Molecular Portrait of Autoantigens in Type 1 Diabetes
Abstract
1. Introduction
2. Major Autoantigens
2.1. Insulin
2.2. Glutamic Acid Decarboxylase 65 (GAD65)
2.3. Tyrosine Phosphatase-like Protein (IA-2/ICA512)
2.4. Zinc Transporter 8 (ZnT8)
3. Minor Autoantigens
3.1. Glutamic Acid Decarboxylase 67 (GAD67)
3.2. Phogrin (IA-2β)
3.3. Tetraspanin 7 (TSpan7)
3.4. ICA1 (Islet Cell Autoantigen 1, ICA69)
4. Current Diagnostic Methods and Therapeutic Prospects for T1D
4.1. Multiplex Assays for the Detection of Diabetes-Associated Autoantibodies
4.1.1. Array-ELISA
4.1.2. Protein Microarrays
4.1.3. ADAP (Antibody Detection by Agglutination-PCR)
4.1.4. Phage Immunoprecipitation Sequencing (PhIP-Seq)
4.1.5. Three-Screen Islet Cell Autoantibody Assay (ICA)
4.1.6. Multiplex Electrochemiluminescence (ECL)
4.2. Antigen-Specific Immunotherapy (ASI)
4.2.1. Plasmid DNA Immunization
4.2.2. Peptide-Based Therapy
4.2.3. Intranasal Administration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAb | Autoantibody |
| ADAP | Antibody Detection by Agglutination-PCR |
| APLs | Altered Peptide Ligands |
| ASI | Antigen-Specific Immunotherapy |
| ASK | Autoimmunity Study in Kids |
| CLIA | Chemiluminescent Immunoassay |
| ECL | Electrochemiluminescence |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| ENDIT | European Nicotinamide Diabetes Intervention Trial |
| GABA | Gamma-Aminobutyric Acid |
| GAD65 | Glutamic Acid Decarboxylase 65 |
| GAD67 | Glutamic Acid Decarboxylase 67 |
| GADA | GAD65 Autoantibodies |
| HLA | Human Leukocyte Antigen |
| HIP14 | Huntingtin-Interacting Protein 14 |
| IA-2 | Islet Autoantigene 2 |
| IAA | Insulin Autoantibodies |
| ICA1 | Islet Cell Autoantigen 1 |
| LEL | Large Extracellular Loop |
| MHC | Major Histocompatibility Complex |
| NALT | Nasal-Associated Lymphoid Tissue |
| PCR | Polymerase Chain Reaction |
| PhIP-Seq | Phage Immunoprecipitation Sequencing |
| PICK1 | Protein Interacting with C Kinase 1 |
| PLP | Pyridoxal-5′-phosphate |
| RIA | Radioimmunoassay |
| SEL | Small Extracellular Loop |
| T1D | Type 1 Diabetes |
| TM | Transmembrane Domain |
| Treg | Regulatory T-Lymphocytes |
References
- Roep, B.O.; Thomaidou, S.; Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the beta-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Mirmira, R.G. The pathogenic “symphony” in type 1 diabetes: A disorder of the immune system, beta cells, and exocrine pancreas. Cell Metab. 2023, 35, 1500–1518. [Google Scholar] [CrossRef]
- Mauvais, F.X.; Endert, P.M. Type 1 Diabetes: A Guide to Autoimmune Mechanisms for Clinicians. Diabetes Obes. Metab. 2025, 27, 40–56. [Google Scholar] [CrossRef]
- Bell, K.J.; Lain, S.J. The Changing Epidemiology of Type 1 Diabetes: A Global Perspective. Diabetes Obes. Metab. 2025, 27, 3–14. [Google Scholar] [CrossRef]
- Gomber, A.; Ward, Z.J.; Ross, C.; Owais, M.; Mita, C.; Yeh, J.M.; Reddy, C.L.; Atun, R. Variation in the incidence of type 1 diabetes mellitus in children and adolescents by world region and country income group: A scoping review. PLoS Glob. Public Health 2022, 2, e0001099. [Google Scholar]
- Mittal, R.; Camick, N.; Lemos, J.; Hirani, K. Gene-environment interaction in the pathophysiology of type 1 diabetes. Front. Endocrinol. 2024, 15, 1335435. [Google Scholar] [CrossRef]
