Different Growth and Sporulation Responses to Temperature Gradient among Obligate Apomictic Strains of Ulva prolifera
Abstract
:1. Introduction
2. Results
2.1. Molecular Analysis
2.2. Growth Rate and Sporulation at Different Temperatures
2.3. Carbon and Nitrogen Content at Different Temperatures
3. Discussion
4. Materials and Methods
4.1. Collection and Stock Maintenance of Thalli
4.2. Molecular Analysis
4.3. Growth Rate at Different Temperatures
4.4. Sporulation at Different Temperatures
4.5. Carbon and Nitrogen Contents at Different Temperatures
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fjeld, A.; Lovlie, A. Genetics of multicellular marine algae. In The Genetics of Algae; Lewin, R.A., Ed.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 219–235. [Google Scholar]
- van den Hoek, C.; Mann, D.G.; Jahns, H.M. Algae. An Introduction to Phycology; Cambridge University Press: Cambridge, UK, 1995; pp. 391–408. [Google Scholar]
- Hiraoka, M.; Higa, M. Novel distribution pattern between coexisting sexual and obligate asexual variants of the true estuarine macroalga Ulva prolifera. Ecol. Evol. 2016, 6, 3658–3671. [Google Scholar] [CrossRef]
- Bliding, C. Über. Enteromorpha intestinalis und compressa. Bot. Not. 1948, 2, 123–136. [Google Scholar]
- Bliding, C. A critical survey of European taxa in Ulvales. Part, I. Capsosiphon, Percursaria, Blidingia, Enteromorpha. Opera Botan. 1963, 8, 1–160. [Google Scholar]
- Hiraoka, M.; Dan, A.; Shimada, S.; Hagihira, M.; Migita, M.; Ohno, M. Different life histories of Enteromorpha prolifera (Ulvales, Chlorophyta) from four rivers on Shikoku Island, Japan. Phycologia 2003, 42, 275–284. [Google Scholar] [CrossRef]
- Hiraoka, M.; Shimada, S.; Ohno, M.; Serisawa, Y. Asexual life history by quadriflagellate swarmers of Ulva spinulosa (Ulvales, Ulvophyceae). Phycol. Res. 2003, 51, 29–34. [Google Scholar] [CrossRef]
- Ichihara, K.; Yamazaki, T.; Miyamura, S.; Hiraoka, M.; Kawano, S. Asexual thalli originated from sporophytic thalli via apomeiosis in the green seaweed Ulva. Sci. Rep. 2019, 9, 13523. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Ohki, K.; Kamiya, M. High heterozygosity and phenotypic variation of zoids in apomictic Ulva prolifera (Ulvophyceae) from brackish environments. Aquat. Bot. 2014, 120, 185–192. [Google Scholar] [CrossRef]
- Miyashita, A. Marine Algae as Food; Hosei Daigaku Shuppankyoku: Tokyo, Japan, 1974; p. 315. Available online: http://pi.lib.uchicago.edu/1001/cat/bib/5151556 (accessed on 15 September 2021).
- Dan, A.; Ohno, M.; Matsuoka, M. Cultivation of the green alga Enteromorpha prolifera using chopped tissue for artificial seedling. Aquac. Sci. 1997, 45, 5–8, (In Japanese with English Abstract). [Google Scholar]
- Pandey, R.S.; Ohno, M. An ecological study of cultivated Enteromorpha. Usa Mar. Biol. Inst. Kochi Univ. 1985, 7, 21–31. [Google Scholar]
- Hiraoka, M.; Oka, N. Tank cultivation of Ulva prolifera in deep seawater using a new “germling cluster” method. J. Appl. Phycol. 2008, 20, 97–102. [Google Scholar] [CrossRef]
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Bass, A.M.; de Nys, R. Algal biochar–production and properties. Biores. Tech. 2011, 102, 1886–1891. [Google Scholar] [CrossRef]
- Mata, L.; Magnusson, M.; Paul, N.A.; de Nys, R. The intensive land-based production of the green seaweeds Derbesia tenuissima and Ulva ohnoi: Biomass and bioproducts. J. Appl. Phycol. 2016, 28, 365–375. [Google Scholar] [CrossRef]
- Lawton, R.J.; Sutherland, J.E.; Glasson, C.R.K.; Magnusson, M.E. Selection of temperate Ulva species and cultivars for land-based cultivation and biomass applications. Algal. Res. 2021, 56, 102320. [Google Scholar] [CrossRef]
- Sato, Y. Cultivation of seaweed in land based tank system in Japan. Agric. Biotechnol. 2021, 5, 44–47. (In Japanese) [Google Scholar]
- Lawton, R.J.; Mata, L.; de Nys, R.; Paul, N.A. Algal bioremediation of waste waters from land-based aquaculture using Ulva: Selecting target species and strains. PLoS ONE 2013, 8, e77344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fort, A.; Mannion, C.; Fariñas-Franco, K.M.; Sulpice, R. Green tides select for fast expanding Ulva strains. Sci. Total Environ. 2020, 698, 134337. [Google Scholar] [CrossRef]
