Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets
Abstract
:1. Introduction
2. Metabolic Pathways Linking NNMT to Liver Cancer
2.1. NAD+ Cycle
2.1.1. Association of Reduced NAD+ Levels with Liver Cancer
2.1.2. Possible Mechanisms Linking NAD+ Cycle to Liver Cancer
2.2. Methionine Cycle
2.2.1. Association of Elevated Hcy Levels with Liver Cancer
2.2.2. Possible Mechanisms Linking Methionine Cycle to Liver Cancer
3. NNMT-Mediated Regulation of Proliferation, Invasion, and Drug Resistance in Liver Cancer Cells
3.1. NNMT Promotes the Survival and Proliferation of Liver Cancer Cells
3.2. NNMT Enhances the Invasive and Metastatic Capabilities of Liver Cancer Cells
3.3. NNMT Mediates Drug Resistance in Liver Cancer Cells
4. Roles of NNMT and Liver Cancer Diagnosis, Treatment, and Prognosis
4.1. NNMT in Liver Cancer Diagnosis: A Potential Biomarker
4.2. NNMT in Liver Cancer Treatment: A Promising Therapeutic Target
4.2.1. Pharmacological and Molecular Interventions Targeting NNMT
4.2.2. Exercise Therapy Targeting NNMT: A Non-Pharmacological Approach
4.3. NNMT in Liver Cancer Prognosis: A Prognostic Indicator
5. Future Research Directions and Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular Carcinoma. Nat. Rev. Dis. Primer 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer Statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Coleman, W.B. Mechanisms of Human Hepatocarcinogenesis. Curr. Mol. Med. 2003, 3, 573–588. [Google Scholar] [CrossRef]
- Thorgeirsson, S.S.; Grisham, J.W. Molecular Pathogenesis of Human Hepatocellular Carcinoma. Nat. Genet. 2002, 31, 339–346. [Google Scholar] [CrossRef]
- Horowitz, J.H.; Rypins, E.B.; Henderson, J.M.; Heymsfield, S.B.; Moffitt, S.D.; Bain, R.P.; Chawla, R.K.; Bleier, J.C.; Rudman, D. Evidence for Impairment of Transsulfuration Pathway in Cirrhosis. Gastroenterology 1981, 81, 668–675. [Google Scholar] [CrossRef]
- Duce, A.M.; Ortíz, P.; Cabrero, C.; Mato, J.M. S-Adenosyl-L-Methionine Synthetase and Phospholipid Methyltransferase Are Inhibited in Human Cirrhosis. Hepatology 1988, 8, 65–68. [Google Scholar] [CrossRef]
- Cuomo, R.; Dattilo, M.; Pumpo, R.; Capuano, G.; Boselli, L.; Budillon, G. Nicotinamide Methylation in Patients with Cirrhosis. J. Hepatol. 1994, 20, 138–142. [Google Scholar] [CrossRef]
- Kim, J.; Hong, S.J.; Lim, E.K.; Yu, Y.-S.; Kim, S.W.; Roh, J.H.; Do, I.-G.; Joh, J.-W.; Kim, D.S. Expression of Nicotinamide N-Methyltransferase in Hepatocellular Carcinoma Is Associated with Poor Prognosis. J. Exp. Clin. Cancer Res. CR 2009, 28, 20. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, J.; Wu, W.; Xie, S.; Yu, H.; Li, G.; Zhu, T.; Li, F.; Lu, J.; Wang, G.Y.; et al. Nicotinamide N-Methyltransferase Enhances Chemoresistance in Breast Cancer through SIRT1 Protein Stabilization. Breast Cancer Res. BCR 2019, 21, 64. [Google Scholar] [CrossRef]
- Bi, H.-C.; Pan, Y.-Z.; Qiu, J.-X.; Krausz, K.W.; Li, F.; Johnson, C.H.; Jiang, C.-T.; Gonzalez, F.J.; Yu, A.-M. N-Methylnicotinamide and Nicotinamide N-Methyltransferase Are Associated with microRNA-1291-Altered Pancreatic Carcinoma Cell Metabolome and Suppressed Tumorigenesis. Carcinogenesis 2014, 35, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, H.; Vance, V.; Wetzel, M.D.; Wang, H.-Y.L.; McHardy, S.F.; Finnerty, C.C.; Hommel, J.D.; Watowich, S.J. Selective and Membrane-Permeable Small Molecule Inhibitors of Nicotinamide N-Methyltransferase Reverse High Fat Diet-Induced Obesity in Mice. Biochem. Pharmacol. 2018, 147, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Salvolini, E.; Pompei, V.; Pozzi, V.; Salvucci, A.; Molinelli, E.; Brisigotti, V.; Sartini, D.; Campanati, A.; Offidani, A.; et al. Nicotinamide N-Methyltransferase Gene Silencing Enhances Chemosensitivity of Melanoma Cell Lines. Pigment Cell Melanoma Res. 2021, 34, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.M.; Long, H. Nicotinamide N-Methyltransferase as a Potential Marker for Cancer. Neoplasma 2018, 65, 656–663. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Chen, G.; Sun, F.; Wu, Q.; Huang, Q.; Zeng, D.; Qiu, W.; Wang, J.; Yao, Z.; et al. Nicotinamide Metabolism Face-off between Macrophages and Fibroblasts Manipulates the Microenvironment in Gastric Cancer. Cell Metab. 2024, 36, 1806–1822.e11. [Google Scholar] [CrossRef]
- Roberti, A.; Fernández, A.F.; Fraga, M.F. Nicotinamide N-Methyltransferase: At the Crossroads between Cellular Metabolism and Epigenetic Regulation. Mol. Metab. 2021, 45, 101165. [Google Scholar] [CrossRef]
- Bockwoldt, M.; Houry, D.; Niere, M.; Gossmann, T.I.; Reinartz, I.; Schug, A.; Ziegler, M.; Heiland, I. Identification of Evolutionary and Kinetic Drivers of NAD-Dependent Signaling. Proc. Natl. Acad. Sci. USA 2019, 116, 15957–15966. [Google Scholar] [CrossRef]
