Optimizing C-Type Natriuretic Peptide and Receptor Expression Analysis with Droplet Digital™ PCR: Advancing Biomarker Discovery for Brugada Syndrome?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects Enrollment and Plasma Collection
2.2. RNA Extraction, Reverse Transcription, and Droplet Digital™ PCR Workflow
CNP, NPR-B, and NPR-C Expression Analysis by ddPCR
2.3. Statistics
3. Results
3.1. BrS Patient’s Characterization
3.2. Biomolecular Analysis: Droplet Digital PCR Results
4. Discussion
5. Limitations, Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BrS | Brugada syndrome |
ECG | Electrocardiogram |
SCN5A | SCN5A-sodium voltage-gated channel alpha subunit 5 |
CNP | C-type natriuretic peptide |
NPR-B | Natriuretic peptide receptor B or guanylate cyclase receptor B |
NPR-C | Natriuretic peptide receptor C or clearance receptor |
cGMP | Cyclic guanosine monophosphate |
ddPCR | Droplet digital™ PCR |
RNA | Ribonucleic acid |
cDNA | Complementary desoxyribonucleic acid |
References
- Adytia, G.J.; Sutanto, H. Brugada phenocopy vs. Brugada syndrome: Delineating the differences for optimal diagnosis and management. Curr. Probl. Cardiol. 2024, 49, 102566. [Google Scholar] [CrossRef] [PubMed]
- Brugada, P.; Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: A distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 1992, 20, 1391–1396. [Google Scholar] [CrossRef]
- Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Europace 2015, 2015, 1601–8167. [Google Scholar] [CrossRef]
- Lerecouvreux, M.; Carlioz, R.; Le Heuzey, J.; Leenhardt, A.; Probst, V.; Sacher, F. Long-term outcome of Brugada patients selected by ECG review process: Data from the French Brugada Registry (COBRA). Heart Rhythm. Soc. 2009, 11. [Google Scholar]
- Brugada, J.; Campuzano, O.; Arbelo, E.; Sarquella-Brugada, G.; Brugada, R. Present status of Brugada Syndrome: JACC state-of- the-art review. J. Am. Coll. Cardiol. 2018, 72, 1046–1059. [Google Scholar] [CrossRef]
- Ciconte, G.; Monasky, M.M.; Santinelli, V.; Micaglio, E.; Vicedomini, G.; Anastasia, L.; Negro, G.; Borrelli, V.; Giannelli, L.; Santini, F.; et al. Brugada syndrome genetics is associated with phenotype severity. Eur. Heart J. 2020, 42, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- El-Battrawy, I.; Lang, S.; Zhou, X.; Akin, I. Different genotypes of Brugada syndrome may present different clinical phenotypes: Electrophysiology from bench to bedside. Eur. Heart J. 2021, 42, 1270–1272. [Google Scholar] [CrossRef]
- Priori, S.G.; Blomstrom-Lundqvist, C. 2015 European Society of Cardiology guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur. Heart J. 2015, 36, 2757–2759. [Google Scholar] [CrossRef]
- Roomi, S.S.; Ullah, W.; Abbas, H.; Abdullah, H.; Talib, U.; Figueredo, V. Brugada syndrome unmasked by fever: A comprehensive review of literature. J. Community Hosp. Intern. Med. Perspect. 2020, 10, 224–228. [Google Scholar] [CrossRef]
- Bonny, A.; Tonet, J.; Marquez, M.F.; De Sisti, A.; Temfemo, A.; Himbert, C.; Gueffaf, F.; Larrazet, F.; Ditah, I.; Frank, R.; et al. C-reactive protein levels in the Brugada syndrome. Cardiol. Res. Pract. 2011, 2011, 341521. [Google Scholar] [CrossRef]
