Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic, Flavonoid, and Proanthocyanidin Contents
2.2. Antioxidant Activity
2.3. Cell Viability
2.4. Phenolic Compound of Fruit and Leaf Extracts
3. Materials and Methods
3.1. Materials and Reagents
3.2. Plant Material and Extract Preparation
3.3. Determination of Total Phenolic, Flavonoid, and Total Proanthocyanidin Content
3.4. Determination of Polyphenols Profile by UPLC-Q-TOF-MS
3.5. Determination of Antioxidant Activity
3.5.1. ABTS•+ Radical Scavenging Activity
3.5.2. Determination of Copper Ion Reduction
3.5.3. Chelating Ability of Ferrous Ion
3.5.4. Superoxide Radical Scavenging Activity Assay
3.5.5. Hydroxyl Radical Scavenging Activity Assay
3.6. Cell Culture
3.7. MTS Cell Viability Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sagar, N.A.; Pareek, S.; Bhardwaj, R.; Vyas, N. Bioactive Compounds of Loquat (Eriobotrya japonica (Thunb.) L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–143. ISBN 978-3-030-30181-1. [Google Scholar]
- Pareek, S.; Benkeblia, N.; Janick, J.; Cao, S.; Yahia, E.M. Postharvest Physiology and Technology of Loquat (Eriobotrya japonica Lindl.) Fruit: Postharvest Physiology and Technology of Loquat. J. Sci. Food Agric. 2014, 94, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Calvo, J.; Gisbert, A.D.; Alamar, M.C.; Hernandorena, R.; Romero, C.; Llácer, G.; Badenes, M.L. Study of a Germplasm Collection of Loquat (Eriobotrya japonica Lindl.) by Multivariate Analysis. Genet. Resour. Crop Evol. 2008, 55, 695–703. [Google Scholar] [CrossRef]
- Ferreres, F.; Gomes, D.; Valentão, P.; Gonçalves, R.; Pio, R.; Chagas, E.A.; Seabra, R.M.; Andrade, P.B. Improved Loquat (Eriobotrya japonica Lindl.) Cultivars: Variation of Phenolics and Antioxidative Potential. Food Chem. 2009, 114, 1019–1027. [Google Scholar] [CrossRef]
- Pio, R.; Barbosa, W.; Chagas, E.A.; Ojima, M.; Cia, P. Production of Loquat Tree Cultivars in Eastern São Paulo State. Pesqui. Agropecuária Bras. 2007, 42, 1053–1056. [Google Scholar] [CrossRef]
- Tian, S.; Li, B.; Ding, Z. Physiological Properties and Storage Technologies of Loquat Fruit. Fresh Prod. 2007, 4, 76–81. [Google Scholar]
- Li, X.; Xu, C.; Chen, K. Nutritional and Composition of Fruit Cultivars. In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 371–394. ISBN 978-0-12-408117-8. [Google Scholar]
- Baljinder, S.; Seema, G.; Dharmendra, K.; Vikas, G. Pharmacological Potential of Eriobotrya japonica—An Overview. Int. Res. J. Pharm. 2010, 1, 95–99. [Google Scholar]
- Huang, S.; Lin, B.; Li, B.; Tan, B.; Hong, Y. Purification of Total Flavonoids from Loquat Leaves by Macroporous Resin and Corresponding Antioxidant Capacity. BIO Web Conf. 2017, 8, 03010. [Google Scholar] [CrossRef]