- Noble, J.A.; Valdes, A.M. Genetics of the HLA region in the prediction of type 1 diabetes. Curr. Diabetes Rep. 2011, 11, 533–542. [Google Scholar] [CrossRef]
- Tay, G.K.; Al Naqbi, H.; Mawart, A.; Baalfaqih, Z.; Almaazmi, A.; Deeb, A.; Alsafar, H. Segregation Analysis of Genotyped and Family-Phased, Long Range MHC Classical Class I and Class II Haplotypes in 5 Families with Type 1 Diabetes Proband in the United Arab Emirates. Front. Genet. 2021, 12, 670844. [Google Scholar] [CrossRef]
- Brand, O.; Gough, S.; Heward, J. HLA, CTLA-4 and PTPN22: The shared genetic master-key to autoimmunity? Expert Rev. Mol. Med. 2005, 7, 1–15. [Google Scholar] [CrossRef]
- Houcken, J.; Degenhart, C.; Bender, K.; Konig, J.; Frommer, L.; Kahaly, G.J. PTPN22 and CTLA-4 Polymorphisms Are Associated with Polyglandular Autoimmunity. J. Clin. Endocrinol. Metab. 2018, 103, 1977–1984. [Google Scholar] [CrossRef]
- Pei, J.; Wei, S.; Pei, Y.; Wu, H.; Wang, D. Role of Dietary Gluten in Development of Celiac Disease and Type I Diabetes: Management Beyond Gluten-Free Diet. Curr. Med. Chem. 2020, 27, 3555–3576. [Google Scholar] [CrossRef]
- Tomasics, G.; Schandl, L.; Polyak, A.; Winkler, G. Diabetes mellitus and the intestinal microbiome. Orvosi Hetil. 2023, 164, 981–987. [Google Scholar] [CrossRef]
- Root-Bernstein, R.; Chiles, K.; Huber, J.; Ziehl, A.; Turke, M.; Pietrowicz, M. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 8336. [Google Scholar] [CrossRef]
- Kohil, A.; Al-Asmakh, M.; Al-Shafai, M.; Terranegra, A. The Interplay Between Diet and the Epigenome in the Pathogenesis of Type-1 Diabetes. Front. Nutr. 2020, 7, 612115. [Google Scholar] [CrossRef]
- Lemos, J.R.N.; Hirani, K.; von Herrath, M. Immunological and virological triggers of type 1 diabetes: Insights and implications. Front. Immunol. 2023, 14, 1326711. [Google Scholar] [CrossRef]
- Wang, Y.N.; Li, R.; Huang, Y.; Chen, H.; Nie, H.; Liu, L.; Zou, X.; Zhong, J.; Zheng, B.; Gong, Q. The role of B cells in the pathogenesis of type 1 diabetes. Front. Immunol. 2024, 15, 1450366. [Google Scholar] [CrossRef]
- Ziegler, A.G.; Rewers, M.; Simell, O.; Simell, T.; Lempainen, J.; Steck, A.; Winkler, C.; Ilonen, J.; Veijola, R.; Knip, M.; et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013, 309, 2473–2479. [Google Scholar] [CrossRef]
- Bluestone, J.A.; Herold, K.; Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010, 464, 1293–1300. [Google Scholar] [CrossRef]
- Mallone, R.; Martinuzzi, E.; Blancou, P.; Novelli, G.; Afonso, G.; Dolz, M.; Bruno, G.; Chaillous, L.; Chatenoud, L.; Bach, J.M.; et al. CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 2007, 56, 613–621. [Google Scholar] [CrossRef]
- Walker, L.S.; von Herrath, M. CD4 T cell differentiation in type 1 diabetes. Clin. Exp. Immunol. 2016, 183, 16–29. [Google Scholar] [CrossRef]
- Insel, R.A.; Dunne, J.L.; Atkinson, M.A.; Chiang, J.L.; Dabelea, D.; Gottlieb, P.A.; Greenbaum, C.J.; Herold, K.C.; Krischer, J.P.; Lernmark, A.; et al. Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015, 38, 1964–1974. [Google Scholar] [CrossRef]
- Delong, T.; Nakayama, M. Epitope Hierarchy in Type 1 Diabetes Pathogenesis. Cold Spring Harb. Perspect. Med. 2024, 15, a041594. [Google Scholar] [CrossRef]
- Franke, B.; Galloway, T.S.; Wilkin, T.J. Developments in the prediction of type 1 diabetes mellitus, with special reference to insulin autoantibodies. Diabetes/Metab. Res. Rev. 2005, 21, 395–415. [Google Scholar] [CrossRef]