- Komatsu, M.; Kanda, T.; Urai, H.; Kurokochi, A.; Kitahama, R.; Shigaki, S.; Ono, T.; Yukioka, H.; Hasegawa, K.; Tokuyama, H.; et al. NNMT Activation Can Contribute to the Development of Fatty Liver Disease by Modulating the NAD+ Metabolism. Sci. Rep. 2018, 8, 8637. [Google Scholar] [CrossRef]
- Sun, W.-D.; Zhu, X.-J.; Li, J.-J.; Mei, Y.-Z.; Li, W.-S.; Li, J.-H. Nicotinamide N-Methyltransferase (NNMT): A Novel Therapeutic Target for Metabolic Syndrome. Front. Pharmacol. 2024, 15, 1410479. [Google Scholar] [CrossRef]
- Liu, A.; Zhu, X.-J.; Sun, W.-D.; Bi, S.-Z.; Zhang, C.-Y.; Lai, S.-Y.; Li, J.-H. Nicotinamide N-Methyltransferase as a Potential Therapeutic Target for Neurodegenerative Disorders: Mechanisms, Challenges, and Future Directions. Exp. Neurol. 2025, 389, 115253. [Google Scholar] [CrossRef]
- Cao, L.; Wu, W.; Deng, X.; Peng, Y.; Chen, Y.; Guo, H.; Wang, L.; Li, X.; Zhang, Z.; Shao, Z. Systematic Pan-Cancer Analysis of the Nicotinamide n-Methyltransferase in Human Cancer. Front. Genet. 2022, 13, 1000515. [Google Scholar] [CrossRef] [PubMed]
- Ulanovskaya, O.A.; Zuhl, A.M.; Cravatt, B.F. NNMT Promotes Epigenetic Remodeling in Cancer by Creating a Metabolic Methylation Sink. Nat. Chem. Biol. 2013, 9, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, R.; Hojo, H.; Takahashi, M.; Kashio, S.; Enya, S.; Nakao, M.; Konishi, R.; Yoda, M.; Harata, A.; Hamanishi, J.; et al. Remote Solid Cancers Rewire Hepatic Nitrogen Metabolism via Host Nicotinamide-N-Methyltransferase. Nat. Commun. 2022, 13, 3346. [Google Scholar] [CrossRef]
- Li, J.-J.; Sun, W.-D.; Zhu, X.-J.; Mei, Y.-Z.; Li, W.-S.; Li, J.-H. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024, 14, 343. [Google Scholar] [CrossRef]
- Navas, L.E.; Carnero, A. NAD+ Metabolism, Stemness, the Immune Response, and Cancer. Signal Transduct. Target. Ther. 2021, 6, 2. [Google Scholar] [CrossRef]
- Mateuszuk, Ł.; Campagna, R.; Kutryb-Zając, B.; Kuś, K.; Słominska, E.M.; Smolenski, R.T.; Chlopicki, S. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem. Pharmacol. 2020, 178, 114019. [Google Scholar] [CrossRef]
- Frederick, D.W.; Loro, E.; Liu, L.; Davila, A.; Chellappa, K.; Silverman, I.M.; Quinn, W.J.; Gosai, S.J.; Tichy, E.D.; Davis, J.G.; et al. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metab. 2016, 24, 269–282. [Google Scholar] [CrossRef]
- Mori, V.; Amici, A.; Mazzola, F.; Stefano, M.D.; Conforti, L.; Magni, G.; Ruggieri, S.; Raffaelli, N.; Orsomando, G. Metabolic Profiling of Alternative NAD Biosynthetic Routes in Mouse Tissues. PLoS ONE 2014, 9, e113939. [Google Scholar] [CrossRef]
- Collins, P.B.; Chaykin, S. The Management of Nicotinamide and Nicotinic Acid in the Mouse. J. Biol. Chem. 1972, 247, 778–783. [Google Scholar] [CrossRef]
- Revollo, J.R.; Grimm, A.A.; Imai, S. The Regulation of Nicotinamide Adenine Dinucleotide Biosynthesis by Nampt/PBEF/Visfatin in Mammals. Curr. Opin. Gastroenterol. 2007, 23, 164. [Google Scholar] [CrossRef]
- Pissios, P. Nicotinamide N-Methyltransferase: More than a Vitamin B3 Clearance Enzyme. Trends Endocrinol. Metab. TEM 2017, 28, 340–353. [Google Scholar] [CrossRef]
- Guo, C.; Huang, Q.; Wang, Y.; Yao, Y.; Li, J.; Chen, J.; Wu, M.; Zhang, Z.; E, M.; Qi, H.; et al. Therapeutic Application of Natural Products: NAD+ Metabolism as Potential Target. Phytomedicine Int. J. Phytother. Phytopharm. 2023, 114, 154768. [Google Scholar] [CrossRef] [PubMed]
- Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ Metabolism in Health and Disease. Trends Biochem. Sci. 2007, 32, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kraus, D.; Yang, Q.; Kong, D.; Banks, A.S.; Zhang, L.; Rodgers, J.T.; Pirinen, E.; Pulinilkunnil, T.C.; Gong, F.; Wang, Y.; et al. Nicotinamide N-Methyltransferase Knockdown Protects against Diet-Induced Obesity. Nature 2014, 508, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Bai, L.; Wang, D.; Ding, W.; Cao, Z.; Yan, P.; Li, Y.; Xi, L.; Wang, Y.; Zheng, X.; et al. SIRT3-Dependent Delactylation of Cyclin E2 Prevents Hepatocellular Carcinoma Growth. EMBO Rep. 2023, 24, e56052. [Google Scholar] [CrossRef]
- Eckert, M.A.; Coscia, F.; Chryplewicz, A.; Chang, J.W.; Hernandez, K.M.; Pan, S.; Tienda, S.M.; Nahotko, D.A.; Li, G.; Blaženović, I.; et al. Proteomics Reveals NNMT as a Master Metabolic Regulator of Cancer-Associated Fibroblasts. Nature 2019, 569, 723–728. [Google Scholar] [CrossRef]
- Guillot, B.; Lecomte, C.; Cousson, A.; Scherf, C.; Jelsch, C. High-Resolution Neutron Structure of Nicotinamide Adenine Dinucleotide. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 981–989. [Google Scholar] [CrossRef]
- Rajman, L.; Chwalek, K.; Sinclair, D.A. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metab. 2018, 27, 529–547. [Google Scholar] [CrossRef]