- Li, A.; Tung, R.; Shivkumar, K.; Bradfield, J.S. Brugada syndrome malignant phenotype associated with acute cardiac inflammation? Heart Rhythm. Case Rep. 2017, 3, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Pedrotty, D.M.; Morley, M.P.; Cappola, T.P. Transcriptomic biomarkers of cardiovascular disease. Prog. Cardiovasc. Dis. 2012, 55, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Murthy, K.S.; Teng, B.Q.; Zhou, H.; Jin, J.G.; Grider, J.R.; Makhlouf, G.M. Gi-1/Gi-2-dependent signaling by single-transmembrane natriuretic peptide clearance receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 278, 974–980. [Google Scholar] [CrossRef]
- Baxter, G.F. The natriuretic peptides. Basic. Res. Cardiol. 2004, 99, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Del Ry, S.; Passino, C.; Emdin, M.; Giannessi, D. C-type natriuretic peptide and heart failure. Pharmacol. Res. 2006, 54, 326–333. [Google Scholar] [CrossRef]
- Del Ry, S. C-type natriuretic peptide: A new cardiac mediator. Peptides 2013, 40, 93–98. [Google Scholar] [CrossRef]
- Del Ry, S.; Cabiati, M.; Clerico, A. Natriuretic peptide system and the heart. Front. Horm. Res. 2014, 43, 134–143. [Google Scholar] [CrossRef]
- Lucas, K.A.; Pitari, G.M.; Kazerounian, S.; Ruiz-Stewart, I.; Park, J.; Schulz, S.; Chepenik, K.P.; Waldman, S.A. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 2000, 52, 375–414. [Google Scholar] [CrossRef]
- He, X.L.; Dukkipati, A.; Garcia, K.C. Structural determinants of natriuretic peptide receptor specificity and degeneracy. J. Mol. Biol. 2006, 361, 698–714. [Google Scholar] [CrossRef]
- Schlossmann, J.; Feil, R.; Hofmann, F. Insights into cGMP signalling derived from cGMP kinase knockout mice. Front. Biosci. 2005, 10, 1279–1289. [Google Scholar] [CrossRef]
- Li, D.; Lu, C.J.; Hao, G.; Wright, H.; Woodward, L.; Liu, K.; Vergari, E.; Surdo, N.C.; Herring, N.; Zaccolo, M.; et al. Efficacy of B-Type natriuretic peptide is coupled to phosphodiesterase 2A in cardiac sympathetic neurons. Hypertension 2015, 66, 190–198. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, Y.; Zhou, M.; Xie, K.; Tang, Y.; Huang, H.; Huang, C. C-type natriuretic peptide suppresses ventricular arrhythmias in rats with acute myocardial ischemia. Peptides 2020, 126, 170238. [Google Scholar] [CrossRef] [PubMed]
- Moghtadaei, M.; Polina, I.; Rose, R.A. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. Prog. Biophys. Mol. Biol. 2016, 120, 37–49. [Google Scholar] [CrossRef]
- Racki, N.; Dreo, T.; Gutierrez-Aguirre, I.; Blejec, A.; Ravnikar, M. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods 2014, 10, 42. [Google Scholar] [CrossRef]
- Devonshire, A.S.; Sanders, R.; Whale, A.S.; Nixon, G.J.; Cowen, S.; Ellison, S.L.; Parkes, H.; Pine, P.S.; Salit, M.; McDaniel, J.; et al. An international comparability study on quantification of mRNA gene expression ratios: CCQM-P103. 1. Biomol. Detect. Quantif. 2016, 8, 15–28. [Google Scholar] [CrossRef]
- Taylor, S.C.; Carbonneau, J.; Shelton, D.N.; Boivin, G. Optimization of Droplet Digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of Oseltamivir-resistant subpopulations. J. Virol. Methods 2015, 224, 58–66. [Google Scholar] [CrossRef]
- Hughesman, C.B.; Lu, X.J.; Liu, K.Y.; Zhu, Y.; Poh, C.F.; Haynes, C. A Robust Protocol for Using Multiplexed Droplet Digital PCR to Quantify Somatic Copy Number Alterations in Clinical Tissue Specimens. PLoS ONE 2016, 11, e0161274. [Google Scholar] [CrossRef]