- Ahumada, J.; Fuentealba, C.; Olaeta, J.A.; Martinez, P.U.; Pedreschi, R.; Shetty, K.; Chirinos, R.; Campos, D.; Ranilla, L.G. Bioactive Compounds of Loquat (Eriobotrya japonica Lindl.) Cv. Golden Nugget and Analysis of the In Vitro Functionality for Hyperglycemia Management. Cienc. E Investig. Agrar. 2017, 44, 271–283. [Google Scholar] [CrossRef]
- Banno, N.; Akihisa, T.; Tokuda, H.; Yasukawa, K.; Taguchi, Y.; Akazawa, H.; Ukiya, M.; Kimura, Y.; Suzuki, T.; Nishino, H. Anti-Inflammatory and Antitumor-Promoting Effects of the Triterpene Acids from the Leaves of Eriobotrya japonica. Biol. Pharm. Bull. 2005, 28, 1995–1999. [Google Scholar] [CrossRef]
- Chen, J.; Li, W.L.; Wu, J.L.; Ren, B.R.; Zhang, H.Q. Hypoglycemic Effects of a Sesquiterpene Glycoside Isolated from Leaves of Loquat (Eriobotrya japonica (Thunb.) Lindl.). Phytomedicine 2008, 15, 98–102. [Google Scholar] [CrossRef]
- Li, W.-L.; Wu, J.-L.; Ren, B.-R.; Chen, J.; Lu, C.-G. Pharmacological Studies on Anti-Hyperglycemic Effect of Folium Eriobotryae. Am. J. Chin. Med. 2007, 35, 705–711. [Google Scholar] [CrossRef]
- Zhou, C.-H.; Li, X.; Xu, C.-J.; Sun, C.-D.; Chen, K.-S. Hydrophilic and Lipophilic Antioxidant Activity of Loquat Fruits: Haa and Laa of Loquat Fruit. J. Food Biochem. 2012, 36, 621–626. [Google Scholar] [CrossRef]
- Song, F.-L.; Gan, R.-Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.-B. Total Phenolic Contents and Antioxidant Capacities of Selected Chinese Medicinal Plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef]
- Zar, P.P.K.; Yano, S.; Sakao, K.; Hashimoto, F.; Nakano, T.; Fujii, M.; Hou, D.-X. In Vitro Anticancer Activity of Loquat Tea by Inducing Apoptosis in Human Leukemia Cells. Biosci. Biotechnol. Biochem. 2014, 78, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Kobayashi, E.; Takamatsu, Y.; Li, S.-H.; Hatano, T.; Sakagami, H.; Kusama, K.; Satoh, K.; Sugita, D.; Shimura, S.; et al. Polyphenols from Eriobotrya japonica and Their Cytotoxicity against Human Oral Tumor Cell Lines. Chem. Pharm. Bull. 2000, 48, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, X.; Sun, C.; Li, X.; Chen, K. Phenolic Composition from Different Loquat (Eriobotrya japonica Lindl.) Cultivars Grown in China and Their Antioxidant Properties. Molecules 2015, 20, 542–555. [Google Scholar] [CrossRef]
- Farina, V.; Corona, O.; Todaro, A.; Moreno Roldan, S.; Barone, F.; Gentile, C.; Perrone, A.; Mazzaglia, A. Pomological Traits, Sensory Characteristics, and Antioxidant Activity in Fruits of Nine Loquat Cultivars Grown in Sicily. Acta Hortic. 2015, 1092, 143–152. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, U.; Walia, H. Evaluation of Free Radical Scavenging Activities of Aqueous Extracts of Fruits of Ziziphus mauritiana and Eriobotrya japonica through In Vitro Antioxidant Assays. Glob. J. Res. Rev. 2015, 2, 30–36. [Google Scholar]