- Chen, H.; Wu, D.; Bao, L.; Yin, T.; Lei, D.; Yu, J.; Tong, X. 6PGD Inhibition Sensitizes Hepatocellular Carcinoma to Chemotherapy via AMPK Activation and Metabolic Reprogramming. Biomed. Pharmacother. 2019, 111, 1353–1358. [Google Scholar] [CrossRef]
- Ehebauer, F.; Ghavampour, S.; Kraus, D. Glucose Availability Regulates Nicotinamide N-Methyltransferase Expression in Adipocytes. Life Sci. 2020, 248, 117474. [Google Scholar] [CrossRef]
- Li, Z.; Sun, C.; Qin, Z. Metabolic Reprogramming of Cancer-Associated Fibroblasts and Its Effect on Cancer Cell Reprogramming. Theranostics 2021, 11, 8322–8336. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.d.V.; Hamraz, M.; Abolhassani, M.; Bigan, E.; Pérès, S.; Paulevé, L.; Nogueira, M.L.; Steyaert, J.-M.; Schwartz, L. The Redox Status of Cancer Cells Supports Mechanisms behind the Warburg Effect. Metabolites 2016, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.H.; Lee, J.S.; Ma, C.; Diggs, L.P.; Heinrich, S.; Chang, C.W.; Ma, L.; Forgues, M.; Budhu, A.; Chaisaingmongkol, J.; et al. Tumor Methionine Metabolism Drives T-Cell Exhaustion in Hepatocellular Carcinoma. Nat. Commun. 2021, 12, 1455. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in Cancer Research and Emerging Applications in Clinical Oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
- Lin, J.; Rao, D.; Zhang, M.; Gao, Q. Metabolic Reprogramming in the Tumor Microenvironment of Liver Cancer. J. Hematol. Oncol.J Hematol Oncol 2024, 17, 6. [Google Scholar] [CrossRef]
- Zhu, X.; Xuan, Z.; Chen, J.; Li, Z.; Zheng, S.; Song, P. How DNA Methylation Affects the Warburg Effect. Int. J. Biol. Sci. 2020, 16, 2029–2041. [Google Scholar] [CrossRef]
- Lam, Y.K.; Yu, J.; Huang, H.; Ding, X.; Wong, A.M.; Leung, H.H.; Chan, A.W.; Ng, K.K.; Xu, M.; Wang, X.; et al. TP53 R249S Mutation in Hepatic Organoids Captures the Predisposing Cancer Risk. Hepatol. Baltim. Md 2023, 78, 727–740. [Google Scholar] [CrossRef]
- Pinyol, R.; Tovar, V.; Llovet, J.M. TERT Promoter Mutations: Gatekeeper and Driver of Hepatocellular Carcinoma. J. Hepatol. 2014, 61, 685–687. [Google Scholar] [CrossRef]
- Zou, G.; Park, J.-I. Wnt Signaling in Liver Regeneration, Disease, and Cancer. Clin. Mol. Hepatol. 2023, 29, 33–50. [Google Scholar] [CrossRef]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for Hepatocellular Carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J.R.; Sabatini, D.M. Cancer Cell Metabolism: One Hallmark, Many Faces. Cancer Discov. 2012, 2, 881–898. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab. 2008, 7, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Cantó, C.; Menzies, K.J.; Auwerx, J. NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22, 31–53. [Google Scholar] [CrossRef]
- Estep, P.W.; Warner, J.B.; Bulyk, M.L. Short-Term Calorie Restriction in Male Mice Feminizes Gene Expression and Alters Key Regulators of Conserved Aging Regulatory Pathways. PLoS ONE 2009, 4, e5242. [Google Scholar] [CrossRef]
- Ye, X.; Li, M.; Hou, T.; Gao, T.; Zhu, W.; Yang, Y. Sirtuins in Glucose and Lipid Metabolism. Oncotarget 2016, 8, 1845–1859. [Google Scholar] [CrossRef]
- Hong, S.; Moreno-Navarrete, J.M.; Wei, X.; Kikukawa, Y.; Tzameli, I.; Prasad, D.; Lee, Y.; Asara, J.M.; Fernandez-Real, J.M.; Maratos-Flier, E.; et al. Nicotinamide N-Methyltransferase Regulates Hepatic Nutrient Metabolism through Sirt1 Protein Stabilization. Nat. Med. 2015, 21, 887–894. [Google Scholar] [CrossRef]
- Varghese, B.; Chianese, U.; Capasso, L.; Sian, V.; Bontempo, P.; Conte, M.; Benedetti, R.; Altucci, L.; Carafa, V.; Nebbioso, A. SIRT1 Activation Promotes Energy Homeostasis and Reprograms Liver Cancer Metabolism. J. Transl. Med. 2023, 21, 627. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Y.; Huang, Q.; Tang, K. SIRT6 Regulates the Proliferation and Apoptosis of Hepatocellular Carcinoma via the ERK1/2 Signaling Pathway. Mol. Med. Rep. 2019, 20, 1575–1582. [Google Scholar] [CrossRef]
- Braidy, N.; Berg, J.; Clement, J.; Khorshidi, F.; Poljak, A.; Jayasena, T.; Grant, R.; Sachdev, P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid. Redox Signal. 2019, 30, 251–294. [Google Scholar] [CrossRef]
- Wang, L.; Liang, C.; Li, F.; Guan, D.; Wu, X.; Fu, X.; Lu, A.; Zhang, G. PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs. Int. J. Mol. Sci. 2017, 18, 2111. [Google Scholar] [CrossRef] [PubMed]
- Summers, D.W.; Gibson, D.A.; DiAntonio, A.; Milbrandt, J. SARM1-Specific Motifs in the TIR Domain Enable NAD+ Loss and Regulate Injury-Induced SARM1 Activation. Proc. Natl. Acad. Sci. USA 2016, 113, E6271–E6280. [Google Scholar] [CrossRef] [PubMed]
- Essuman, K.; Summers, D.W.; Sasaki, Y.; Mao, X.; DiAntonio, A.; Milbrandt, J. The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD+ Cleavage Activity That Promotes Pathological Axonal Degeneration. Neuron 2017, 93, 1334–1343.e5. [Google Scholar] [CrossRef]
