Utilizing Artificial Intelligence and Remote Sensing to Detect Prosopis juliflora Invasion: Environmental Drivers and Community Insights in Rangelands of Kenya
Abstract
1. Introduction
- Which machine learning algorithm is most successful in predictive detection of Prosopis juliflora?
- What are the key variables contributing to distinguish Prosopis juliflora presence in arid and semi-arid ecosystems?
- How does the community perceive Prosopis juliflora presence in the rangelands?
2. Results
2.1. ML Algorithm Comparison
2.2. Key Variables Contributing to the Detection of Prosopis juliflora
2.3. Community Perceptions
3. Materials and Methods
3.1. Study Area
3.2. Sampling Design, Datasets and Analysis
3.3. Machine Learning Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiferaw, H.; Teketay, D.; Nemomissa, S.; Assefa, F. Some Biological Characteristics That Foster the Invasion of Prosopis juliflora (Sw.) DC. at Middle Awash Rift Valley Area, North-Eastern Ethiopia. J. Arid Environ. 2004, 58, 135–154. [Google Scholar] [CrossRef]
- Zachariades, C.; Hoffmann, J.H.; Roberts, A.P. Biological Control of Mesquite (Prosopis Species) (Fabaceae) in South Africa. Afr. Entomol. 2011, 19, 402–415. [Google Scholar] [CrossRef]
- Zimmermann, H.G.; Moran, V.C.; Hoffmann, J.H. Biological Control in the Management of Invasive Alien Plants in South Africa, and the Role of the Working for Water Programme. South Afr. J. Sci. 2004, 100, 34–40. [Google Scholar]
- Shackleton, R.T.; Le Maitre, D.C.; Pasiecznik, N.M.; Richardson, D.M. Prosopis: A Global Assessment of the Biogeography, Benefits, Impacts and Management of One of the World’s Worst Woody Invasive Plant Taxa. AoB Plants 2014, 6, plu027. [Google Scholar] [CrossRef] [PubMed]
- Peerbhay, K.; Mutanga, O.; Lottering, R.; Bangamwabo, V.; Ismail, R. Detecting Bugweed (Solanum Mauritianum) Abundance in Plantation Forestry Using Multisource Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2016, 121, 167–176. [Google Scholar] [CrossRef]
- Zuberi, M.I.; Gosaye, T.; Hossain, S. Potential threat of alien invasive species: Parthenium hysterophorus l. To subsistence agriculture in ethiopia. Sarhad J. Agric. 2014, 30, 117–125. [Google Scholar]
- Royimani, L.; Mutanga, O.; Odindi, J.; Dube, T.; Matongera, T.N. Advancements in Satellite Remote Sensing for Mapping and Monitoring of Alien Invasive Plant Species (AIPs). Phys. Chem. Earth Parts ABC 2019, 112, 237–245. [Google Scholar] [CrossRef]
- Flood, N. Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef]
- Matongera, T.N.; Mutanga, O.; Dube, T.; Lottering, R.T. Detection and Mapping of Bracken Fern Weeds Using Multispectral Remotely Sensed Data: A Review of Progress and Challenges. Geocarto Int. 2018, 33, 209–224. [Google Scholar] [CrossRef]
- Alvarez-Taboada, F.; Paredes, C.; Julián-Pelaz, J. Mapping of the Invasive Species Hakea Sericea Using Unmanned Aerial Vehicle (UAV) and WorldView-2 Imagery and an Object-Oriented Approach. Remote Sens. 2017, 9, 913. [Google Scholar] [CrossRef]
- Meiman, S.; Civco, D.; Holsinger, K.; Elphick, C.S. Comparing Habitat Models Using Ground-Based and Remote Sensing Data: Saltmarsh Sparrow Presence Versus Nesting. Wetlands 2012, 32, 725–736. [Google Scholar] [CrossRef]
- Geiß, C.; Aravena Pelizari, P.; Blickensdörfer, L.; Taubenböck, H. Virtual Support Vector Machines with Self-Learning Strategy for Classification of Multispectral Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 42–58. [Google Scholar] [CrossRef]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef]
- Boukabara, S.-A.; Krasnopolsky, V.; Stewart, J.Q.; Maddy, E.S.; Shahroudi, N.; Hoffman, R.N. Leveraging Modern Artificial Intelligence for Remote Sensing and NWP: Benefits and Challenges. Bull. Am. Meteorol. Soc. 2019, 100, ES473–ES491. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Eckert, S. Performances of Machine Learning Algorithms for Mapping Fractional Cover of an Invasive Plant Species in a Dryland Ecosystem. Ecol. Evol. 2019, 9, 2562–2574. [Google Scholar] [CrossRef]
- Shiferaw, H.; Schaffner, U.; Bewket, W.; Alamirew, T.; Zeleke, G.; Teketay, D.; Eckert, S. Modelling the Current Fractional Cover of an Invasive Alien Plant and Drivers of Its Invasion in a Dryland Ecosystem. Sci. Rep. 2019, 9, 1576. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Le Maitre, D.C.; Richardson, D.M. Stakeholder Perceptions and Practices Regarding Prosopis (Mesquite) Invasions and Management in South Africa. Ambio 2015, 44, 569–581. [Google Scholar] [CrossRef]
- Off, D.D. County Integrated Development Plan. Baringo County Integrated Development Plan 2023–2027. Available online: https://repository.kippra.or.ke/handle/123456789/4385 (accessed on 6 July 2023).
