Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China
Abstract
:1. Introduction
2. Results
2.1. Whole-Plant Dose–Response Assays
2.2. Effect of Malathion Pretreatment on Pyroxsulam Resistance
2.3. Sensitivity to Other Herbicides
2.4. ALS and ACCase Gene Sequencing
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Whole-Plant Dose–Response Assays
4.3. Interaction between Pyroxsulam and Malathion
4.4. Sensitivity to Other Herbicides
4.5. Partial Sequencing of the ALS and ACCase Genes
4.6. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nandula, V.K.; Riechers, D.E.; Ferhatoglu, Y.; Barrett, M.; Duke, S.O.; Dayan, F.E.; Goldberg-Cavalleri, A.; Tetard-Jones, C.; Wortley, D.J.; Onkokesung, N.; et al. Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Sci. 2019, 67, 149–175. [Google Scholar] [CrossRef] [Green Version]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Kupper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 2014, 70, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: http://www.weedscience.com (accessed on 5 May 2022).
- Powles, S.B.; Yu, Q. Evolution in Action: Plants Resistant to Herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [Green Version]
- Tranel, P.J.; Wright, T.R.; Heap, I.M. Mutations in Herbicide-Resistant Weeds to ALS Inhibitors. Available online: https://www.weedscience.org/mutations/mutationdisplayall.aspx (accessed on 5 May 2022).
- Huang, Z.F.; Huang, H.J.; Chen, J.Y.; Chen, J.C.; Wei, S.H.; Zhang, C.X. Nicosulfuron-resistant Amaranthus retroflexus L. in Northeast China. Crop Prot. 2019, 122, 79–83. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef] [Green Version]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar] [CrossRef]
- Dimaano, N.G.; Iwakami, S. Cytochrome P450-mediated herbicide metabolism in plants: Current understanding and prospects. Pest Manag. Sci. 2021, 77, 22–32. [Google Scholar] [CrossRef]
- Christopher, J.T.; Preston, C.; Powles, S.B. Malathion Antagonizes Metabolism-Based Chlorsulfuron Resistance in Lolium rigidum. Pestic. Biochem. Physiol. 1994, 49, 172–182. [Google Scholar] [CrossRef]
- Kreuz, K.; Fonné-Pfister, R. Herbicide-insecticide interaction in maize: Malathion inhibits cytochrome P450-dependent primisulfuron metabolism. Pestic. Biochem. Physiol. 1992, 43, 232–240. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, S.H.; Huang, H.J.; Li, W.Y.; Zhang, C.X.; Huang, Z.F. Target-site mutation and enhanced metabolism confer resistance to thifensulfuron-methyl in a multiple-resistant redroot pigweed (Amaranthus retroflexus) population. Weed Sci. 2021, 69, 161–166. [Google Scholar] [CrossRef]
- Nakka, S.; Thompson, C.R.; Peterson, D.E.; Jugulam, M. Target Site-Based and Non-Target Site Based Resistance to ALS Inhibitors in Palmer Amaranth (Amaranthus palmeri). Weed Sci. 2017, 65, 681–689. [Google Scholar] [CrossRef]
- XingXiang, G.; Jian, L.; YueLi, Z.; Mei, L.; Feng, F. Resistance level, mechanism of Alopecurus myosuroides and control efficacy in wheat field in Shandong province. Sci. Agric. Sin. 2020, 53, 3518–3526. [Google Scholar]
- Délye, C.; Boucansaud, K. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res. 2008, 48, 97–101. [Google Scholar] [CrossRef]
- Huang, Z.F.; Lu, X.T.; Wei, S.H.; Zhang, C.X.; Jiang, C.L.; Li, W.Y.; Saeed, M.; Huang, H.J. The target-site based resistance mechanism of Alopecurus myosuroides Huds. To pyroxsulam. Crop Prot. 2021, 147, 105707. [Google Scholar] [CrossRef]
- Yanniccari, M.; Gigon, R.; Larsen, A. Cytochrome P450 Herbicide Metabolism as the Main Mechanism of Cross-Resistance to ACCase- and ALS-Inhibitors in Lolium spp. Populations from Argentina: A Molecular Approach in Characterization and Detection. Front. Plant Sci. 2020, 11, 600301. [Google Scholar] [CrossRef]