- Saldeen, J.; Welsh, N. Nicotinamide-Induced Apoptosis in Insulin Producing Cells Is Associated with Cleavage of Poly(ADP-Ribose) Polymerase. Mol. Cell. Endocrinol. 1998, 139, 99–107. [Google Scholar] [CrossRef]
- Yang, X.-D.; Kong, F.-E.; Qi, L.; Lin, J.-X.; Yan, Q.; Loong, J.H.C.; Xi, S.-Y.; Zhao, Y.; Zhang, Y.; Yuan, Y.-F.; et al. PARP Inhibitor Olaparib Overcomes Sorafenib Resistance through Reshaping the Pluripotent Transcriptome in Hepatocellular Carcinoma. Mol. Cancer 2021, 20, 20. [Google Scholar] [CrossRef]
- Xia, S.; Pan, Y.; Liang, Y.; Xu, J.; Cai, X. The Microenvironmental and Metabolic Aspects of Sorafenib Resistance in Hepatocellular Carcinoma. EBioMedicine 2020, 51, 102610. [Google Scholar] [CrossRef]
- Bai, P.; Cantó, C.; Oudart, H.; Brunyánszki, A.; Cen, Y.; Thomas, C.; Yamamoto, H.; Huber, A.; Kiss, B.; Houtkooper, R.H.; et al. PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metab. 2011, 13, 461–468. [Google Scholar] [CrossRef]
- Pirinen, E.; Cantó, C.; Jo, Y.S.; Morato, L.; Zhang, H.; Menzies, K.J.; Williams, E.G.; Mouchiroud, L.; Moullan, N.; Hagberg, C.; et al. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metab. 2014, 19, 1034–1041. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 119–141. [Google Scholar] [CrossRef]
- Chini, E.N.; Chini, C.C.S.; Espindola Netto, J.M.; de Oliveira, G.C.; van Schooten, W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol. Sci. 2018, 39, 424–436. [Google Scholar] [CrossRef]
- Aksoy, P.; White, T.A.; Thompson, M.; Chini, E.N. Regulation of Intracellular Levels of NAD: A Novel Role for CD38. Biochem. Biophys. Res. Commun. 2006, 345, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C. Cyclic ADP-Ribose and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) as Messengers for Calcium Mobilization. J. Biol. Chem. 2012, 287, 31633–31640. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liang, L.; Liao, Q.; Li, Y.; Zhou, Y. CD38: An Important Regulator of T Cell Function. Biomed. Pharmacother. 2022, 153, 113395. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ke, H. Overcoming the Resistance of Hepatocellular Carcinoma to PD-1/PD-L1 Inhibitor and the Resultant Immunosuppression by CD38 siRNA-Loaded Extracellular Vesicles. Oncoimmunology 2023, 12, 2152635. [Google Scholar] [CrossRef]
- Lo Buono, N.; Morone, S.; Giacomino, A.; Parrotta, R.; Ferrero, E.; Malavasi, F.; Ortolan, E.; Funaro, A. CD157 at the Intersection between Leukocyte Trafficking and Epithelial Ovarian Cancer Invasion. Front. Biosci. Landmark Ed. 2014, 19, 366–378. [Google Scholar] [CrossRef]
- Sun, Q.; Shen, M.; Zhu, S.; Liao, Y.; Zhang, D.; Sun, J.; Guo, Z.; Wu, L.; Xiao, L.; Liu, L. Targeting NAD+ Metabolism of Hepatocellular Carcinoma Cells by Lenvatinib Promotes M2 Macrophages Reverse Polarization, Suppressing the HCC Progression. Hepatol. Int. 2023, 17, 1444–1460. [Google Scholar] [CrossRef]
- Figley, M.D.; Gu, W.; Nanson, J.D.; Shi, Y.; Sasaki, Y.; Cunnea, K.; Malde, A.K.; Jia, X.; Luo, Z.; Saikot, F.K.; et al. SARM1 Is a Metabolic Sensor Activated by an Increased NMN/NAD+ Ratio to Trigger Axon Degeneration. Neuron 2021, 109, 1118–1136.e11. [Google Scholar] [CrossRef]
- Gerdts, J.; Brace, E.J.; Sasaki, Y.; DiAntonio, A.; Milbrandt, J. SARM1 Activation Triggers Axon Degeneration Locally via NAD+ Destruction. Science 2015, 348, 453–457. [Google Scholar] [CrossRef]
- Wang, W.; Yang, C.; Wang, T.; Deng, H. Complex Roles of Nicotinamide N-Methyltransferase in Cancer Progression. Cell Death Dis. 2022, 13, 267. [Google Scholar] [CrossRef]
- Souto, J.C.; Blanco-Vaca, F.; Soria, J.M.; Buil, A.; Almasy, L.; Ordoñez-Llanos, J.; Ma Martín-Campos, J.; Lathrop, M.; Stone, W.; Blangero, J.; et al. A Genomewide Exploration Suggests a New Candidate Gene at Chromosome 11q23 as the Major Determinant of Plasma Homocysteine Levels: Results from the GAIT Project. Am. J. Hum. Genet. 2005, 76, 925–933. [Google Scholar] [CrossRef]
- Aksoy, S.; Szumlanski, C.L.; Weinshilboum, R.M. Human Liver Nicotinamide N-Methyltransferase. cDNA Cloning, Expression, and Biochemical Characterization. J. Biol. Chem. 1994, 269, 14835–14840. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Ishikawa, A.; Yoshitake, Y.; Kodama, N.; Nishimuta, M.; Fukuwatari, T.; Shibata, K. Diurnal Variations in Human Urinary Excretion of Nicotinamide Catabolites: Effects of Stress on the Metabolism of Nicotinamide. Am. J. Clin. Nutr. 2003, 77, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Miguelsanz, J.; Vallecillo, N.; Garrido, F.; Reytor, E.; Pérez-Sala, D.; Pajares, M.A. Betaine Homocysteine S-Methyltransferase Emerges as a New Player of the Nuclear Methionine Cycle. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1165–1182. [Google Scholar] [CrossRef]
- Stender, S.; Chakrabarti, R.S.; Xing, C.; Gotway, G.; Cohen, J.C.; Hobbs, H.H. Adult-Onset Liver Disease and Hepatocellular Carcinoma in S-Adenosylhomocysteine Hydrolase Deficiency. Mol. Genet. Metab. 2015, 116, 269–274. [Google Scholar] [CrossRef]
