Abstract
This study explores the effects of exogenous SELENOV on cellular migration, viability, mitochondrial function, ROS production, and Ca2+ signaling in mouse fibroblast L-929 and testicular teratoma F-9 cells. In scratch assays, 50–100 µg/mL SELENOV significantly inhibited F-9 cell migration after 48 h, while in L-929 fibroblasts, only 100 µg/mL had a suppressive effect. Viability assays revealed strong cytotoxicity in F-9 cells. Critically, at a dose of 50 µg/mL (where the corresponding volume of solvent buffer alone was non-toxic), SELENOV reduced survival to 19%, triggering late apoptosis in 76% of cells, whereas in L-929 cells, comparable effects required 100 µg/mL. Mitochondrial depolarization (JC-1/Rhodamine-123 assays) was pronounced in F-9 cells even at 50 µg/mL, while L-929 cells responded only to 100 µg/mL. Similarly, 50 µg/mL SELENOV induced significant ROS overproduction in F-9 but not in L-929 cells, correlating with upregulated NOX1, NOX4, GPX3, and GPX4 expression. Ca2+ imaging showed dose-dependent [Ca2+]ᵢ elevation, with 50 µg/mL SELENOV inducing a sustained rise in F-9 cells, whereas L-929 cells required higher doses. Strikingly, 50 µg/mL SELENOV in F-9 cells downregulated BCL-2 and BCL-xL while upregulating pro-apoptotic BAX and PUMA, suggesting selective activation of intrinsic apoptosis. These results demonstrate that F-9 cancer cells are significantly more sensitive to SELENOV than normal fibroblasts, with 50 µg/mL sufficient to trigger mitochondrial dysfunction, oxidative stress, and apoptosis. The findings highlight SELENOV’s potential as a targeted anticancer agent, particularly for germ cell tumors.