Wang, M.; et al. Integrated Examination of the Transcriptome and Metabolome of the Gene Expression Response and Metabolite Accumulation in Soybean Seeds for Seed Storability under Aging Stress. Front. Plant Sci. 2024, 15, 1437107. [Google Scholar] [CrossRef]
- Brar, N.S.; Kaushik, P.; Dudi, B.S. Effect of Seed Priming Treatment on the Physiological Quality of Naturally Aged Onion (Allium cepa L.) Seeds. Appl. Ecol. Environ. Res. 2020, 18, 849–862. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Wang, X.; Li, T.; Zhang, X. Electrochemical Sensor for Sensitive Detection of Bisphenol a Based on Molecularly Imprinted TiO2 with Oxygen Vacancy. Biosens. Bioelectron. 2023, 237, 115520. [Google Scholar] [CrossRef]
- Shaffique, S.; Imran, M.; Kang, S.-M.; Khan, M.A.; Asaf, S.; Kim, W.-C.; Lee, I.-J. Seed Bio-Priming of Wheat with a Novel Bacterial Strain to Modulate Drought Stress in Daegu, South Korea. Front. Plant Sci. 2023, 14, 1118941. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; An, J.; Yin, M.; Jia, X.; Guan, Y.; He, F.; Hu, J. Cold Plasma Treatment and Exogenous Salicylic Acid Priming Enhances Salinity Tolerance of Oryza sativa Seedlings. Protoplasma 2018, 256, 79–99. [Google Scholar] [CrossRef]
- Song, X.; Tang, S.; Liu, H.; Meng, Y.; Luo, H.; Wang, B.; Hou, X.-L.; Yan, B.; Yang, C.; Guo, Z.; et al. Inheritance of Acquired Adaptive Cold Tolerance in Rice through DNA Methylation. Cell 2025, 188, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Louis, N.; Dhankher, O.P.; Puthur, J.T. Seed Priming Can Enhance and Retain Stress Tolerance in Ensuing Generations by Inducing Epigenetic Changes and Trans-generational Memory. Physiol. Plant. 2023, 175, e13881. [Google Scholar] [CrossRef]
- Turgut-Kara, N.; Arikan, B.; Celik, H. Epigenetic Memory and Priming in Plants. Genetica 2020, 148, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Yan, M. Hydropriming Promotes Germination of Aged Napa Cabbage Seeds. Seed Sci. Technol. 2015, 43, 303–307. [Google Scholar] [CrossRef]
- Parmoon, G.; Ebadi, A.; Janbakhsh, S.; Moosav, S.A. Effects of Seed Priming on Catalase Activity and Storage Reservoirs of Aged Milk Thistle Seeds (Silybum marianum (L.) Gaertn). J. Agric. Sci. 2015, 21, 363–372. [Google Scholar] [CrossRef]
- Tonguç, M.; Güler, M.; Önder, S. Germination, Reserve Metabolism and Antioxidant Enzyme Activities in Safflower as Affected by Seed Treatments after Accelerated Aging. S. Afr. J. Bot. 2023, 153, 209–218. [Google Scholar] [CrossRef]
- Nazari, R.; Parsa, S.; Tavakkol Afshari, R.; Mahmoodi, S.; Seyyedi, S.M. Salicylic Acid Priming Before and After Accelerated Aging Process Increases Seedling Vigor in Aged Soybean Seed. J. Crop Improv. 2020, 34, 218–237. [Google Scholar] [CrossRef]
- Xia, F.; Cheng, H.; Chen, L.; Zhu, H.; Mao, P.; Wang, M. Influence of Exogenous Ascorbic Acid and Glutathione Priming on Mitochondrial Structural and Functional Systems to Alleviate Aging Damage in Oat Seeds. BMC Plant Biol. 2020, 20, 104. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.M.; Sung, J.M. Priming Slows Deterioration of Artificially Aged Bitter Gourd Seeds by Enhancing Anti-Oxidative Activities. Seed Sci. Technol. 2008, 36, 350–359. [Google Scholar] [CrossRef]
- Sıtkı; Kara, E. Solid Matrix Priming of Cabbage Seed Lots: Repair of Ageing and Increasing Seed Quality. J. Agric. Sci. 2016, 22, 588–595. [Google Scholar] [CrossRef]
