A Comparative Study about Vertical Accuracy of Four Freely Available Digital Elevation Models: A Case Study in the Balsas River Watershed, Brazil †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Uysal, M.; Toprak, A.S.; Polat, N. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 2015, 73, 539–543. [Google Scholar] [CrossRef]
- Moura, L.Z.; Bias, E.d.S.; Brites, R. Avaliação da acurácia vertical de modelos digitais de elevação (MDEs) nas bacias do Paranoá e São Bartolomeu. Rev. Bras. Cartogr. 2014, 66, 1–14. [Google Scholar]
- Polidori, L.; El Hage, M.; Valeriano, M.D.M. Digital elevation model validation with no ground control: Application to the topodata DEM in Brazil. Bol. Ciências Geodésicas 2014, 20, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Mesa-Mingorance, J.L.; Ariza-López, F.J. Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades. Remote Sens. 2020, 12, 2630. [Google Scholar] [CrossRef]
- Brazil. Decreto n° 89.817 de 20 de Junho. 1984, Presidência da República—Casa Civil—Subchefia para Assuntos Jurídicos. Available online: https://www2.camara.leg.br/legin/fed/decret/1980-1987/decreto-89817-20-junho-1984-439814-publicacaooriginal-1-pe.html (accessed on 23 December 2021).
- Brazil. Norma da Especificação Técnica para Aquisição de Dados Geoespaciais Vetoriais de Defesa da Força Terrestre. 2016, Diretoria de Serviço Geográfico (DSG)—Geoportal do Exército Brasileiro. Available online: https://docs.ufpr.br/~deni_ern/CD2020/A1/ET_ADGV_2a_Edicao_2016_Textual_Anexo_A_Assinado.pdf(accessed on 23 December 2021).
- Hu, Z.; Peng, J.; Hou, Y.; Shan, J. Evaluation of recently released open global digital elevation models of Hubei, China. Remote Sens. 2017, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.O.; Thaker, T.; Chaurasia, A.; Patel, P.; Singh, A.K. Vertical accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3. 1 of 30-m resolution with dual frequency GNSS for lower Tapi Basin India. Geocarto Int. 2018, 33, 1237–1256. [Google Scholar] [CrossRef]
- Mouratidis, A.; Ampatzidis, D. European digital elevation model validation against extensive global navigation satellite systems data and comparison with SRTM DEM and ASTER GDEM in Central Macedonia (Greece). ISPRS Int. J. Geo-Inf. 2019, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Varga, M.; Bašić, T. Accuracy validation and comparison of global digital elevation models over Croatia. Int. J. Remote Sens. 2015, 36, 170–189. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Brazil. Secretaria do Planejamento e da Modernização da Gestão Pública (SEPLAN). Superintendência de Pesquisa e Zoneamento Ecológico Econômico. Diretoria de Zoneamento Ecológico-Econômico. In Atlas do Tocantins: Subsídios ao Planejamento da Gestão Territorial. 2012. Available online: http://zoneamento.sefaz.to.gov.br/TO_AtlasTocantins2012_1/Atlas_do_Tocantins_2012.pdf (accessed on 16 July 2020).
- IBGE. Reajustamento da Rede Altimétrica com Números Geopotenciais, 2nd ed.; Instituto Brasileiro de Geografia e Estatística—Coordenação de Geodésia: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- JAXA. Japan Aerospace Exploration Agency. Advanced Land Observing Satellite “DAICHI” (ALOS). Available online: https://global.jaxa.jp/projects/sat/alos/ (accessed on 16 July 2020).
- JAXA. Japan Aerospace Exploration Agency. About ALOS: Overview and Objectives. Available online: https://www.eorc.jaxa.jp/ALOS/en/about/about_index.htm (accessed on 16 July 2020).
- Laurencelle, J.; Logan, T.; Gens, R. ASF Radiometrically Terrain Corrected ALOS PALSAR Products. ASF-Alaska Satell. Facil. 2015, 1, 12. [Google Scholar]
- Gens, R. ASF Radiometric Terrain Corrected Products: Algorithm Theoretical Basis Document; Alaska Satellite Facility: Fairbanks, AK, USA, 2015. [Google Scholar]
- NASA. National Aeronautics and Space Administration. Shuttle Radar Topography Mission. Available online: https://www2.jpl.nasa.gov/srtm/index.html (accessed on 16 July 2020).