- Yang, M.; Tan, W.; Yang, X.; Zhuo, J.; Lin, Z.; Cen, B.; Lian, Z.; Li, H.; Lu, D.; Wei, X.; et al. Homocysteine: A Novel Prognostic Biomarker in Liver Transplantation for Alpha-Fetoprotein-Negative Hepatocellular Carcinoma. Cancer Biomark. Sect. Dis. Markers 2020, 29, 197–206. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, J.-L.; Chen, Y.-L.; Liu, Y.; Huang, S.-S.; Zhong, X.-L.; Cheng, Y.-H.; Wang, Z.-G. Nrf2 Mediates the Protective Effects of Homocysteine by Increasing the Levels of GSH Content in HepG2 Cells. Mol. Med. Rep. 2017, 16, 597–602. [Google Scholar] [CrossRef]
- Todorović, D.; Stojanović, M.; Krneta, S.M.; Uzelac, J.J.; Gopčević, K.; Medić, A.; Borović, M.L.; Stanković, S.; Djuric, D.M. Effects of Four-Week Lasting Aerobic Treadmill Training on Hepatic Injury Biomarkers, Oxidative Stress Parameters, Metabolic Enzymes Activities and Histological Characteristics in Liver Tissue of Hyperhomocysteinemic Rats. Mol. Cell. Biochem. 2024, 480, 2511–2524. [Google Scholar] [CrossRef]
- Hasan, T.; Arora, R.; Bansal, A.K.; Bhattacharya, R.; Sharma, G.S.; Singh, L.R. Disturbed Homocysteine Metabolism Is Associated with Cancer. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Catania, V.E.; Bertino, G.; Drago, F.; Madeddu, R.; Bonfiglio, C.; Malaguarnera, M. Serum Folate Deficiency in HCV Related Hepatocellular Carcinoma. Sci. Rep. 2022, 12, 5025. [Google Scholar] [CrossRef]
- Wu, D.-F.; Yin, R.-X.; Deng, J.-L. Homocysteine, Hyperhomocysteinemia, and H-Type Hypertension. Eur. J. Prev. Cardiol. 2024, 31, 1092–1103. [Google Scholar] [CrossRef]
- Zhang, D.; Lou, J.; Zhang, X.; Zhang, L.; Wang, F.; Xu, D.; Niu, N.; Wang, Y.; Wu, Y.; Cui, W. Hyperhomocysteinemia Results from and Promotes Hepatocellular Carcinoma via CYP450 Metabolism by CYP2J2 DNA Methylation. Oncotarget 2017, 8, 15377–15392. [Google Scholar] [CrossRef] [PubMed]
- Parsons, R.B.; Facey, P.D. Nicotinamide N-Methyltransferase: An Emerging Protagonist in Cancer Macro(r)Evolution. Biomolecules 2021, 11, 1418. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liang, J.; Liu, S.; Song, S.; Guo, W.; Shen, F. Differential Regulation of AKT1 Contributes to Survival and Proliferation in Hepatocellular Carcinoma Cells by Mediating Notch1 Expression. Oncol. Lett. 2018, 15, 6857–6864. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Li, Y.; Lin, Y.; Yang, X.; Yang, J.; Hu, S.; Liu, A. Nicotinamide N-Methyltransferase and Liver Diseases. Genes Dis. 2023, 10, 1883–1893. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Liu, W.; Zou, T.; Lu, S.; Zhu, C.; He, L.; Chen, J.; Fang, L.; Zou, L.; et al. NNMT-DNMT1 Axis Is Essential for Maintaining Cancer Cell Sensitivity to Oxidative Phosphorylation Inhibition. Adv. Sci. 2022, 10, 2202642. [Google Scholar] [CrossRef]
- Lu, S.; Ke, S.; Wang, C.; Xu, Y.; Li, Z.; Song, K.; Bai, M.; Zhou, M.; Yu, H.; Yin, B.; et al. NNMT Promotes the Progression of Intrahepatic Cholangiocarcinoma by Regulating Aerobic Glycolysis via the EGFR-STAT3 Axis. Oncogenesis 2022, 11, 39. [Google Scholar] [CrossRef]
- Li, J.; You, S.; Zhang, S.; Hu, Q.; Wang, F.; Chi, X.; Zhao, W.; Xie, C.; Zhang, C.; Yu, Y.; et al. Elevated N-Methyltransferase Expression Induced by Hepatic Stellate Cells Contributes to the Metastasis of Hepatocellular Carcinoma via Regulation of the CD44v3 Isoform. Mol. Oncol. 2019, 13, 1993–2009. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y.; Wang, S.-H.; Li, M. The Effect of Nicotinamide N-Methytransferase Overexpression on Biological Behaviors of SMMC7721 Hepatocellar Carcinoma Cell Line. Sichuan Da Xue Xue Bao Yi Xue Ban 2013, 44, 193–195. [Google Scholar]
- Bose, S.; Allen, A.E.; Locasale, J.W. The Molecular Link from Diet to Cancer Cell Metabolism. Mol. Cell 2020, 80, 554. [Google Scholar] [CrossRef]
- Zhu, X.; Sha, X.; Zang, Y.; Ren, Q.; Zhang, S.; Ma, D.; Wang, L.; Yao, J.; Zhou, X.; Yu, L.; et al. Current Progress of Ferroptosis Study in Hepatocellular Carcinoma. Int. J. Biol. Sci. 2024, 20, 3621–3637. [Google Scholar] [CrossRef]
- Ajoolabady, A.; Tang, D.; Kroemer, G.; Ren, J. Ferroptosis in Hepatocellular Carcinoma: Mechanisms and Targeted Therapy. Br. J. Cancer 2023, 128, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, M.; Li, X.; Er, L.; Li, S. NNMT Is an Immune-Related Prognostic Biomarker That Modulates the Tumor Microenvironment in Pan-Cancer. Dis. Markers 2023, 2023, 9226712. [Google Scholar] [CrossRef] [PubMed]