- Hacisalihoglu, G. Responses of Three Switchgrass (Panicum virgatum L.) Cultivars to Seed Priming and Differential Aging Conditions. Acta Agric. Scand. Soil Plant Sci. 2008, 58, 280–284. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, M.; Song, T.; Cheng, C.; Tian, Y.; Hu, J.; Zhang, J. Spermidine Enhanced the Antioxidant Capacity of Rice Seeds during Seed Aging. Plant Growth Regul. 2020, 91, 397–406. [Google Scholar] [CrossRef]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z. Bio-Priming of Soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to Improve Seed Germination and the Initial Seedling Growth. Plants 2022, 11, 1927. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.E.; Abdel-Aziz, H.M.M.; Heikal, Y.M. Nanopriming Technology Enhances Vigor and Mitotic Index of Aged Vicia faba Seeds Using Chemically Synthesized Silver Nanoparticles. S. Afr. J. Bot. 2019, 125, 393–401. [Google Scholar] [CrossRef]
- Gokdas, Z.; Yildirim, E.; Gupta, S.; Demir, I. Karrikinolide Stimulated Seed Germination of Artificially Aged Marrow, Cabbage and Pepper Seeds through Repair of Cell Structure and Enzyme Activity. S. Afr. J. Bot. 2022, 151, 208–213. [Google Scholar] [CrossRef]
- Raj, D.; Dahiya, O.S.; Arya, R.K.; Yadav, A.K.; Kumar, K. Improvement in Germination Characteristics in Artificially Aged Seeds of Okra (Abelmoschus esculentus) by Osmoconditioning. Indian J. Agric. Sci. 2013, 83, 699–702. [Google Scholar]
- Kalia, A.; Sharma, S.P.; Devi, S. Effect of Surface Microbiome and Osmo-Conditioning on Restoration of Storage-Induced Losses of Seed Viability in Muskmelon (Cucumis melo L.). J. Agric. Sci. Technol. 2020, 22, 221–233. [Google Scholar]
- Wang, G.; Huang, J.; Gao, W.; Lu, J.; Li, J.; Liao, R.; Jaleel, C.A. The Effect of High-Voltage Electrostatic Field (HVEF) on Aged Rice (Oryza sativa L.) Seeds Vigor and Lipid Peroxidation of Seedlings. J. Electrost. 2009, 67, 759–764. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhang, X.; Xiong, C. Plasma Activated-water Stimulates Aged Pepper Seeds and Promotes Seedling Growth. Plasma Process. Polym. 2024, 21, 2300173. [Google Scholar] [CrossRef]
- Gamboa-deBuen, A.; Cruz-Ortega, R.; Martínez-Barajas, E.; Sánchez-Coronado, M.E.; Orozco-Segovia, A. Natural Priming as an Important Metabolic Event in the Life History of Wigandia urens (Hydrophyllaceae) Seeds. Physiol. Plant. 2006, 128, 520–530. [Google Scholar] [CrossRef]
- Varier, A.; Vari, A.K.; Dadlani, M. The Subcellular Basis of Seed Priming. Curr. Sci. 2010, 99, 450–456. [Google Scholar]
- Jiang, B.; Wang, L.; Xu, C.; Yan, M. Hydropriming Enhances the Germination of Aged Ultra-Dry Wheat Seeds. Seed Sci. Technol. 2020, 48, 57–63. [Google Scholar] [CrossRef]
- Ulhassan, Z.; Yang, S.; He, D.; Khan, A.R.; Salam, A.; Azhar, W.; Muhammad, S.; Ali, S.; Hamid, Y.; Khan, I.; et al. Seed Priming with Nano-Silica Effectively Ameliorates Chromium Toxicity in Brassica Napus. J. Hazard. Mater. 2023, 458, 131906. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, E.; Yao, M.; Xue, D.; Zhao, N.; Zhou, Y.; Li, B.; Wang, K.; Miao, Y.; Gu, C.; et al. PEG-6000 Priming Improves Aged Soybean Seed Vigor via Carbon Metabolism, ROS Scavenging, Hormone Signaling, and Lignin Synthesis Regulation. Agronomy 2023, 13, 3021. [Google Scholar] [CrossRef]
- Dos Santos, C.V.; Rey, P. Plant Thioredoxins Are Key Actors in the Oxidative Stress Response. Trends Plant Sci. 2006, 11, 329–334. [Google Scholar] [CrossRef]