- Fort, A.; Lebrault, M.; Allaire, M.; Esteves-Ferreira, A.A.; McHale, M.; Lopez, F.; Fariñas-Franco, J.M.; Alseekh, S.; Fernie, A.R.; Sulpice, R. Extensive variations in diurnal growth patterns and metabolism among Ulva spp. Strains. Plant Physiol. 2019, 180, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, M.; Kinoshita, Y.; Higa, M.; Tsubaki, S.; Monotilla, A.P.; Onda, A.; Dan, A. Fourfold daily growth rate in multicellular marine alga Ulva meridionalis. Sci. Rep. 2020, 10, 12606. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M.; Dan, A.; Hagihira, M.; Ohno, M. Growth and maturity of clonal thalli in Enteromorpha prolifera under different temperature conditions. Nippon Suisan Gakkaishi 1999, 62, 302–303. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zhang, X.; Gao, C.; Jiang, M.; Li, R.; Wang, Z.; Li, Y.; Fan, S.; Zhang, X. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanol. Sin. 2016, 35, 114–121. [Google Scholar] [CrossRef]
- Shimada, S.; Yokoyama, N.; Arai, S.; Hiraoka, M. Phylogeography of genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J. Appl. Phycol. 2008, 20, 979–989. [Google Scholar] [CrossRef]
- Wu, H.; Gao, G.; Zhong, Z.; Li, X.; Xu, J. Physiological acclimation of the green tidal alga Ulva prolifera to a fast-changing environment. Mar. Environ. Res. 2018, 137, 1–7. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; He, P.; Wang, Z.; Shi, Y.; Wang, Y. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Nigi, G.; Kinoshita, I.; Hiraoka, M.; Azuma, K. The effect of fluctuation in nutrients on the thallus length and pigment content of Ulva prolifera in the Shimanto River estuary. Jpn. J. Phycol. 2018, 66, 7–16. [Google Scholar]
- Raven, J.A.; Geider, R.J. Temperature and algal growth. New Phytol. 1988, 110, 441–461. [Google Scholar] [CrossRef]
- Valiela, I.; McClelland, J.; Hauxwell, J.; Behr, P.J.; Herch, D.; Foreman, K. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 1997, 42, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Y.; Chen, J.; Lie, F.; Jiao, N. Nitrogen uptake and assimilation preferences of the main green tide alga Ulva prolifera in the Yellow Sea, China. J. Appl. Phycol. 2019, 31, 625–635. [Google Scholar] [CrossRef]
- Andersen, R.A.; Berges, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for freshwater and seawater media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier Academic Press: Cambridge, UK, 2005; pp. 429–538. [Google Scholar]
- Dan, A.; Hiraoka, M.; Ohno, M. On the induction of reproductive cell formation in the green alga, Enteromorpha prolifera: Relationship of temperature and size of tissue disk. Aquacult. Sci. 1998, 46, 503–508, (In Japanese with English Abstract). [Google Scholar]
River | City or Town, Prefecture or Subprefecture | Strain No. | Latitude and Longitude |
---|---|---|---|
Oboro | Akkeshi, Kushiro | 1 | 43°04′33.7″ N, 144°50′16.6″ E |
Sekiguchi | Yamada, Iwate | 2 | 39°28′28.5″ N, 141°57′03.3″ E |
Orikasa | Yamada, Iwate | 3 | 39°26′57.4″ N, 141°57′43.5″ E |
Sakari | Ofunato, Iwate | 4 | 39°04′50.0″ N, 141°43′10.0″ E |
Natori | Natori, Miyagi | 5 | 38°10′49.6″ N, 140°56′51.7″ E |
Takeshima | Shimanto, Kochi | 6 | 32°57′44.5″ N, 132°58′34.0″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, Y.; Kinoshita, Y.; Mogamiya, M.; Inomata, E.; Hoshino, M.; Hiraoka, M. Different Growth and Sporulation Responses to Temperature Gradient among Obligate Apomictic Strains of Ulva prolifera. Plants 2021, 10, 2256. https://doi.org/10.3390/plants10112256
Sato Y, Kinoshita Y, Mogamiya M, Inomata E, Hoshino M, Hiraoka M. Different Growth and Sporulation Responses to Temperature Gradient among Obligate Apomictic Strains of Ulva prolifera. Plants. 2021; 10(11):2256. https://doi.org/10.3390/plants10112256
Chicago/Turabian StyleSato, Yoichi, Yutaro Kinoshita, Miho Mogamiya, Eri Inomata, Masakazu Hoshino, and Masanori Hiraoka. 2021. "Different Growth and Sporulation Responses to Temperature Gradient among Obligate Apomictic Strains of Ulva prolifera" Plants 10, no. 11: 2256. https://doi.org/10.3390/plants10112256
APA StyleSato, Y., Kinoshita, Y., Mogamiya, M., Inomata, E., Hoshino, M., & Hiraoka, M. (2021). Different Growth and Sporulation Responses to Temperature Gradient among Obligate Apomictic Strains of Ulva prolifera. Plants, 10(11), 2256. https://doi.org/10.3390/plants10112256