- Valeriano, M.D.M.; Rossetti, D.D.F. Topodata: Brazilian full coverage refinement of SRTM data. Appl. Geogr. 2012, 32, 300–309. [Google Scholar] [CrossRef]
- Valeriano, M.D.M. Topodata: Guia para Utilização de Dados Geomorfológicos Locais. São José dos Campos: Instituto Nacional de Pesquisas Espa-ciais—INPE. Product Guide, 2008. Available online: http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m18@80/2008/07.11.19.24/doc/publicacao.pdf (accessed on 16 July 2020).
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 p. Available online: https://doi.org/10.5066/F7J38R2N (accessed on 16 July 2020).
- Athmania, D.A.A.H. External validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 free access digital elevation models (DEMs) in Tunisia and Algeria. Remote Sens. 2014, 6, 4600–4620. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Joseph, S.; Thrivikramji, K.; Arunkumar, K. Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India. Geosci. Front. 2014, 5, 893–909. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Ficklin, D.L.; Dixon, B.; Yusop, Z.; Chaplot, V. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl. Geogr. 2015, 63, 357–368. [Google Scholar] [CrossRef]
- Thomas, J.; Prasannakumar, V.; Vineetha, P. Suitability of spaceborne digital elevation models of different scales in topographic analysis: An example from Kerala, India. Environ. Earth Sci. 2015, 73, 1245–1263. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. Data Descriptor: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Janiec, P.A.G.S. A comparison of two machine learning classification methods for remote sensing predictive modeling of the forest fire in the north-eastern Siberia. Remote Sens. 2020, 12, 4157. [Google Scholar] [CrossRef]
- Pakoksung, K.a.T.M. Effect of DEM sources on distributed hydrological model to results of runoff and inundation area. Modeling Earth Syst. Environ. 2021, 7, 1891–1905. [Google Scholar] [CrossRef]
- IBGE. Instituto Brasileiro de Geografia e Estatística. Modelo de Ondulação Geoidal—MAPGEO2015: Sobre a Publicação. Available online: https://www.ibge.gov.br/geociencias/modelos-digitais-de-superficie/modelos-digitais-de-superficie/10855-modelo-de-ondulacao-geoidal.html?=&t=sobre (accessed on 28 November 2020).
- Iorio, M.M.; Lastoria, G.; Mioto, C.L.; Albrez, E.D.A.; Paranhos Filho, A.C. Avaliação de modelos digitais de elevação extraídos de imagem ALOS/PRISM e comparação com os modelos disponibilizados gratuitamente na web. Geociências (São Paulo) 2012, 31, 650–664. [Google Scholar]
- IBGE. Instituto Brasileiro de Geografia e Estatística. Manual Técnico de Pedologia; Coordenação de Recursos Naturais e Estudos Ambientais: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Lee, C.-W. Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sens. 2019, 11, 999. [Google Scholar] [CrossRef] [Green Version]
- Rabby, Y.W.; Ishtiaque, A.; Rahman, M. Evaluating the Effects of Digital Elevation Models in Landslide Susceptibility Mapping in Rangamati District, Bangladesh. Remote Sens. 2020, 12, 2718. [Google Scholar] [CrossRef]
- Andrades Filho, C.d.O.; Rossetti, D.d.F. Effectiveness of SRTM and ALOS-PALSAR data for identifying morphostructural lineaments in northeastern Brazil. Int. J. Remote Sens. 2012, 33, 1058–1077. [Google Scholar] [CrossRef]