- van Haren, M.J.; Gao, Y.; Buijs, N.; Campagna, R.; Sartini, D.; Emanuelli, M.; Mateuszuk, L.; Kij, A.; Chlopicki, S.; Escudé Martinez de Castilla, P.; et al. Esterase-Sensitive Prodrugs of a Potent Bisubstrate Inhibitor of Nicotinamide N-Methyltransferase (NNMT) Display Cellular Activity. Biomolecules 2021, 11, 1357. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Birudukota, S.; Thakur, M.K.; Parveen, R.; Kandan, S.; Juluri, S.; Shaik, S.; Anand, N.N.; Burri, R.R.; Kristam, R.; et al. Crystal Structures of Monkey and Mouse Nicotinamide N-Methyltransferase (NNMT) Bound with End Product, 1-Methyl Nicotinamide. Biochem. Biophys. Res. Commun. 2017, 491, 416–422. [Google Scholar] [CrossRef]
- van Haren, M.J.; Zhang, Y.; Thijssen, V.; Buijs, N.; Gao, Y.; Mateuszuk, L.; Fedak, F.A.; Kij, A.; Campagna, R.; Sartini, D.; et al. Macrocyclic Peptides as Allosteric Inhibitors of Nicotinamide N-Methyltransferase (NNMT). RSC Chem. Biol. 2021, 2, 1546–1555. [Google Scholar] [CrossRef]
- van Haren, M.J.; Taig, R.; Kuppens, J.; Sastre Toraño, J.; Moret, E.E.; Parsons, R.B.; Sartini, D.; Emanuelli, M.; Martin, N.I. Inhibitors of Nicotinamide N-Methyltransferase Designed to Mimic the Methylation Reaction Transition State. Org. Biomol. Chem. 2017, 15, 6656–6667. [Google Scholar] [CrossRef]
- Ruf, S.; Rajagopal, S.; Kadnur, S.V.; Hallur, M.S.; Rani, S.; Kristam, R.; Swaminathan, S.; Zope, B.R.; Gondrala, P.K.; Swamy, I.; et al. Novel Tricyclic Small Molecule Inhibitors of Nicotinamide N-Methyltransferase for the Treatment of Metabolic Disorders. Sci. Rep. 2022, 12, 15440. [Google Scholar] [CrossRef]
- Babault, N.; Allali-Hassani, A.; Li, F.; Fan, J.; Yue, A.; Ju, K.; Liu, F.; Vedadi, M.; Liu, J.; Jin, J. Discovery of Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J. Med. Chem. 2018, 61, 1541–1551. [Google Scholar] [CrossRef]
- Gao, Y.; van Haren, M.J.; Moret, E.E.; Rood, J.J.M.; Sartini, D.; Salvucci, A.; Emanuelli, M.; Craveur, P.; Babault, N.; Jin, J.; et al. Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT) with Enhanced Activity. J. Med. Chem. 2019, 62, 6597–6614. [Google Scholar] [CrossRef]
- Chen, D.; Li, L.; Diaz, K.; Iyamu, I.D.; Yadav, R.; Noinaj, N.; Huang, R. Novel Propargyl-Linked Bisubstrate Analogues as Tight-Binding Inhibitors for Nicotinamide N-Methyltransferase. J. Med. Chem. 2019, 62, 10783–10797. [Google Scholar] [CrossRef]
- Policarpo, R.L.; Decultot, L.; May, E.; Kuzmič, P.; Carlson, S.; Huang, D.; Chu, V.; Wright, B.A.; Dhakshinamoorthy, S.; Kannt, A.; et al. High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J. Med. Chem. 2019, 62, 9837–9873. [Google Scholar] [CrossRef] [PubMed]
- Bach, D.-H.; Kim, D.; Bae, S.Y.; Kim, W.K.; Hong, J.-Y.; Lee, H.-J.; Rajasekaran, N.; Kwon, S.; Fan, Y.; Luu, T.-T.-T.; et al. Targeting Nicotinamide N-Methyltransferase and miR-449a in EGFR-TKI-Resistant Non-Small-Cell Lung Cancer Cells. Mol. Ther. Nucleic Acids 2018, 11, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Roberti, A.; Tejedor, J.R.; Díaz-Moreno, I.; López, V.; Santamarina-Ojeda, P.; Pérez, R.F.; Urdinguio, R.G.; Concellón, C.; Martínez-Chantar, M.L.; Fernández-Morera, J.L.; et al. Nicotinamide N-Methyltransferase (NNMT) Regulates the Glucocorticoid Signaling Pathway during the Early Phase of Adipogenesis. Sci. Rep. 2023, 13, 8293. [Google Scholar] [CrossRef]
- Gao, Y.; van Haren, M.J.; Buijs, N.; Innocenti, P.; Zhang, Y.; Sartini, D.; Campagna, R.; Emanuelli, M.; Parsons, R.B.; Jespers, W.; et al. Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics. J. Med. Chem. 2021, 64, 12938–12963. [Google Scholar] [CrossRef]
- Neelakantan, H.; Wang, H.-Y.; Vance, V.; Hommel, J.D.; McHardy, S.F.; Watowich, S.J. Structure-Activity Relationship for Small Molecule Inhibitors of Nicotinamide N-Methyltransferase. J. Med. Chem. 2017, 60, 5015–5028. [Google Scholar] [CrossRef]
- Neelakantan, H.; Brightwell, C.R.; Graber, T.G.; Maroto, R.; Wang, H.-Y.L.; McHardy, S.F.; Papaconstantinou, J.; Fry, C.S.; Watowich, S.J. Small Molecule Nicotinamide N-Methyltransferase Inhibitor Activates Senescent Muscle Stem Cells and Improves Regenerative Capacity of Aged Skeletal Muscle. Biochem. Pharmacol. 2019, 163, 481–492. [Google Scholar] [CrossRef]
- Kannt, A.; Rajagopal, S.; Kadnur, S.V.; Suresh, J.; Bhamidipati, R.K.; Swaminathan, S.; Hallur, M.S.; Kristam, R.; Elvert, R.; Czech, J.; et al. A Small Molecule Inhibitor of Nicotinamide N-Methyltransferase for the Treatment of Metabolic Disorders. Sci. Rep. 2018, 8, 3660. [Google Scholar] [CrossRef]
- Ruf, S.; Hallur, M.S.; Anchan, N.K.; Swamy, I.N.; Murugesan, K.R.; Sarkar, S.; Narasimhulu, L.K.; Putta, V.P.R.K.; Shaik, S.; Chandrasekar, D.V.; et al. Novel Nicotinamide Analog as Inhibitor of Nicotinamide N-Methyltransferase. Bioorg. Med. Chem. Lett. 2018, 28, 922–925. [Google Scholar] [CrossRef]
- Horning, B.D.; Suciu, R.M.; Ghadiri, D.A.; Ulanovskaya, O.A.; Matthews, M.L.; Lum, K.M.; Backus, K.M.; Brown, S.J.; Rosen, H.; Cravatt, B.F. Chemical Proteomic Profiling of Human Methyltransferases. J. Am. Chem. Soc. 2016, 138, 13335–13343. [Google Scholar] [CrossRef]
