Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Longevity in Seeds of Cultivars Belonging to the NIAS World Rice Core Collection under Controlled Deterioration Treatment (CDT)
2.2. Evaluation of Longevity in Aged Seeds of the NIAS World Rice Core Collection without CDT
2.3. RNA Integrity in the Embryos of Seeds from the NIAS World Rice Core Collection under CDT and Long-Term Aging at 4 °C
2.4. Relationship between Germinability and RIN Values
3. Discussion
4. Materials and Methods
4.1. Seed Materials
4.2. Controlled Deterioration Treatment (CDT)
4.3. Germination Assays
4.4. Extraction and Characterization of Total Embryonic RNAs
4.5. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saighani, K.; Kondo, D.; Sano, N.; Murata, K.; Yamada, T.; Kanekatsu, M. Correlation between Seed Longevity and RNA Integrity in the Embryos of Rice Seeds. Plant Biotechnol. 2021, 38, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Adsul, A.T.; Chimote, V.P.; Deshmukh, M.P. Inheritance of Seed Longevity and Its Association with Other Seed-Related Traits in Soybean (Glycine max). Agric. Res. 2018, 7, 105–111. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Luo, X.; Dai, Y.; Yang, Y.; Zheng, C.; Yang, W.; Shu, K. A Matter of Life and Death: Molecular, Physiological, and Environmental Regulation of Seed Longevity. Plant Cell Environ. 2020, 43, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-F.; Wang, J.-F.; Bao, Y.-M.; Wang, F.-H.; Zhang, H.-S. Quantitative Trait Loci Analysis for Rice Seed Vigor during the Germination Stage. J. Zhejiang Univ. Sci. B 2010, 11, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Clerkx, E.J.M.; El-Lithy, M.E.; Vierling, E.; Ruys, G.J.; Blankestijn-De Vries, H.; Groot, S.P.C.; Vreugdenhil, D.; Koornneef, M. Analysis of Natural Allelic Variation of Arabidopsis Seed Germination and Seed Longevity Traits between the Accessions Landsberg Erecta and Shakdara, Using a New Recombinant Inbred Line Population. Plant Physiol. 2004, 135, 432–443. [Google Scholar] [CrossRef]
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 2016, 57, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Pellizzaro, A.; Neveu, M.; Lalanne, D.; Ly Vu, B.; Kanno, Y.; Seo, M.; Leprince, O.; Buitink, J. A Role for Auxin Signaling in the Acquisition of Longevity during Seed Maturation. New Phytol. 2020, 225, 284–296. [Google Scholar] [CrossRef]
- Balesevic-Tubic, S.; Tatic, M.; Djordjevic, V.; Nikolic, Z.; Djukic, V. Seed Viability of Oil Crops Depending on Storage Conditions. Helia 2010, 33, 153–159. [Google Scholar] [CrossRef]
- Shen-Miller, J. Sacred lotus, the long-living fruits of China Antique. Seed Sci. Res. 2002, 12, 131–143. [Google Scholar] [CrossRef]
- Sallon, S.; Solowey, E.; Cohen, Y.; Korchinsky, R.; Egli, M.; Woodhatch, I. Germination, genetics, and growth of an ancient date seed. Science 2008, 320, 1464. [Google Scholar] [CrossRef]