- Mwangi, E.; Swallow, B. Invasion of Prosopis juliflora and Local Livelihoods: Case Study from the Lake Baringo Area of Kenya ICRAF Working Paper No. 3; World Agroforestry Centre (ICRAF): Nairobi, Kenya, 2005. [Google Scholar]
- Mbaabu, P.R.; Ng, W.-T.; Schaffner, U.; Gichaba, M.; Olago, D.; Choge, S.; Oriaso, S.; Eckert, S. Spatial Evolution of Prosopis Invasion and Its Effects on LULC and Livelihoods in Baringo, Kenya. Remote Sens. 2019, 11, 1217. [Google Scholar] [CrossRef]
- Getahun, A.; Reshid, K.; Munyua, H. Agroforestry for Development in Kenya: An Annotated Bibliography; International Centre for Research in Agroforestry: Nairobi, Kenya, 1991. [Google Scholar]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Belay, A.S.; Fenta, A.A.; Yenehun, A.; Nigate, F.; Tilahun, S.A.; Moges, M.M.; Dessie, M.; Adgo, E.; Nyssen, J.; Chen, M.; et al. Evaluation and Application of Multi-Source Satellite Rainfall Product CHIRPS to Assess Spatio-Temporal Rainfall Variability on Data-Sparse Western Margins of Ethiopian Highlands. Remote Sens. 2019, 11, 2688. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Rapčan, I.; Domazetović, F.; Milošević, R.; Plaščak, I. An Independent Validation of SoilGrids Accuracy for Soil Texture Components in Croatia. Land 2023, 12, 1034. [Google Scholar] [CrossRef]
- Gesch, D.B. The National Elevation Dataset. Photogramm. Eng. Remote Sens. 2002, 68, 5–11. [Google Scholar]
- Bontemps, S.; Boettcher, M.; Brockmann, C.; Kirches, G.; Lamarche, C.; Radoux, J.; Santoro, M.; Vanbogaert, E.; Wegmüller, U.; Herold, M.; et al. Multi-Year Global Land Cover Mapping at 300 m and Characterization for Climate Modelling: Achievements of the Land Cover Component of the ESA Climate Change Initiative. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 323–328. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 978-1-118-34328-9. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Ng, W.-T.; Immitzer, M.; Floriansitz, M.; Vuolo, F.; Luminari, L.; Adede, C.; Wahome, R.; Atzberger, C. Mapping Prosopis spp. within the Tarach Water Basin, Turkana, Kenya Using Sentinel-2 Imagery. In Proceedings of the 2016 SPIE Remote Sensing, Edinburgh, UK, 25 October 2016; Neale, C.M.U., Maltese, A., Eds.; 2016; p. 99980L. [Google Scholar]
- Ahmed, N.; Atzberger, C.; Zewdie, W. The Potential of Modeling Prosopis juliflora Invasion Using Sentinel-2 Satellite Data and Environmental Variables in the Dryland Ecosystem of Ethiopia. Ecol. Inform. 2022, 68, 101545. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Truong, T.T.A.; Hardy, G.E.S.J.; Andrew, M.E. Contemporary Remotely Sensed Data Products Refine Invasive Plants Risk Mapping in Data Poor Regions. Front. Plant Sci. 2017, 8, 770. [Google Scholar] [CrossRef]
- Shiferaw, W.; Demissew, S.; Bekele, T.; Aynekulu, E. Community Perceptions towards Invasion of Prosopis juliflora, Utilization, and Its Control Options in Afar Region, Northeast Ethiopia. PLoS ONE 2022, 17, e0261838. [Google Scholar] [CrossRef]