- Sen, S.; Mondal, S.; Zheng, L.; Salinger, A.J.; Fast, W.; Weerapana, E.; Thompson, P.R. Development of a Suicide Inhibition-Based Protein Labeling Strategy for Nicotinamide N-Methyltransferase. ACS Chem. Biol. 2019, 14, 613–618. [Google Scholar] [CrossRef]
- Gao, Y.; Martin, N.I.; van Haren, M.J. Nicotinamide N-Methyl Transferase (NNMT): An Emerging Therapeutic Target. Drug Discov. Today 2021, 26, 2699–2706. [Google Scholar] [CrossRef] [PubMed]
- Zweygarth, E.; Schillinger, D.; Kaufmann, W.; Röttcher, D. Evaluation of Sinefungin for the Treatment of Trypanosoma (Nannomonas) Congolense Infections in Goats. Trop. Med. Parasitol. Off. Organ Dtsch. Tropenmedizinische Ges. Dtsch. Ges. Tech. Zusammenarbeit GTZ 1986, 37, 255–257. [Google Scholar]
- Pozzi, V.; Molinelli, E.; Campagna, R.; Serritelli, E.N.; Cecati, M.; De Simoni, E.; Sartini, D.; Goteri, G.; Martin, N.I.; van Haren, M.J.; et al. Knockdown of Nicotinamide N-Methyltransferase Suppresses Proliferation, Migration, and Chemoresistance of Merkel Cell Carcinoma Cells in Vitro. Hum. Cell 2024, 37, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Serritelli, E.N.; Sartini, D.; Campagna, R.; Pozzi, V.; Martin, N.I.; van Haren, M.J.; Salvolini, E.; Cecati, M.; Rubini, C.; Emanuelli, M. Targeting Nicotinamide N-Methyltransferase Decreased Aggressiveness of Osteosarcoma Cells. Eur. J. Clin. Investig. 2024, 54, e14185. [Google Scholar] [CrossRef]
- Liu, J.-R.; Deng, Z.-H.; Zhu, X.-J.; Zeng, Y.-R.; Guan, X.-X.; Li, J.-H. Roles of Nicotinamide N-Methyltransferase in Obesity and Type 2 Diabetes. BioMed Res. Int. 2021, 2021, 9924314. [Google Scholar] [CrossRef]
- Xu, W.; Hou, L.; Li, P.; Li, L. Effect of Nicotinamide N-Methyltransferase on Lipid Accumulation in 3T3-L1 Adipocytes. Bioengineered 2022, 13, 12421–12434. [Google Scholar] [CrossRef]
- Sun, W.-D.; Zhu, X.-J.; Li, J.-J.; Mei, Y.-Z.; Li, W.-S.; Li, J.-H. Nicotinamide N-Methyltransferase (NNMT): A Key Enzyme in Cancer Metabolism and Therapeutic Target. Int. Immunopharmacol. 2024, 142, 113208. [Google Scholar] [CrossRef]
- Doench, J.G.; Petersen, C.P.; Sharp, P.A. siRNAs Can Function as miRNAs. Genes Dev. 2003, 17, 438–442. [Google Scholar] [CrossRef]
- Jackson, A.L.; Bartz, S.R.; Schelter, J.; Kobayashi, S.V.; Burchard, J.; Mao, M.; Li, B.; Cavet, G.; Linsley, P.S. Expression Profiling Reveals Off-Target Gene Regulation by RNAi. Nat. Biotechnol. 2003, 21, 635–637. [Google Scholar] [CrossRef]
- Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, B.N.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread siRNA “off-Target” Transcript Silencing Mediated by Seed Region Sequence Complementarity. RNA 2006, 12, 1179–1187. [Google Scholar] [CrossRef]
- Li, J.-H.; Chen, W.; Zhu, X.-J.; Lin, Y.-J.; Qiu, L.-Q.; Cai, C.-X.; Wang, Y.-H.; Xiong, Q.; Chen, F.; Chen, L.-H. Associations of Nicotinamide N-Methyltransferase Gene Single Nucleotide Polymorphisms with Sport Performance and Relative Maximal Oxygen Uptake. J. Sports Sci. 2017, 35, 2185–2190. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Qiu, L.-Q.; Zhu, X.-J.; Cai, C.-X. Influence of Exercises Using Different Energy Metabolism Systems on NNMT Expression in Different Types of Skeletal Muscle Fibers. Sci. Sports 2017, 32, 27–32. [Google Scholar] [CrossRef]
- Wang, G. Aerobic Exercise Ameliorates Myocardial Ischemia/Reperfusion Injury and Thrombosis of Diabetic Rats via Activation of AMPK/Sirt1/PGC-1α Pathway. Gen. Physiol. Biophys. 2022, 41, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Fang, F.; Wang, H.; Lv, C.; Han, M.; Zhang, Z.; Wang, F.; Li, B.; Ling, C. Effect of Aerobic Exercise on Serum Metabolites in Mice with Hepatocellular Carcinoma after Surgery. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 3181–3189. [Google Scholar] [CrossRef]
- Buss, L.A.; Dachs, G.U. Effects of Exercise on the Tumour Microenvironment. Adv. Exp. Med. Biol. 2020, 1225, 31–51. [Google Scholar] [CrossRef]
- Dang, L.; Wang, Y. Prognostic Value of Nicotinamide N-Methyltransferase in Human Cancers: Evidence from a Meta-Analysis and Database Validation. Open Med. Wars. Pol. 2022, 17, 292–303. [Google Scholar] [CrossRef]
- Campagna, R.; Mateuszuk, Ł.; Wojnar-Lason, K.; Kaczara, P.; Tworzydło, A.; Kij, A.; Bujok, R.; Mlynarski, J.; Wang, Y.; Sartini, D.; et al. Nicotinamide N-Methyltransferase in Endothelium Protects against Oxidant Stress-Induced Endothelial Injury. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119082. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Dai, Y.; Wang, D.; Wang, X.; Cao, Y.; Liu, W.; Tao, Z. Glycolysis-Related Gene Expression Profiling Serves as a Novel Prognosis Risk Predictor for Human Hepatocellular Carcinoma. Sci. Rep. 2021, 11, 18875. [Google Scholar] [CrossRef]