- Verhaegen, B.; De Reu, K.; De Zutter, L.; Verstraete, K.; Heyndrickx, M.; Van Coillie, E. Comparison of Droplet Digital PCR and qPCR for the Quantification of Shiga Toxin-Producing Escherichia coli in Bovine Feces. Toxins 2016, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.A.; Piacenti, M.; Nesti, M.; Solarino, G.; Pieragnoli, P.; Zucchelli, G.; Del Ry, S.; Cabiati, M.; Vozzi, F. The BrAID study protocol: Integration of machine learning and transcriptomics for brugada syndrome recognition. BMC Cardiovasc. Disord. 2021, 21, 494. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Antzelevitch, C.; Borggrefe, M.; Brugada, J.; Brugada, R.; Brugada, P.; Corrado, D.; Hauer, R.N.; Kass, R.S.; Nademanee, K.; et al. Proposed diagnostic criteria for the Brugada syndrome. Eur. Heart J. 2002, 23, 1648–1654. [Google Scholar] [CrossRef]
- Cabiati, M.; Sabatino, L.; Caruso, R.; Caselli, C.; Prescimone, T.; Giannessi, D.; Del Ry, S. Gene expression of C-type natriuretic peptide and of its specific receptor NPR-B in human leukocytes of healthy and heart failure subjects. Peptides 2012, 37, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Cabiati, M.; Sabatino, L.; Caruso, R.; Verde, A.; Caselli, C.; Prescimone, T.; Giannessi, D.; Del Ry, S. C-type natriuretic peptide transcriptomic profiling increases in human leukocytes of patients with chronic heart failure as a function of clinical severity. Peptides 2013, 47, 110–114. [Google Scholar] [CrossRef]
- Galimberti, S.; Balducci, S.; Guerrini, F.; Del Re, M.; Cacciola, R. Digital Droplet PCR in Hematologic Malignancies: A New Useful Molecular Tool. Diagnostics 2022, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- ISO 20395:2019; Biotechnology—Requirements for Evaluating the Performance of Quantification Methods for Nucleic Acid Target Sequences—qPCR and dPCR. International Organization for Standardization: Geneva, Switzerland, 2019.
- dMIQE Group; Huggett, J.F. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative DigitalPCR Experiments for 2020. Clin. Chem. 2020, 66, 1012–1029, Erratum in Clin. Chem. 2020, 66, 1464. [Google Scholar] [CrossRef]
- Pandey, K.N. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front. Physiol. 2021, 12, 693099. [Google Scholar] [CrossRef]
- Werner, F.; Prentki Santos, E.; Michel, K.; Schrader, H.; Völker, K.; Potapenko, T.; Krebes, L.; Abeßer, M.; Möllmann, D.; Schlattjan, M.; et al. Ablation of C-type natriuretic peptide/cGMP signaling in fibroblasts exacerbates adverse cardiac remodeling in mice. JCI Insight 2023, 8, e160416. [Google Scholar] [CrossRef] [PubMed]
- Moyes, A.J.; Chu, S.M.; Aubdool, A.A.; Dukinfield, M.S.; Margulies, K.B.; Bedi, K.C.; Hodivala-Dilke, K.; Baliga, R.S.; Hobbs, A.J. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur. Heart J. 2020, 41, 1006–1020. [Google Scholar] [CrossRef]
- Soeki, T.; Kishimoto, I.; Okumura, H.; Tokudome, T.; Horio, T.; Mori, K.; Kangawa, K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J. Am. Coll. Cardiol. 2005, 45, 608–616. [Google Scholar] [CrossRef]
- Sangaralingham, S.J.; Huntley, B.K.; Martin, F.L.; McKie, P.M.; Bellavia, D.; Ichiki, T.; Harders, G.E.; Chen, H.H.; Burnett, J.C., Jr. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension 2011, 57, 201–207. [Google Scholar] [CrossRef]