- Agacka-Mołdoch, M.; Arif, M.A.R.; Lohwasser, U.; Doroszewska, T.; Qualset, C.O.; Börner, A. The Inheritance of Wheat Grain Longevity: A Comparison between Induced and Natural Ageing. J. Appl. Genet. 2016, 57, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Wiebach, J.; Nagel, M.; Börner, A.; Altmann, T.; Riewe, D. Age-dependent Loss of Seed Viability Is Associated with Increased Lipid Oxidation and Hydrolysis. Plant Cell Environ. 2020, 43, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Ikehashi, H. Studies on the environmental and varietal differences of germination habits in rice seeds with special reference to plant breeding. J. Cent. Agric. Exp. Stn. 1973, 19, 1–60, (In Japanese with English summary). [Google Scholar]
- Siddique, S.B.; Seshu, D.V.; Pardee, W.D. Rice Cultivar Variability in Tolerance for Accelerated Ageing of Seed. IRRI. Res. Pap. Ser 1988, 131, 2–7. [Google Scholar]
- Chang, T.T. Findings from a 28-Year Seed Viability Experiment. Int. Rice Res. Newslett. 1991, 16, 5–6. [Google Scholar]
- Ellis, R.H.; Hong, T.D.; Roberts, E.H. The Low-Moisture-Content Limit to the Negative Logarithmic Relation between Seed Longevity and Moisture Content in Three Subspecies of Rice. Ann. Bot. 1992, 69, 53–58. [Google Scholar] [CrossRef]
- Lee, J.-S.; Velasco-Punzalan, M.; Pacleb, M.; Valdez, R.; Kretzschmar, T.; McNally, K.L.; Ismail, A.M.; Cruz, P.C.S.; Sackville Hamilton, N.R.; Hay, F.R. Variation in Seed Longevity among Diverse Indica Rice Varieties. Ann. Bot. 2019, 124, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Niedzielski, M.; Walters, C.; Luczak, W.; Hill, L.M.; Wheeler, L.J.; Puchalski, J. Assessment of variation in seed longevity within rye, wheat and the intergeneric hybrid triticale1. Seed Sci. Res. 2009, 19, 213–224. [Google Scholar] [CrossRef]
- Justice, O.L.; Bass, L.N. Principles and Practices of Seed Storage. Agriculture Handbook No. 506; US Government Printing Office: Washington, DC, USA, 1978; pp. 1–289.
- Walters, C.; Wheeler, L.M.; Grotenhuis, J.M. Longevity of Seeds Stored in a Genebank: Species Characteristics. Seed Sci. Res. 2005, 15, 1–20. [Google Scholar] [CrossRef]
- Probert, R.J.; Daws, M.I.; Hay, F.R. Ecological Correlates of Ex Situ Seed Longevity: A Comparative Study on 195 Species. Ann. Bot. 2009, 104, 57–69. [Google Scholar] [CrossRef]
- Merritt, D.J.; Martyn, A.J.; Ainsley, P.; Young, R.E.; Seed, L.U.; Thorpe, M.; Hay, F.R.; Commander, L.E.; Shackelford, N.; Offord, C.A.; et al. A Continental-Scale Study of Seed Lifespan in Experimental Storage Examining Seed, Plant, and Environmental Traits Associated with Longevity. Biodivers. Conserv. 2014, 23, 1081–1104. [Google Scholar] [CrossRef]
- Kojima, Y.; Ebana, K.; Fukuoka, S.; Nagamine, T.; Kawase, M. Development of an RFLP-Based Rice Diversity Research Set of Germplasm. Breed. Sci. 2005, 55, 431–440. [Google Scholar] [CrossRef]
- Ebana, K.; Kojima, Y.; Fukuoka, S.; Nagamine, T.; Kawase, M. Development of Mini Core Collection of Japanese Rice Landrace. Breed. Sci. 2008, 58, 281–291. [Google Scholar] [CrossRef]