- Xu, H.; Chen, J. Commercial Quality, Major Bioactive Compound Content and Antioxidant Capacity of 12 Cultivars of Loquat (Eriobotrya japonica Lindl.) Fruits: Fruit Quality, Bioactive Compounds and Antioxidant Capacity of Loquat. J. Sci. Food Agric. 2011, 91, 1057–1063. [Google Scholar] [CrossRef]
- Bisso, B.N.; Kayoka-Kabongo, P.N.; Tchuenguem, R.T.; Dzoyem, J.P. Phytochemical Analysis and Antifungal Potentiating Activity of Extracts from Loquat (Eriobotrya japonica) against Cryptococcus Neoformans Clinical Isolates. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 6626834. [Google Scholar] [CrossRef]
- Mogole, L.; Omwoyo, W.; Mtunzi, F. Phytochemical Screening, Anti-Oxidant Activity and α-Amylase Inhibition Study Using Different Extracts of Loquat (Eriobotrya japonica) Leaves. Heliyon 2020, 6, e04736. [Google Scholar] [CrossRef]
- Mokdad-Bzeouich, I.; Kilani-Jaziri, S.; Mustapha, N.; Bedoui, A.; Ghedira, K.; Chekir-Ghedira, L. Evaluation of the Antimutagenic, Antigenotoxic, and Antioxidant Activities of Eriobotrya japonica Leaves. Pharm. Biol. 2015, 53, 1786–1794. [Google Scholar] [CrossRef]
- Abdel Raoof, G.F.; Said, A.; Ismail, S. Assessment of the Chemical Composition, Antimicrobial Potential and Cytotoxic Activity of Eriobotrya japonica Fruits. Egypt. J. Chem. 2021, 64, 5493–5502. [Google Scholar] [CrossRef]
- Alwash, B.M.J. Cytotoxic and Antioxidant Activity of Fruit Juice of Eriobotrya japonica (Thunb.) Lind Plant Culivated in Iraq. Iraqi J. Agric. Sci. 2017, 48, 892–898. [Google Scholar] [CrossRef]
- Nawrot-Hadzik, I.; Granica, S.; Abel, R.; Czapor-Irzabek, H.; Matkowski, A. Analysis of Antioxidant Polyphenols in Loquat Leaves Using HPLC-Based Activity Profiling. Nat. Prod. Commun. 2017, 12, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.M. A Review on Active Constituents and Pharmacological Effects of Eriobotrya japonica Lindl. (Loquat). Indian J. Pharm. Sci. 2021, 30, 41–55. [Google Scholar] [CrossRef]
- Zhang, L.; Saber, F.R.; Rocchetti, G.; Zengin, G.; Hashem, M.M.; Lucini, L. UHPLC-QTOF-MS Based Metabolomics and Biological Activities of Different Parts of Eriobotrya japonica. Food Res. Int. 2021, 143, 110242. [Google Scholar] [CrossRef] [PubMed]
- Fraisse, D.; Degerine-Roussel, A.; Bred, A.; Ndoye, S.; Vivier, M.; Felgines, C.; Senejoux, F. A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules 2018, 23, 1574. [Google Scholar] [CrossRef]
- Cheng, T.; Ye, J.; Li, H.; Dong, H.; Xie, N.; Mi, N.; Zhang, Z.; Zou, J.; Jin, H.; Zhang, W. Hybrid Multidimensional Data Acquisition and Data Processing Strategy for Comprehensive Characterization of Known, Unknown and Isomeric Compounds from the Compound Dan Zhi Tablet by UPLC-TWIMS-QTOFMS. RSC Adv. 2019, 9, 8714–8727. [Google Scholar] [CrossRef]