- Lampasona, V.; Liberati, D. Islet Autoantibodies. Curr. Diabetes Rep. 2016, 16, 53. [Google Scholar] [CrossRef]
- Battaglia, M. Experiments by nature: Lessons on type 1 diabetes. Tissue Antigens 2014, 83, 1–9. [Google Scholar] [CrossRef]
- Wenzlau, J.M.; Hutton, J.C. Novel diabetes autoantibodies and prediction of type 1 diabetes. Curr. Diabetes Rep. 2013, 13, 608–615. [Google Scholar] [CrossRef]
- Arvan, P.; Pietropaolo, M.; Ostrov, D.; Rhodes, C.J. Islet autoantigens: Structure, function, localization, and regulation. Cold Spring Harb. Perspect. Med. 2012, 2, a007658. [Google Scholar] [CrossRef]
- Kawasaki, E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int. J. Mol. Sci. 2023, 24, 10012. [Google Scholar] [CrossRef]
- Pal, S.; Chaturvedi, U.C.; Mehrotra, R.M.; Gupta, N.N.; Sircar, A.R. Insulin “auto-antibodies” in diabetes mellitus. Indian J. Med. Sci. 1969, 23, 598–601. [Google Scholar]
- Velloso, L.A.; Kampe, O.; Hallberg, A.; Christmanson, L.; Betsholtz, C.; Karlsson, F.A. Demonstration of GAD-65 as the main immunogenic isoform of glutamate decarboxylase in type 1 diabetes and determination of autoantibodies using a radioligand produced by eukaryotic expression. J. Clin. Investig. 1993, 91, 2084–2090. [Google Scholar] [CrossRef]
- Hagopian, W.A.; Karlsen, A.E.; Gottsater, A.; Landin-Olsson, M.; Grubin, C.E.; Sundkvist, G.; Petersen, J.S.; Boel, E.; Dyrberg, T.; Lernmark, A. Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows that 64K autoantibody positivity at onset predicts diabetes type. J. Clin. Investig. 1993, 91, 368–374. [Google Scholar] [CrossRef]
- Lan, M.S.; Wasserfall, C.; Maclaren, N.K.; Notkins, A.L. IA-2, a transmembrane protein of the protein tyrosine phosphatase family, is a major autoantigen in insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. USA 1996, 93, 6367–6370. [Google Scholar] [CrossRef]
- Passini, N.; Larigan, J.D.; Genovese, S.; Appella, E.; Sinigaglia, F.; Rogge, L. The 37/40-kilodalton autoantigen in insulin-dependent diabetes mellitus is the putative tyrosine phosphatase IA-2. Proc. Natl. Acad. Sci. USA 1995, 92, 9412–9416. [Google Scholar] [CrossRef]
- Wenzlau, J.M.; Juhl, K.; Yu, L.; Moua, O.; Sarkar, S.A.; Gottlieb, P.; Rewers, M.; Eisenbarth, G.S.; Jensen, J.; Davidson, H.W.; et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 17040–17045. [Google Scholar] [CrossRef]
- Amoroso, M.; Achenbach, P.; Powell, M.; Coles, R.; Chlebowska, M.; Carr, L.; Furmaniak, J.; Scholz, M.; Bonifacio, E.; Ziegler, A.G.; et al. 3 Screen islet cell autoantibody ELISA: A sensitive and specific ELISA for the combined measurement of autoantibodies to GAD(65), to IA-2 and to ZnT8. Clin. Chim. Acta Int. J. Clin. Chem. 2016, 462, 60–64. [Google Scholar] [CrossRef]
- Roder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 2016, 48, e219. [Google Scholar] [CrossRef]
- Campbell, J.E.; Newgard, C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021, 22, 142–158. [Google Scholar] [CrossRef]
- Rohli, K.E.; Boyer, C.K.; Blom, S.E.; Stephens, S.B. Nutrient Regulation of Pancreatic Islet beta-Cell Secretory Capacity and Insulin Production. Biomolecules 2022, 12, 335. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Carre, A.; Mallone, R. Making Insulin and Staying Out of Autoimmune Trouble: The Beta-Cell Conundrum. Front. Immunol. 2021, 12, 639682. [Google Scholar] [CrossRef]