- Zhou, Q.; Huang, Z.-G.; Zhu, X.-J.; Xie, Z.-H.; Yao, T.-F.; Wang, Y.-H.; Li, J.-H. Effects of Nicotinamide N-Methyltransferase (NNMT) Inhibition on the Aerobic and the Anaerobic Endurance Exercise Capacity. Sci. Sports 2018, 33, e159–e165. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Gao, Y.; Li, X.; Tian, F.; Zhang, Y.; Fu, M.; Li, P.; Wang, Y.; Wang, F. Current Transport Systems and Clinical Applications for Small Interfering RNA (siRNA) Drugs. Mol. Diagn. Ther. 2018, 22, 551–569. [Google Scholar] [CrossRef]
- Yu, A.-M.; Choi, Y.H.; Tu, M.-J. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol. Rev. 2020, 72, 862–898. [Google Scholar] [CrossRef]
- Setten, R.L.; Rossi, J.J.; Han, S.-P. The Current State and Future Directions of RNAi-Based Therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421–446. [Google Scholar] [CrossRef]
- Barrows, R.D.; Jeffries, D.E.; Vishe, M.; Tukachinsky, H.; Zheng, S.-L.; Li, F.; Ma, Z.; Li, X.; Jin, S.; Song, H.; et al. Potent Uncompetitive Inhibitors of Nicotinamide N-Methyltransferase (NNMT) as In Vivo Chemical Probes. J. Med. Chem. 2022, 65, 14642–14654. [Google Scholar] [CrossRef]
- Iyamu, I.D.; Huang, R. Mechanisms and Inhibitors of Nicotinamide N-Methyltransferase. RSC Med. Chem. 2021, 12, 1254–1261. [Google Scholar] [CrossRef]
- Akerud, T.; De Fusco, C.; Brandt, P.; Bergström, F.; Johansson, P.; Ek, M.; Börjesson, U.; Johansson, A.; Danielsson, J.; Bauer, M.; et al. Mechanism and kinetics of turnover inhibitors of nicotinamide N-methyl transferase in vitro and in vivo. J. Biol. Chem. 2025, 301, 108492. [Google Scholar] [CrossRef]
- Park, J.; Shin, E.J.; Kim, T.H.; Yang, J.H.; Ki, S.H.; Kang, K.W.; Kim, K.M. Exploring NNMT: From Metabolic Pathways to Therapeutic Targets. Arch. Pharm. Res. 2024, 47, 893–913. [Google Scholar] [CrossRef]
NNMT Inhibitor Type | Compound | References |
---|---|---|
Allosteric inhibitors | Macrocyclic peptides | [105] |
Dual-substrate-competitive inhibitors | MvH45, AK-12, MS2756, MS2734, GYZ-78, NS1, LL320, Yuanhuadine *, CC-410,GYZ-319, Para-cyano compound17u | [103,106,107,108,109,110,111,112,113,114] |
NAM-competitive inhibitors | MNAM, 5-amino-1MQ (NNMTi), jBSNF-000088, JBSNF-000265, JBSNF-000028, RS004,4-chloro-3-ethynylpyridine | [12,34,57,107,115,116,117,118,119,120] |
SAM-competitive inhibitors | SAH, sinefungin * | [121,122] |
Models and References | Sample Size | Key Findings | Limitations |
---|---|---|---|
Tumor tissues of 120 HCC patients [9] | 120 | The mRNA level of NNMT in HCC tissues was significantly lower than that in adjacent tissues, but the serum level was negatively correlated with prognosis. | The mechanism of tissue and serum expression differences was not explained, and dynamic monitoring data were lacking. |
SMMC-7721 cells in mouse metastasis model [97] | 92 | Activation of HSCs promotes HCC invasion by upregulating NNMT. | Correlation in clinical samples was not verified. |
MCC-13 and MCC-26 cells [123] | 11 | NNMT may be a promising target for Merkel cell carcinoma biomarkers and targeted anti-cancer therapies. | Further experiments are needed to understand the specific mechanisms by which NNMT is involved in the development of Merkel cell carcinoma. |
Human OS cell lines U-2 OS and Saos-2 [124] | 20 | NNMT promotes tumor cell proliferation, migration, and chemoresistance of osteosarcoma (OS) cells. | Due to the rarity of osteosarcoma (OS), immunohistochemical analysis involves a limited number of patients. |
Human malignant melanoma cell line A375 [13] | N/A | NNMT is somehow involved in the mechanisms that promote chemoresistance of melanoma cells. | Further analysis is needed to gain a deeper understanding of the mechanisms by which this enzyme is involved in melanoma tumorigenesis |
NNMT expression knockout [126] | N/A | Knockdown of NNMT expression reduced lipid accumulation and triglyceride content in 3T3-L1 cells. | Long-term side effects were not assessed, and differences in human metabolism were not considered. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.-Y.; Zhu, X.-J.; Sun, W.-D.; Bi, S.-Z.; Zhang, C.-Y.; Liu, A.; Li, J.-H. Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules 2025, 15, 719. https://doi.org/10.3390/biom15050719
Lai S-Y, Zhu X-J, Sun W-D, Bi S-Z, Zhang C-Y, Liu A, Li J-H. Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules. 2025; 15(5):719. https://doi.org/10.3390/biom15050719
Chicago/Turabian StyleLai, Shi-Yan, Xiao-Juan Zhu, Wei-Dong Sun, Shuang-Zhou Bi, Chen-Ying Zhang, An Liu, and Jiang-Hua Li. 2025. "Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets" Biomolecules 15, no. 5: 719. https://doi.org/10.3390/biom15050719
APA StyleLai, S.-Y., Zhu, X.-J., Sun, W.-D., Bi, S.-Z., Zhang, C.-Y., Liu, A., & Li, J.-H. (2025). Nicotinamide N-Methyltransferase (NNMT) and Liver Cancer: From Metabolic Networks to Therapeutic Targets. Biomolecules, 15(5), 719. https://doi.org/10.3390/biom15050719