- Kite, G.C.; Veitch, N.C. Identification of Common Glycosyl Groups of Flavonoid O-Glycosides by Serial Mass Spectrometry of Sodiated Species: Identifying Glycosyl Goups of Common Flavonoid O-Glycosides. Rapid Commun. Mass Spectrom. 2011, 25, 2579–2590. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Potocki, L.; Kapusta, I.T. Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves. Molecules 2023, 28, 1989. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 178–1820. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Kapusta, I.T. Phytochemical Screening and Bioactive Properties of Juglans regia L. Pollen. Antioxidants 2022, 11, 2046. [Google Scholar] [CrossRef]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I.T. Phenolic Profile and Antioxidant, Antibacterial, and Antiproliferative Activity of Juglans regia L. Male Flowers. Molecules 2022, 27, 2762. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Esin Karademir, S.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Robak, J.; Gryglewski, R.J. Flavonoids Are Scavengers of Superoxide Anions. Biochem. Pharmacol. 1988, 37, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Żurek, N.; Karatsai, O.; Rędowicz, M.J.; Kapusta, I.T. Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules 2021, 26, 2656. [Google Scholar] [CrossRef]
Total Phenolic Content (TPC) | Total Flavonoid Content (TFC) | Total Proanthocyanidin Content (TPA) | |
---|---|---|---|
(mg GAE/100 g dw) | (mg QE/100 g dw) | (mg CYE/100 g dw) | |
Fruits | 6.05 ± 0.01 | 1.23 ± 0.00 | 1.19 ± 0.00 |
Leaves | 47.99 ± 0.11 | 7.84 ± 0.00 | 6.34 ± 0.03 |
ABTS•+ Radical Scavenging Activity | Determination of Copper Ion Reduction | Chelating Ability of Ferrous Ion | Superoxide Radical Scavenging Activity Assay | Hydroxyl Radical Scavenging Activity Assay | |
---|---|---|---|---|---|
(mmol TE/100 g dw) | IC50 (µg/mL) | ||||
Fruits | 17.38 ± 2.52 | 14.57 ± 0.09 | >1000 | >1000 | >1000 |
Leaves | 74.35 ± 3.78 | 62.01 ± 1.47 | 941.25 ± 9.07 | 244.30 ± 0.38 | 661.04 ± 0.97 |
ABTS | CUPRAC | Caco-2 | HT-29 | MCF-7 | U87MG | TPC | TFC | TPA | Phenolic Acid | Flavonols | Flavones | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABTS | 1.000 | 0.410 | −0.379 | 0.568 | 0.532 | 0.148 | −0.992 * | 0.737 | −0.362 | −0.361 | 0.916 | −0.500 |
CUPRAC | 1.000 | 0.688 | 0.983 * | −0.553 | −0.841 | −0.777 | 0.918 | −0.998 * | 0.702 | 0.011 | 0.583 | |
Caco-2 | 1.000 | 0.545 | −0.985 | −0.971 | −0.078 | 0.345 | −0.724 | 0.999 * | −0.717 | 0.990 | ||
HT-29 | 1.000 | −0.394 | −0.729 | −0.878 | 0.974 * | −0.972 | 0.562 | 0.192 | 0.427 | |||
MCF-7 | 1.000 | 0.916 | −0.093 | −0.179 | 0.596 | −0.981 | 0.825 | −0.999 * | ||||
U87MG | 1.000 | 0.313 | −0.558 | 0.867 | −0.975 | 0.530 | −0.930 | |||||
TPC | 1.000 | −0.962 | 0.743 | −0.098 | −0.638 | 0.056 | ||||||
TFC | 1.000 | −0.896 | 0.363 | 0.406 | 0.215 | |||||||
TPA | 1.000 | −0.730 | 0.039 | −0.625 | ||||||||