- Ohsumi, A.; Kanemura, T.; Homma, K.; Horie, T.; Shiraiwa, T. Genotypic Variation of Stomatal Conductance in Relation to Stomatal Density and Length in Rice (Oryza sativa L.). Plant Prod. Sci. 2007, 10, 322–328. [Google Scholar] [CrossRef]
- Kanemura, T.; Homma, K.; Ohsumi, A.; Shiraiwa, T.; Horie, T. Evaluation of Genotypic Variation in Leaf Photosynthetic Rate and Its Associated Factors by Using Rice Diversity Research Set of Germplasm. Photosynth. Res. 2007, 94, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Iseki, K.; Homma, K.; Endo, T.; Shiraiwa, T. Genotypic Diversity of Cross-Tolerance to Oxidative and Drought Stresses in Rice Seedlings Evaluated by the Maximum Quantum Yield of Photosystem II and Membrane Stability. Plant Prod. Sci. 2013, 16, 295–304. [Google Scholar] [CrossRef]
- Takahashi, Y.; Teshima, K.M.; Yokoi, S.; Innan, H.; Shimamoto, K. Variations in Hd1 Proteins, Hd3a Promoters, and Ehd1 Expression Levels Contribute to Diversity of Flowering Time in Cultivated Rice. Proc. Natl. Acad. Sci. USA 2009, 106, 4555–4560. [Google Scholar] [CrossRef] [PubMed]
- Ueno, D.; Kono, I.; Yokosho, K.; Ando, T.; Yano, M.; Ma, J.F. A Major Quantitative Trait Locus Controlling Cadmium Translocation in Rice (Oryza sativa). New Phytol. 2009, 182, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Uraguchi, S.; Mori, S.; Kuramata, M.; Kawasaki, A.; Arao, T.; Ishikawa, S. Root-to-Shoot Cd Translocation via the Xylem Is the Major Process Determining Shoot and Grain Cadmium Accumulation in Rice. J. Exp. Bot. 2009, 60, 2677–2688. [Google Scholar] [CrossRef]
- Sugimoto, K.; Takeuchi, Y.; Ebana, K.; Miyao, A.; Hirochika, H.; Hara, N.; Ishiyama, K.; Kobayashi, M.; Ban, Y.; Hattori, T.; et al. Molecular Cloning of Sdr4, a Regulator Involved in Seed Dormancy and Domestication of Rice. Proc. Natl. Acad. Sci. USA 2010, 107, 5792–5797. [Google Scholar] [CrossRef]
- Ogiso-Tanaka, E.; Matsubara, K.; Yamamoto, S.-I.; Nonoue, Y.; Wu, J.; Fujisawa, H.; Ishikubo, H.; Tanaka, T.; Ando, T.; Matsumoto, T.; et al. Natural Variation of the RICE FLOWERING LOCUS T 1 Contributes to Flowering Time Divergence in Rice. PLoS ONE 2013, 8, e75959. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Wada, K.C.; Sakai, H.; Shibasaki, K.; Fukuoka, S.; Wu, J.; Yonemaru, J.-I.; Yano, M.; Izawa, T. Genomic Adaptation of Flowering-time Genes during the Expansion of Rice Cultivation Area. Plant J. 2018, 94, 895–909. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, M.; Murata, K.; Permana, H.; Yamada, T.; Kanekatsu, M. Varietal Difference in Heat-Stress Tolerance during Hot Water Disinfection of Rice Seeds in the “NIAS World Rice Core Collection”. Jpn. J. Crop Sci. 2017, 86, 177–185. [Google Scholar] [CrossRef]
- Bray, C.M.; Chow, T.-Y. Lesions in the Ribosomes of Non-Viable Pea (Pisum arvense) Embryonic Axis Tissue. Biochim. Biophys. Acta 1976, 442, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Reuzeau, C. Changes in RNA and Protein Metabolism Associated with Alterations in the Germination Efficiency of Sunflower Seeds. Ann. Bot. 1997, 80, 131–137. [Google Scholar] [CrossRef]