- Mantelli, L.R.; Barbosa, J.M.; Bitencourt, M.D. Assessing ecological risk through automated drainage extraction and watershed delineation. Ecol. Inform. 2011, 6, 325–331. [Google Scholar] [CrossRef]
- Gorokhovich, Y.; Voustianiouk, A. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens. Environ. 2006, 104, 409–415. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.-P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.; Crétaux, J.; Garnier, J. Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. Int. J. Remote Sens. 2015, 36, 465–488. [Google Scholar] [CrossRef]
Dataset | Resolution | Horizontal Unit | Horizontal Datum |
---|---|---|---|
SRTM DTED® 2 | 1 | Arc-second | WGS 84 |
DTED® 1 | 3 | Arc-second | WGS 84 |
CDED1 | 0.75 | Arc-second | NAD 83 |
CDED3 | 3 | Arc-second | NAD 83 |
15-arc-second SPOT 5 Reference3D | 0.00416666 | Decimal degree | WGS 84 |
NED | 0.00027777 | Decimal degree | NAD 83 |
NED—Alaska | 0.00055555 | Decimal degree | NAD 83 |
GEODATA 9-s DEM version 2 | 0.0025 | Decimal degree | GDA 94 |
Greenland satellite radar altimeter DEM | 1,000 | Meter | WGS 84 |
Antarctica satellite radar and laser altimeter DEM | 1,000 | Meter | WGS 84 |
GTOPO30 | 0.00833333 | Decimal degree | WGS 84 |
DEM | Coordinate System | Horizontal Datum | Vertical Reference | Pixel Size | Radiometric Resolution |
---|---|---|---|---|---|
ALOS PALSAR | UTM | WGS 84 | Ellipsoid * | 12.5 m | 16 bits (signed integer) |
GMTED2010 | Geographic | WGS 84 | Geoid (EGM96) | 231 m (7.5 arc-seconds) | 16 bits (signed integer) |
SRTM | Geographic | WGS 84 | Geoid (EGM96) | 30 m (1 arc-second) | 16 bits (signed integer) |
Topodata | Geographic | WGS 84 | Geoid (EGM96) | 30 m (1 arc-second) | 32 bits (floating point) |
ALOS PALSAR | GMTED2010 | SRTM | Topodata | |
---|---|---|---|---|
ME (m) | 12.70 | 13.31 | 12.82 | 12.87 |
MAE (m) | 12.88 | 13.86 | 12.96 | 13.22 |
RMSE (m) | 4.95 | 7.48 | 4.76 | 5.38 |
HE min (m) | −3.58 | −14.22 | −3.21 | −6.17 |
HE max (m) | 22.04 | 39.78 | 20.93 | 23.60 |
Error range (m) | 25.62 | 54.00 | 24.14 | 29.77 |
ALOS PALSAR | GMTED2010 | SRTM | Topodata | |||||
---|---|---|---|---|---|---|---|---|
Slope | Area (Km2) | % | Area (Km2) | % | Area (Km2) | % | Area (Km2) | % |
0 to 3% | 992.55 | 8.04 | 4103.36 | 33.22 | 1776.15 | 14.38 | 2297.57 | 18.60 |
3 to 8% | 5459.72 | 44.20 | 5881.54 | 47.61 | 5155.10 | 41.73 | 5295.32 | 42.87 |
8 to 20% | 3879.34 | 31.41 | 2075.17 | 16.80 | 3579.51 | 28.98 | 3222.54 | 26.09 |
20 to 45% | 1813.29 | 14.68 | 292.36 | 2.37 | 1696.15 | 13.73 | 1454.33 | 11.77 |
45 to 75% | 200.78 | 1.63 | 0.07 | 0.00 | 142.65 | 1.15 | 82.15 | 0.67 |
>75% | 6.83 | 0.06 | 0.00 | 0.00 | 2.94 | 0.02 | 0.59 | 0.00 |
Total | 12,352.50 | 100.00 | 12,352.50 | 100.00 | 12,352.50 | 100.00 | 12,352.50 | 100.00 |
ALOS DEM | |||||
Slope | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
0 to 3% | 13.89 | 13.89 | 3.81 | 0.0004 | 17 |
3 to 8% | 12.94 | 13.21 | 5.03 | 0.0005 | 62 |
>8% | 11.61 | 11.64 | 4.71 | 0.0088 | 26 |
∑ = 105 | |||||
GMTED2010 DEM | |||||
Slope | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
0 to 3% | 12.42 | 13.24 | 6.45 | 0.0000 | 54 |
3 to 8% | 13.19 | 14.59 | 9.10 | 0.0014 | 43 |
>8% | 13.45 | 20.96 | 17.57 | 0.0278 | 8 |
∑ = 105 | |||||
SRTM DEM | |||||
Slope | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
0 to 3% | 14.44 | 14.44 | 2.86 | 0.0005 | 28 |
3 to 8% | 12.43 | 12.52 | 4.86 | 0.0175 | 52 |
>8% | 12.46 | 12.61 | 5.13 | 0.0206 | 25 |
∑ = 105 | |||||