Phenolic acid | 1.000 | −0.703 | 0.987 | |||||||||
Flavonols | 1.000 | −0.804 | ||||||||||
Flavones | 1.000 |
ABTS | CUPRAC | ChA | O2˙− | OH− | Caco-2 | HT-29 | MCF-7 | U87MG | TPC | TFC | TPA | Phenolic Acid | Flavonols | Flavones | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABTS | 1.000 | 0.995 * | 0.793 | −0.704 | 0.711 | 0.782 | −0.175 | 0.817 | −0.508 | −0.957 | −0.137 | 0.056 | 0.997 * | 0.629 | 0.511 |
CUPRAC | 1.000 | −0.640 | −0.532 | 0.540 | 0.899 | −0.386 | 0.671 | −0.308 | −0.871 | −0.350 | −0.162 | 0.995 * | 0.783 | 0.687 | |
ChA | 1.000 | 0.991 | −0.992 | −0.240 | −0.460 | −0.999 * | 0.927 | 0.935 | −0.494 | −0.653 | 0.063 | −0.025 | 0.117 | ||
O2•− | 1.000 | −0.999 * | −0.109 | −0.574 | −0.984 | 0.969 | 0.879 | −0.605 | −0.748 | 0.195 | 0.107 | 0.248 | |||
OH− | 1.000 | 0.118 | 0.567 | 0.986 | −0.966 | −0.883 | 0.598 | 0.742 | −0.186 | −0.098 | −0.239 | ||||
Caco-2 | 1.000 | −0.750 | 0.280 | 0.138 | −0.569 | −0.724 | −0.577 | 0.953 | 0.976 | 0.935 | |||||
HT-29 | 1.000 | 0.423 | −0.758 | −0.116 | 0.999* | 0.972 | −0.914 | −0.875 | −0.995 * | ||||||
MCF-7 | 1.000 | −0.911 | −0.948 | 0.457 | 0.621 | −0.022 | 0.066 | −0.076 | |||||||
U87MG | 1.000 | 0.735 | −0.785 | −0.888 | 0.431 | 0.349 | 0.479 | ||||||||
TPC | 1.000 | −0.154 | −0.342 | −0.294 | −0.378 | −0.241 | |||||||||
TFC | 1.000 | 0.981 | −0.898 | −0.856 | −0.921 | ||||||||||
TPA | 1.000 | −0.796 | −0.740 | −0.828 | |||||||||||
Phenolic acids | 1.000 | 0.996 | 0.998 | ||||||||||||
Flavonols | 1.000 | 0.989 | |||||||||||||
Flavones | 1.000 |
No. | Compound | Rt | λmax | [M − H]− m/z | Content | ||
---|---|---|---|---|---|---|---|
Fruits | Leaves | ||||||
min | nm | MS | MS/MS | mg/100 g dw | |||
Phenolic acids | |||||||
1 | Caffeic acid derivative | 1.44 | 299 sh, 324 | 371 | 179 | nd | 0.740 ± 0.002 jk |
2 | Caffeic acid derivative | 1.79 | 299 sh, 324 | 371 | 179 | nd | 0.199 ±0.010 bc |
3 | Caffeic acid derivative | 2.11 | 299 sh, 324 | 371 | 179 | nd | 0.682 ± 0.014 ijk |
4 | Neochlorogenic acid | 2.23 | 299 sh, 324 | 353 | 191 | nd | 4.608 ± 0.110 r |
5 | Caffeic acid derivative | 2.40 | 299 sh, 327 | 297 | 179 | nd | 0.858 ± 0.010 l |
6 | Caffeic acid derivative | 2.58 | 299 sh, 327 | 297 | 179 | nd | 4.878 ± 0.03 s |
7 | 3-O-Coumaroylquinic acid | 2.75 | 310 | 337 | 163, 119 | nd | 0.754 ± 0.007 k |
8 | Chlorogenic acid | 2.85 | 299 sh, 324 | 353 | 191 | 0.661 ± 0.001 f | 3.00 ± 0.062 p |
9 | Cryptochlorogenic acid | 2.98 | 299 sh, 324 | 353 | 191 | nd | 0.717 ± 0.013 ijk |
10 | Caffeic acid * | 3.19 | 299 sh, 324 | 179 | 135 | 0.275 ± 0.001 c | 0.653 ± 0.026 h |
11 | Caffeic acid glucoside | 3.30 | 299 sh, 324 | 341 | 179 | nd | 0.222 ± 0.042 cd |
12 | Caftaric acid | 3.47 | 299 sh, 324 | 311 | 179 | nd | 0.271 ± 0.14 de |
13 | Ferulic acid | 3.61 | 326 | 193 | 161 | nd | 0.827 ± 0.025 l |