- Brocklehurst, P.A.; Fraser, R.S.S. Ribosomal RNA Integrity and Rate of Seed Germination. Planta 1980, 148, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Kranner, I.; Chen, H.; Pritchard, H.W.; Pearce, S.R.; Birtić, S. Inter-Nucleosomal DNA Fragmentation and Loss of RNA Integrity during Seed Ageing. Plant Growth Regul. 2011, 63, 63–72. [Google Scholar] [CrossRef]
- Sharma, S.N.; Maheshwari, A.; Sharma, C.; Shukla, N. Gene Expression Patterns Regulating the Seed Metabolism in Relation to Deterioration/Ageing of Primed Mung Bean (Vigna radiata L.) Seeds. Plant Physiol. Biochem. 2018, 124, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA Integrity Number for Assigning Integrity Values to RNA Measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef]
- Fleming, M.B.; Richards, C.M.; Walters, C. Decline in RNA Integrity of Dry-Stored Soybean Seeds Correlates with Loss of Germination Potential. J. Exp. Bot. 2017, 68, 2219–2230. [Google Scholar] [CrossRef]
- Fleming, M.B.; Hill, L.M.; Walters, C. The Kinetics of Ageing in Dry-Stored Seeds: A Comparison of Viability Loss and RNA Degradation in Unique Legacy Seed Collections. Ann. Bot. 2019, 123, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Bizouerne, E.; Ly Vu, J.; Ly Vu, B.; Diouf, I.; Bitton, F.; Causse, M.; Verdier, J.; Buitink, J.; Leprince, O. Genetic Variability in Seed Longevity and Germination Traits in a Tomato MAGIC Population in Contrasting Environments. Plants 2023, 12, 3632. [Google Scholar] [CrossRef]
- Bineau, E.; Diouf, I.; Carretero, Y.; Duboscq, R.; Bitton, F.; Djari, A.; Zouine, M.; Causse, M. Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. Plant J. 2021, 107, 1213–1227. [Google Scholar] [CrossRef]
- Liang, W.; Dong, H.; Guo, X.; Rodríguez, V.; Cheng, M.; Li, M.; Benech-Arnold, R.; Pu, Z.; Wang, J. Identification of long-lived and stable mRNAs in the aged seeds of wheat. Seed Biology 2023, 2, 14. [Google Scholar] [CrossRef]
- Tetreault, H.; Fleming, M.; Hill, L.; Dorr, E.; Yeater, K.; Richards, C.; Walters, C. A Power Analysis for Detecting Aging of Dry-stored Soybean Seeds: Germination Versus RNA Integrity Assessments. Crop Sci. 2023, 63, 1481–1493. [Google Scholar] [CrossRef]
- Tesnier, K.; Strookman-Donkers, H.M.; Van Pijlen, J.G.; Van Der Geest, A.; Bino, R.J.; Groot, S. A Controlled Deterioration Test for Arabidopsis Thaliana Reveals Genetic Variation in Seed Quality. Seed Sci. Technol 2002, 30, 149–165. [Google Scholar]
- Hu, D.; Ma, G.; Wang, Q.; Yao, J.; Wang, Y.U.; Pritchard, H.W.; Wang, X. Spatial and Temporal Nature of Reactive Oxygen Species Production and Programmed Cell Death in Elm (Ulmus pumila L.) Seeds during Controlled Deterioration. Plant Cell Environ. 2012, 35, 2045–2059. [Google Scholar] [CrossRef]
- Walters, C.; Hill, L.M.; Wheeler, L.M. Dying while Dry: Kinetics and Mechanisms of Deterioration in Desiccated Organisms. Integr. Comp. Biol. 2005, 45, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Nadarajan, J.; Walters, C.; Pritchard, H.W.; Ballesteros, D.; Colville, L. Seed Longevity—The Evolution of Knowledge and a Conceptual Framework. Plants 2023, 12, 471. [Google Scholar] [CrossRef]