Topodata DEM | |||||
Slope | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
0 to 3% | 14.71 | 14.71 | 2.75 | 0.0250 | 38 |
3 to 8% | 13.01 | 13.29 | 5.13 | 0.0003 | 47 |
>8% | 8.88 | 10.01 | 7.06 | 0.0024 | 20 |
∑ = 105 |
ALOS PALSAR DEM | |||||
Altitude (m) | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
250–350 | 12.10 | 12.10 | 4.21 | 0.0395 | 20 |
350–450 | 13.51 | 13.62 | 4.56 | 0.1384 | 53 |
450–550 | 11.52 | 11.99 | 5.92 | 0.0040 | 25 |
>550 | 13.48 | 13.48 | 2.37 | 0.2223 | 7 |
∑ = 105 | |||||
GMTED2010 DEM | |||||
Altitude (m) | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
250–350 | 11.00 | 14.34 | 11.10 | 0.1037 | 20 |
350–450 | 12.92 | 14.40 | 8.79 | 0.0002 | 53 |
450–550 | 12.58 | 13.36 | 6.52 | 0.0092 | 25 |
>550 | 18.01 | 18.01 | 7.73 | 0.0615 | 7 |
∑ = 105 | |||||
SRTM DEM | |||||
Altitude (m) | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
250–350 | 12.00 | 12.00 | 4.00 | 0.0411 | 20 |
350–450 | 13.72 | 13.78 | 4.45 | 0.0971 | 53 |
450–550 | 11.94 | 12.14 | 5.36 | 0.0002 | 25 |
>550 | 13.86 | 13.86 | 1.91 | 0.3375 | 7 |
∑ = 105 | |||||
Topodata DEM | |||||
Altitude (m) | ME (m) | MAE (m) | RMSE (m) | R2 | Points |
250–350 | 11.45 | 12.03 | 5.46 | 0.0345 | 20 |
350–450 | 13.47 | 13.79 | 5.00 | 0.0870 | 53 |
450–550 | 12.18 | 12.46 | 6.06 | 0.0034 | 25 |
>550 | 14.44 | 14.44 | 2.50 | 0.2060 | 7 |
∑ = 105 |
SCALE | 1:25,000 | 1:50,000 | 1:100,000 | 1:250,000 | ||||
---|---|---|---|---|---|---|---|---|
PEC Class | PEC * (m) | RMSE (m) | PEC * (m) | RMSE (m) | PEC * (m) | RMSE (m) | PEC * (m) | RMSE (m) |
A | 2.70 | 1.67 | 5.50 | 3.33 | 13.70 | 8.33 | 27.00 | 16.67 |
B | 5.00 | 3.33 | 10.00 | 6.66 | 25.00 | 16.66 | 50.00 | 33.33 |
C | 6.00 | 4.00 | 12.00 | 8.00 | 30.00 | 20.00 | 60.00 | 40.00 |
D | 7.50 | 5.00 | 15.00 | 10.00 | 37.50 | 25.00 | 75.00 | 50.00 |
DEM | HE < 15 m | HE < 25 m | |||
---|---|---|---|---|---|
Points | % | Points | % | RMSE (m) | |
ALOS PALSAR | 71 | 67.6 | 105 | 100 | 4.95 |
SRTM | 69 | 65.7 | 105 | 100 | 4.76 |
Topodata | 63 | 60.0 | 105 | 100 | 5.38 |
GMTED2010 | 62 | 59.0 | 101 | 96.2 | 6.54 |
Scale | ALOS PALSAR | GMTED2010 | SRTM | Topodata |
---|---|---|---|---|
1:100,000 | B | B | B | B |
1:250,000 | A | A | A | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, Z.A.; Cabral, P. A Comparative Study about Vertical Accuracy of Four Freely Available Digital Elevation Models: A Case Study in the Balsas River Watershed, Brazil. ISPRS Int. J. Geo-Inf. 2022, 11, 106. https://doi.org/10.3390/ijgi11020106
Ferreira ZA, Cabral P. A Comparative Study about Vertical Accuracy of Four Freely Available Digital Elevation Models: A Case Study in the Balsas River Watershed, Brazil. ISPRS International Journal of Geo-Information. 2022; 11(2):106. https://doi.org/10.3390/ijgi11020106
Chicago/Turabian StyleFerreira, Zuleide Alves, and Pedro Cabral. 2022. "A Comparative Study about Vertical Accuracy of Four Freely Available Digital Elevation Models: A Case Study in the Balsas River Watershed, Brazil" ISPRS International Journal of Geo-Information 11, no. 2: 106. https://doi.org/10.3390/ijgi11020106
APA StyleFerreira, Z. A., & Cabral, P. (2022). A Comparative Study about Vertical Accuracy of Four Freely Available Digital Elevation Models: A Case Study in the Balsas River Watershed, Brazil. ISPRS International Journal of Geo-Information, 11(2), 106. https://doi.org/10.3390/ijgi11020106