15 | Unidentified | 4.39 | 295 | 217 | - | nd | 0.374 ± 0.032 f |
17 | Caffeic acid derivative | 4.70 | 299 sh, 324 | 481 | 179 | 0.089 ± 0.001 ab | 0.675 ± 0.005 ij |
21 | Salvianolic acid B | 5.09 | 282, 338 | 717 | 339 | 0.064 ± 0.01 ab | nd |
25 | Rosmarinic acid * | 5.64 | 329 | 359 | 161 | 2.031 ± 0.11 h | 1.152 ± 0.010 m |
26 | Caffeic acid derivative | 5.72 | 299 sh, 324 | 451 | 179 | nd | 0.153 ± 0.003 b |
29 | Dicaffeoyl quinic acid | 6.37 | 299 sh, 324 | 515 | 353, 179 | nd | 0.077 ± 0.004 a |
31 | Caffeic acid derivative | 6.71 | 299 sh, 324 | 373 | 179 | 0.033 ± 0.007 a | nd |
32 | Caffeic acid derivative | 6.81 | 299 sh, 324 | 373 | 179 | 0.096 ± 0.004 ab | 0.440 ± 0.033 g |
33 | Feruloylquinic acid | 7.10 | 367 | 193 | nd | 0.052 ± 0.004 a | |
Total | 3.249 ± 0.001 | 21.335 ± 0.338 | |||||
Flavonols | |||||||
14 | Quercetin 3-O-xyloside * | 3.90 | 255, 354 | 433 | 301 | nd | 0.191 ± 0.005 bc |
16 | Kaempferol 3-O-sophoroside | 4.47 | 260, 348 | 609 | 285 | nd | 0.299 ± 0.010 e |
19 | Quercetin 3-O-malonylglucoside | 4.93 | 255, 352 | 549 | 505, 301 | 0.131 ± 0.003 b | 1.838 ± 0.034 n |
24 | Kaempferol 3-O-rutinoside * | 5.55 | 264, 348 | 593 | 285 | nd | 0.287 ± 0.005 e |
Total | 0.131 ± 0.003 | 2.424 ± 0.189 | |||||
Flavones | |||||||
18 | Luteolin 7-O-glucoside * | 4.82 | 253, 347 | 447 | 285 | 0.545 ± 0.045 e | nd |
20 | Chrysoeriol rutinoside | 5.00 | 253, 349 | 607 | 299 | 0.091 ± 0.003 ab | 2.846 ± 0.068 o |
22 | Apigenin hexoside | 5.48 | 267, 336 | 431 | 269 | 0.455 ± 0.011 d | nd |
23 | Luteolin 7-O-malonylglucoside | 5.53 | 253, 347 | 533 | 447 | 1.620 ± 0.067 g | nd |
27 | Apigenin acetylhexoside | 6.08 | 266, 336 | 473 | 269 | 0.222 ± 0.004 c | nd |
28 | Apigenin acetylhexoside | 6.21 | 266, 336 | 473 | 269 | 2.927 ± 0.161 i | nd |
30 | Chrysoeriol | 6.42 | 253, 349 | 299 | 284 | 0.046 ± 0.002 a | nd |
Total | 5.905 ± 0.279 | 3.037 ± 0.734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawłowska, A.M.; Żurek, N.; Kapusta, I.; De Leo, M.; Braca, A. Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves. Plants 2023, 12, 3221. https://doi.org/10.3390/plants12183221
Pawłowska AM, Żurek N, Kapusta I, De Leo M, Braca A. Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves. Plants. 2023; 12(18):3221. https://doi.org/10.3390/plants12183221
Chicago/Turabian StylePawłowska, Agata Maria, Natalia Żurek, Ireneusz Kapusta, Marinella De Leo, and Alessandra Braca. 2023. "Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves" Plants 12, no. 18: 3221. https://doi.org/10.3390/plants12183221
APA StylePawłowska, A. M., Żurek, N., Kapusta, I., De Leo, M., & Braca, A. (2023). Antioxidant and Antiproliferative Activities of Phenolic Extracts of Eriobotrya japonica (Thunb.) Lindl. Fruits and Leaves. Plants, 12(18), 3221. https://doi.org/10.3390/plants12183221