- Ravhuhali, K.E.; Mudau, H.S.; Moyo, B.; Hawu, O.; Msiza, N.H. Prosopis Species—An Invasive Species and a Potential Source of Browse for Livestock in Semi-Arid Areas of South Africa. Sustainability 2021, 13, 7369. [Google Scholar] [CrossRef]
ML Classifiers | Overall Accuracy | Cohen’s Kappa Coefficient | Mcnemar’s Test p-Value |
---|---|---|---|
Decision Tree/Random Forest | 95% | 0.53 | 0.9 |
Support Vector Machine | 78% | 0.47 | 0.24 |
Neural Network | 66% | 0.12 | 0.07 |
Variable | Description | Source | Spatial Resolution | |
---|---|---|---|---|
1 | Maximum Temperature (°C) | Maximum monthly temperature | [22] | 4 km |
2 | Minimum Temperature (°C) | Minimum monthly temperature | [22] | 4 km |
3 | Monthly Mean Diurnal Range (°C) | Difference between the maximum monthly temperature and minimum monthly temperature | [22] | 4 km |
4 | Avg ppt for LR (mm) | Mean precipitation for long rain starts from March to May | [23] | 4.8 km |
5 | Avg ppt for SR (mm) | Mean Precipitation starts from for short rain starts from October to December | [23] | 4.8 km |
6 | Avg ppt for dry period (mm) | Mean Precipitation for dry season, which starts from June to September | [23] | 4.8 km |
7 | Soil Organic Carbon (SOC) at 0–5 cm | Measure of Organic carbon density at layer 0–5 cm | [24] | 250 m |
8 | Soil Organic Carbon (SOC) at 5–15 cm | Measure of Organic carbon density at layer 5–15 cm | [24] | 250 m |
9 | Soil Organic Carbon (SOC) at 15–30 cm | Measure of Organic carbon density at layer 15–30 cm | [24] | 250 m |
10 | Soil Organic Carbon (SOC) at 30–60 cm | Measure of Organic carbon density at layer 30–60 cm | [24] | 250 m |
11 | Slope | Rate of change of elevation for each digital elevation model (DEM) cell. | [25] | 30 m |
12 | Elevation | Digital Elevation Model (DEM) | [25] | 30 m |
13 | LULC | Land cover types | [26] | 10 m |
14 | NDVI | Vegetation Index | [27] | 10 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliwal, A.; Mhelezi, M.; Galgallo, D.; Banerjee, R.; Malicha, W.; Whitbread, A. Utilizing Artificial Intelligence and Remote Sensing to Detect Prosopis juliflora Invasion: Environmental Drivers and Community Insights in Rangelands of Kenya. Plants 2024, 13, 1868. https://doi.org/10.3390/plants13131868
Paliwal A, Mhelezi M, Galgallo D, Banerjee R, Malicha W, Whitbread A. Utilizing Artificial Intelligence and Remote Sensing to Detect Prosopis juliflora Invasion: Environmental Drivers and Community Insights in Rangelands of Kenya. Plants. 2024; 13(13):1868. https://doi.org/10.3390/plants13131868
Chicago/Turabian StylePaliwal, Ambica, Magdalena Mhelezi, Diba Galgallo, Rupsha Banerjee, Wario Malicha, and Anthony Whitbread. 2024. "Utilizing Artificial Intelligence and Remote Sensing to Detect Prosopis juliflora Invasion: Environmental Drivers and Community Insights in Rangelands of Kenya" Plants 13, no. 13: 1868. https://doi.org/10.3390/plants13131868
APA StylePaliwal, A., Mhelezi, M., Galgallo, D., Banerjee, R., Malicha, W., & Whitbread, A. (2024). Utilizing Artificial Intelligence and Remote Sensing to Detect Prosopis juliflora Invasion: Environmental Drivers and Community Insights in Rangelands of Kenya. Plants, 13(13), 1868. https://doi.org/10.3390/plants13131868