- Wang, J.J.; Chen, J.C.; Li, X.J.; Cui, H.L. RNA-Seq transcriptome analysis to identify candidate genes involved in non -target site-based mesosulfuron-methyl resistance in Beckmannia syzigachne. Pestic. Biochem. Physiol. 2021, 171, 104738. [Google Scholar] [CrossRef]
- Han, H.P.; Yu, Q.; Beffa, R.; Gonzalez, S.; Maiwald, F.; Wang, J.; Powles, S.B. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 2021, 105, 79–92. [Google Scholar] [CrossRef]
- Takano, H.K.; Melo, M.S.C.; Ovejero, R.F.L.; Westra, P.H.; Gaines, T.A.; Dayan, F.E. Trp2027Cys mutation evolves in Digitaria insularis with cross-resistance to ACCase inhibitors. Pestic. Biochem. Physiol. 2020, 164, 1–6. [Google Scholar] [CrossRef]
- Barrantes-Santamaria, W.; Castillo-Matamoros, R.; Herrera-Murillo, F.; Brenes-Angulo, A.; Gomez-Alpizar, L. Detection of the Trp-2027-Cys Mutation in Fluazifop-P-Butyl-Resistant Itchgrass (Rottboellia cochinchinensis) Using High-Resolution Melting Analysis (HRMA). Weed Sci. 2018, 66, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.; Bay, G.; Pernin, F.; Délye, C. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass (Alopecurus myosuroides Huds.) in France. Pest Manag. Sci. 2010, 66, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Papapanagiotou, A.P.; Paresidou, M.I.; Kaloumenos, N.S.; Eleftherohorinos, I.G. ACCase mutations in Avena sterilis populations and their impact on plant fitness. Pestic. Biochem. Physiol. 2015, 123, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Kaundun, S.S. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. Pest Manag. Sci. 2014, 70, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.A.; Zhu, B.L.; Zhao, N.; Zhao, K.P.; Wang, H.Z.; Liu, W.T.; Wang, J.X. Resistance of Alopecurus myosuroides in wheat against fenoxaprop-P-ethyl. Chin. J. Pestic. Sci. 2020, 22, 82–87. [Google Scholar]
Treatment | TJ43 Population | AH93 Population | RI c | ||
---|---|---|---|---|---|
GR50 a (g ai ha−1) (SE) b | p | GR50 (g ai ha−1) (SE) | p | ||
Pyroxsulam | 7.22 (1.2) | 0.0005 | 30.41 (2.5) | 0.0012 | 4.2 a |
Pyroxsulam + Malathion | 6.83 (0.8) | 0.0008 | 15.03 (1.9) | 0.0026 | 2.2 b |
Population | Plant Survival Rate at 1×, 2× and 4× the Recommended Dose (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mesosulfuron-Methyl (× = 13.5 g ai ha−1) | Pinoxaden (× = 60 g ai ha−1) | Cypyrafluone (× = 180 g ai ha−1) | |||||||
1× | 2× | 4× | 1× | 2× | 4× | 1× | 2× | 4× | |
TJ43 | 0 | 0 | 0 | 0 | 0 | 0 | 40.6 | 0 | 0 |
AH93 | 100 | 100 | 100 | 100 | 100 | 100 | 43.8 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, Y.; Sun, Y.; Liu, Z.; Wei, S.; Huang, H.; Cao, Y.; Li, W.; Huang, Z. Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China. Plants 2022, 11, 1645. https://doi.org/10.3390/plants11131645
Lan Y, Sun Y, Liu Z, Wei S, Huang H, Cao Y, Li W, Huang Z. Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China. Plants. 2022; 11(13):1645. https://doi.org/10.3390/plants11131645
Chicago/Turabian StyleLan, Yuning, Ying Sun, Zhen Liu, Shouhui Wei, Hongjuan Huang, Yi Cao, Wenyu Li, and Zhaofeng Huang. 2022. "Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China" Plants 11, no. 13: 1645. https://doi.org/10.3390/plants11131645
APA StyleLan, Y., Sun, Y., Liu, Z., Wei, S., Huang, H., Cao, Y., Li, W., & Huang, Z. (2022). Mechanism of Resistance to Pyroxsulam in Multiple-Resistant Alopecurus myosuroides from China. Plants, 11(13), 1645. https://doi.org/10.3390/plants11131645