- Pirredda, M.; Fañanás-Pueyo, I.; Oñate-Sánchez, L.; Mira, S. Seed Longevity and Ageing: A Review on Physiological and Genetic Factors with an Emphasis on Hormonal Regulation. Plants 2024, 13, 41. [Google Scholar] [CrossRef]
- Hang, N.T.; Lin, Q.; Liu, L.; Liu, X.; Liu, S.; Wang, W.; Li, L.; He, N.; Liu, Z.; Jiang, L.; et al. Mapping QTLs Related to Rice Seed Storability under Natural and Artificial Aging Storage Conditions. Euphytica 2015, 203, 673–681. [Google Scholar] [CrossRef]
- Schwember, A.R.; Bradford, K.J. Quantitative Trait Loci Associated with Longevity of Lettuce Seeds under Conventional and Controlled Deterioration Storage Conditions. J. Exp. Bot. 2010, 61, 4423–4436. [Google Scholar] [CrossRef] [PubMed]
- Rajjou, L.; Lovigny, Y.; Groot, S.P.C.; Belghazi, M.; Job, C.; Job, D. Proteome-Wide Characterization of Seed Aging in Arabidopsis: A Comparison between Artificial and Natural Aging Protocols. Plant Physiol. 2008, 148, 620–641. [Google Scholar] [CrossRef] [PubMed]
“Top Cultivars” | ||||||||
Vandaran | Tupa 729 | Badari Dhan | ||||||
Fresh seeds | 40 days CDT | Aged seeds | Fresh seeds | 40 days CDT | Aged seeds | Fresh seeds | 40 days CDT | Aged seeds |
8.5 ± 0.4 | 8.4 ± 0.3 | 8.0 ± 0.1 ** | 8.5 ± 0.4 | 8.4 ± 0.4 | 8.0 ± 0.0 ** | 8.5 ± 0.4 | 8.4 ± 0.4 | 8.0 ± 0.1 ** |
“Middle Cultivars” | ||||||||
Local Basmati | Hong Chew Zai | Davao 1 | ||||||
Fresh seeds | 40 days CDT | Aged seeds | Fresh seeds | 40 days CDT | Aged seeds | Fresh seeds | 40 days CDT | Aged seeds |
8.5 ± 0.3 | 7.7 ± 0.4 ** | 6.7 ± 0.5 ** | 8.5 ± 0.4 | 7.5 ± 0.5 ** | 6.7 ± 0.3 ** | 8.5 ± 0.5 | 7.3 ± 0.3 ** | 6.6 ± 0.1 ** |
“Low Cultivars” | ||||||||
Urasan 1 | Jena 035 | Dianyu 1 | ||||||
Fresh seeds | 40 days CDT | Aged seeds | Fresh seeds | 40 days CDT | Aged seeds | Fresh seeds | 40 days CDT | Aged seeds |
8.5 ± 0.5 | 5.7 ± 0.2 ** | 5.6 ± 0.3 ** | 8.5 ± 0.3 | 5.8 ± 0.1 ** | 5.7 ± 0.1 ** | 8.5 ± 0.4 | 5.9 ± 0.3 ** | 5.6 ± 0.4 ** |
No. | ID | Cultivar Name | Type | Group (1) | Origin |
---|---|---|---|---|---|
1 | WRC 55 | Tupa 729 | japonica | A | Bangladesh |
2 | WRC 49 | Padi Perak | japonica | A | Indonesia |
3 | WRC 45 | Masho | japonica | A | Myanmar |
4 | WRC 22 | Calatoc | japonica | A | Philippines |
5 | WRC 52 | Khau Tan Chiem | japonica | A | Vietnam |
6 | WRC 50 | Rexmont | japonica | A | USA |
7 | WRC 48 | Khau Mac Kho | japonica | A | Vietnam |
8 | WRC 46 | Khoa Nok | japonica | A | Laos |
9 | WRC 47 | Jaguary | japonica | A | Brazil |
10 | WRC 01 | Nipponbare | japonica | A | Japan |
11 | WRC 43 | Dianyu 1 | japonica | A | China |
12 | WRC 51 | Urasan 1 | japonica | A | Japan |
13 | WRC 53 | Tima | japonica | A | Bhutan |
14 | WRC 35 | ARC 5955 | indica-1 | B | India |
15 | WRC 41 | Kaluheenati | indica-1 | B | Sri Lanka |
16 | WRC 39 | Badari Dhan | indica-1 | B | Nepal |
17 | WRC 02 | Kasalath | indica-1 | B | India |