- Córdoba-Cañero, D.; Roldán-Arjona, T.; Ariza, R.R. Arabidopsis ZDP DNA 3′-phosphatase and ARP Endonuclease Function in 8-oxoG Repair Initiated by FPG and OGG1 DNA Glycosylases. Plant J. 2014, 79, 824–834. [Google Scholar] [CrossRef]
- Forti, C.; Ottobrino, V.; Bassolino, L.; Toppino, L.; Rotino, G.L.; Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular Dynamics of Pre-Germinative Metabolism in Primed Eggplant (Solanum melongena L.) Seeds. Hortic. Res. 2020, 7, 87. [Google Scholar] [CrossRef]
- Pagano, A.; Folini, G.; Pagano, P.; Sincinelli, F.; Rossetto, A.; Macovei, A.; Balestrazzi, A. ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago Truncatula Seeds. Agronomy 2022, 12, 268. [Google Scholar] [CrossRef]
- Rajjou, L.; Lovigny, Y.; Groot, S.P.C.; Belghazi, M.; Job, C.; Job, D. Proteome-Wide Characterization of Seed Aging in Arabidopsis: A Comparison between Artificial and Natural Aging Protocols. Plant Physiol. 2008, 148, 620–641. [Google Scholar] [CrossRef] [PubMed]
- Thornton, J.M.; Collins, A.R.S.; Powell, A.A. The Effect of Aerated Hydration on DNA Synthesis in Embryos of Brassica oleracea L. Seed Sci. Res. 1993, 3, 195–199. [Google Scholar] [CrossRef]
- Battaglia, M.; Olvera-Carrillo, Y.; Garciarrubio, A.; Campos, F.; Covarrubias, A.A. The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiol. 2008, 148, 6–24. [Google Scholar] [CrossRef]
- Dirk, L.M.A.; Downie, A.B. An Examination of Job’s Rule: Protection and Repair of the Proteins of the Translational Apparatus in Seeds. Seed Sci. Res. 2018, 28, 168–181. [Google Scholar] [CrossRef]
- Capron, I.; Corbineau, F.; Dacher, F.; Job, C.; Côme, D.; Job, D. Sugarbeet Seed Priming: Effects of Priming Conditions on Germination, Solubilization of 11-S Globulin and Accumulation of LEA Proteins. Seed Sci. Res. 2000, 10, 243–254. [Google Scholar] [CrossRef]
- Kubala, S.; Wojtyla, Ł.; Quinet, M.; Lechowska, K.; Lutts, S.; Garnczarska, M. Enhanced Expression of the Proline Synthesis Gene P5CSA in Relation to Seed Osmopriming Improvement of Brassica napus Germination under Salinity Stress. J. Plant Physiol. 2015, 183, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Galland, M.; Rajjou, L. Regulation of mRNA Translation Controls Seed Germination and Is Critical for Seedling Vigor. Front. Plant Sci. 2015, 6, 284. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, W.; Li, Y.; Zhou, L.; Hong, H.; Liu, Y.; Luo, S.; Zou, J.; Zhao, Y.; Yang, Y.; Xu, Z.; et al. Deciphering Seed Deterioration: Molecular Insights and Priming Strategies for Revitalizing Aged Seeds. Plants 2025, 14, 1730. https://doi.org/10.3390/plants14111730
Xing W, Li Y, Zhou L, Hong H, Liu Y, Luo S, Zou J, Zhao Y, Yang Y, Xu Z, et al. Deciphering Seed Deterioration: Molecular Insights and Priming Strategies for Revitalizing Aged Seeds. Plants. 2025; 14(11):1730. https://doi.org/10.3390/plants14111730
Chicago/Turabian StyleXing, Weigeng, Yi Li, Linyan Zhou, Hao Hong, Yuan Liu, Shuailong Luo, Jialong Zou, Yan Zhao, Yanfei Yang, Zhenjiang Xu, and et al. 2025. "Deciphering Seed Deterioration: Molecular Insights and Priming Strategies for Revitalizing Aged Seeds" Plants 14, no. 11: 1730. https://doi.org/10.3390/plants14111730
APA StyleXing, W., Li, Y., Zhou, L., Hong, H., Liu, Y., Luo, S., Zou, J., Zhao, Y., Yang, Y., Xu, Z., & Tan, B. (2025). Deciphering Seed Deterioration: Molecular Insights and Priming Strategies for Revitalizing Aged Seeds. Plants, 14(11), 1730. https://doi.org/10.3390/plants14111730