- Iop, L.; Iliceto, S.; Civieri, G.; Tona, F. Inherited and acquired rhythm disturbances in sick sinus syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021, 10, 3175. [Google Scholar] [CrossRef]
- Buttgereit, J.; Shanks, J.; Li, D.; Athwal, A.; Langenickel, T.H.; Wright, H.; da Costa Goncalves, A.C.; Monti, J.; Plehm, R.; Popova, E.; et al. C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovasc. Res. 2016, 112, 637–644. [Google Scholar] [CrossRef] [PubMed]
CONTROLS | BrS PATIENTS | p | |
---|---|---|---|
ANTHROPOMETRIC VARIABLES | |||
Sex, Male | 6/12 | 10/12 | ns |
Age, years | 40.2 ± 4.1 | 49.2 ± 3.8 | ns |
Smoke | 2/12 | 3/12 | ns |
Sex, Male | 6/12 | 10/12 | ns |
METABOLIC VARIABLES | |||
Type 2 diabetes mellitus | 0/12 | 1/12 | ns |
Dyslipidemia | 2/12 | 2/12 | ns |
Weight, kg | 68.1 ± 4.5 | 75.0 ± 5.0 | ns |
Height, cm | 171.4 ± 3.3 | 170.0 ± 3.4 | ns |
Body Mass Index | 22.9 ± 0.7 | 25.8 ± 0.8 | 0.03 |
CLINICAL VARIABLES | |||
Sudden death familiarity | 3/12 | 3/12 | ns |
Family history of BrS | 0/12 | 0/12 | ns |
Positive SCN5A gene mutation | 0/12 | 3/12 | ns |
Pre-syncope episodes | 1/12 | 2/12 | ns |
Hypertension | 0/12 | 5/12 | 0.001 |
Heart rate | 62.3 ± 3.6 | 70.0 ± 8.6 | ns |
Implantable cardioverter-defibrillator | 0/12 | 3/12 | ns |
Tachycardia | 8/12 | 2/12 | 0.05 |
Ventricular extrasystole | 5/12 | 0/12 | 0.006 |
Weight | BMI | Height | |
---|---|---|---|
CNP | p = 0.02; R = 0.63 | p = 0.02; R = 0.63 | ns |
NPR-B | p = 0.03; R = 0.60 | p = 0.05; R = 0.54 | p = 0.05; R = 0.54 |
NPR-C | p = 0.02; R = 0.62 | p = 0.02; R = 0.40 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabiati, M.; Vozzi, F.; Persiani, E.; Piacenti, M.; Rossi, A.; Sgalippa, A.; Cecchettini, A.; Solarino, G.; Zucchelli, G.; Mazzocchetti, L.; et al. Optimizing C-Type Natriuretic Peptide and Receptor Expression Analysis with Droplet Digital™ PCR: Advancing Biomarker Discovery for Brugada Syndrome? Biomolecules 2025, 15, 792. https://doi.org/10.3390/biom15060792
Cabiati M, Vozzi F, Persiani E, Piacenti M, Rossi A, Sgalippa A, Cecchettini A, Solarino G, Zucchelli G, Mazzocchetti L, et al. Optimizing C-Type Natriuretic Peptide and Receptor Expression Analysis with Droplet Digital™ PCR: Advancing Biomarker Discovery for Brugada Syndrome? Biomolecules. 2025; 15(6):792. https://doi.org/10.3390/biom15060792
Chicago/Turabian StyleCabiati, Manuela, Federico Vozzi, Elisa Persiani, Marcello Piacenti, Andrea Rossi, Agnese Sgalippa, Antonella Cecchettini, Gianluca Solarino, Giulio Zucchelli, Lorenzo Mazzocchetti, and et al. 2025. "Optimizing C-Type Natriuretic Peptide and Receptor Expression Analysis with Droplet Digital™ PCR: Advancing Biomarker Discovery for Brugada Syndrome?" Biomolecules 15, no. 6: 792. https://doi.org/10.3390/biom15060792
APA StyleCabiati, M., Vozzi, F., Persiani, E., Piacenti, M., Rossi, A., Sgalippa, A., Cecchettini, A., Solarino, G., Zucchelli, G., Mazzocchetti, L., Notarstefano, P., Guiducci, L., Morales, M. A., & Del Ry, S. (2025). Optimizing C-Type Natriuretic Peptide and Receptor Expression Analysis with Droplet Digital™ PCR: Advancing Biomarker Discovery for Brugada Syndrome? Biomolecules, 15(6), 792. https://doi.org/10.3390/biom15060792