18 | WRC 33 | Surjamukhi | indica-1 | B | India |
19 | WRC 36 | Ratul | indica-1 | B | India |
20 | WRC 31 | Shoni | indica-1 | B | Bangladesh |
21 | WRC 34 | ARC 7291 | indica-1 | B | India |
22 | WRC 37 | ARC 7047 | indica-1 | B | India |
23 | WRC 29 | Kalo Dhan | indica-1 | B | Nepal |
24 | WRC 42 | Local Basmati | indica-1 | B | India |
25 | WRC 28 | Jarjan | indica-1 | B | Bhutan |
26 | WRC 32 | Tupa 121-3 | indica-1 | B | Bangladesh |
27 | WRC 27 | Nepal 8 | indica-1 | B | Nepal |
28 | WRC 25 | Muha | indica-1 | B | Indonesia |
29 | WRC 04 | Jena 035 | indica-1 | B | Nepal |
30 | WRC 26 | Jhona 2 | indica-1 | B | India |
31 | WRC 30 | Anjana Dhan | indica-1 | B | Nepal |
32 | WRC 38 | ARC 11094 | indica-1 | B | India |
33 | WRC 40 | Nepal 555 | indica-1 | B | India |
34 | WRC 16 | Vary Futsi | indica-2 | C | Madagascar |
35 | WRC 100 | Vandaran | indica-2 | C | Sri Lanka |
36 | WRC 03 | Bei Khi | indica-2 | C | Cambodia |
37 | WRC 44 | Basilanon | indica-2 | C | Philippines |
38 | WRC 57 | Milyang23 | indica-2 | C | Korea |
39 | WRC 20 | Tadukan | indica-2 | C | Philippines |
40 | WRC 07 | Davao 1 | indica-2 | C | Philippines |
41 | WRC 05 | Naba | indica-2 | C | India |
42 | WRC 17 | Keiboba | indica-2 | C | China |
43 | WRC 06 | Puluik Arang | indica-2 | C | Indonesia |
44 | WRC 99 | Hong Cheuh Zai | indica-2 | C | China |
45 | WRC 14 | IR58 | indica-2 | C | Philippines |
46 | WRC 21 | Shwe Nang Gyi | indica-2 | C | Myanmar |
47 | WRC 13 | Asu | indica-2 | C | Bhutan |
48 | WRC 24 | Pinulupot 1 | indica-2 | C | Philippines |
49 | WRC 23 | Lebed | indica-2 | C | Philippines |
50 | WRC 18 | Qingyu Seiyu | indica-2 | C | China |
51 | WRC 15 | CO 13 | indica-2 | C | India |
52 | WRC 98 | Deejaohualuo | indica-2 | C | China |
53 | WRC 19 | Deng Pao Zhai | indica-2 | C | China |
54 | WRC 11 | Jinguoyin | indica-2 | C | China |
55 | WRC 09 | Ryou Suisan Koumai | Others | D | China |
56 | WRC 10 | Shuu Sou Shu | Others | D | China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saighani, K.; Kashiwagi, M.; Habibi, S.; Simpson, C.G.; Yamada, T.; Kanekatsu, M. Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs. Plants 2024, 13, 1869. https://doi.org/10.3390/plants13131869
Saighani K, Kashiwagi M, Habibi S, Simpson CG, Yamada T, Kanekatsu M. Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs. Plants. 2024; 13(13):1869. https://doi.org/10.3390/plants13131869
Chicago/Turabian StyleSaighani, Kalimullah, Megumi Kashiwagi, Safiullah Habibi, Craig G. Simpson, Tetsuya Yamada, and Motoki Kanekatsu. 2024. "Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs" Plants 13, no. 13: 1869. https://doi.org/10.3390/plants13131869
APA StyleSaighani, K., Kashiwagi, M., Habibi, S., Simpson, C. G., Yamada, T., & Kanekatsu, M. (2024). Screening of NIAS World Rice Core Collection for Seeds with Long Longevity as Useful Potential Breeding Materials Focusing on the Stability of Embryonic RNAs. Plants, 13(13), 1869. https://doi.org/10.3390/plants13131869