- Tran, M.T.; Faridi, P.; Lim, J.J.; Ting, Y.T.; Onwukwe, G.; Bhattacharjee, P.; Jones, C.M.; Tresoldi, E.; Cameron, F.J.; La Gruta, N.L.; et al. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Nat. Commun. 2021, 12, 5110. [Google Scholar] [CrossRef]
- Potter, K.N.; Wilkin, T.J. The molecular specificity of insulin autoantibodies. Diabetes/Metab. Res. Rev. 2000, 16, 338–353. [Google Scholar] [CrossRef]
- Padoa, C.J.; Crowther, N.J.; Thomas, J.W.; Hall, T.R.; Bekris, L.M.; Torn, C.; Landin-Olsson, M.; Ortqvist, E.; Palmer, J.P.; Lernmark, A.; et al. Epitope analysis of insulin autoantibodies using recombinant Fab. Clin. Exp. Immunol. 2005, 140, 564–571. [Google Scholar] [CrossRef]
- Achenbach, P.; Koczwara, K.; Knopff, A.; Naserke, H.; Ziegler, A.G.; Bonifacio, E. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J. Clin. Investig. 2004, 114, 589–597. [Google Scholar] [CrossRef]
- Hall, T.R.; Thomas, J.W.; Padoa, C.J.; Torn, C.; Landin-Olsson, M.; Ortqvist, E.; Hampe, C.S. Longitudinal epitope analysis of insulin-binding antibodies in type 1 diabetes. Clin. Exp. Immunol. 2006, 146, 9–14. [Google Scholar] [CrossRef]
- Kanatsuna, N.; Papadopoulos, G.K.; Moustakas, A.K.; Lenmark, A. Etiopathogenesis of insulin autoimmunity. Anat. Res. Int. 2012, 2012, 457546. [Google Scholar] [CrossRef]
- Wenzlau, J.M.; Gu, Y.; Michels, A.; Rewers, M.; Haskins, K.; Yu, L. Identification of Autoantibodies to a Hybrid Insulin Peptide in Type 1 Diabetes. Diagnostics 2023, 13, 2859. [Google Scholar] [CrossRef]
- Groegler, J.; Callebaut, A.; James, E.A.; Delong, T. The insulin secretory granule is a hotspot for autoantigen formation in type 1 diabetes. Diabetologia 2024, 67, 1507–1516. [Google Scholar] [CrossRef]
- Wiles, T.A.; Powell, R.; Michel, R.; Beard, K.S.; Hohenstein, A.; Bradley, B.; Reisdorph, N.; Haskins, K.; Delong, T. Identification of Hybrid Insulin Peptides (HIPs) in Mouse and Human Islets by Mass Spectrometry. J. Proteome Res. 2019, 18, 814–825. [Google Scholar] [CrossRef]
- Bergado-Acosta, J.R.; Muller, I.; Richter-Levin, G.; Stork, O. The GABA-synthetic enzyme GAD65 controls circadian activation of conditioned fear pathways. Behav. Brain Res. 2014, 260, 92–100. [Google Scholar] [CrossRef]
- Fenalti, G.; Law, R.H.; Buckle, A.M.; Langendorf, C.; Tuck, K.; Rosado, C.J.; Faux, N.G.; Mahmood, K.; Hampe, C.S.; Banga, J.P.; et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 2007, 14, 280–286. [Google Scholar] [CrossRef]
- Stander, S.H.D.; Reboul, C.F.; Le, S.N.; Williams, D.E.; Chandler, P.G.; Costa, M.G.S.; Hoke, D.E.; Jimma, J.D.T.; Fodor, J.; Fenalti, G.; et al. Structure and dynamics of GAD65 in complex with an autoimmune polyendocrine syndrome type 2-associated autoantibody. Nat. Commun. 2025, 16, 2275. [Google Scholar] [CrossRef]
- Kanaani, J.; Patterson, G.; Schaufele, F.; Lippincott-Schwartz, J.; Baekkeskov, S. A palmitoylation cycle dynamically regulates partitioning of the GABA-synthesizing enzyme GAD65 between ER-Golgi and post-Golgi membranes. J. Cell Sci. 2008, 121, 437–449. [Google Scholar] [CrossRef]
- Christgau, S.; Aanstoot, H.J.; Schierbeck, H.; Begley, K.; Tullin, S.; Hejnaes, K.; Baekkeskov, S. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J. Cell Biol. 1992, 118, 309–320. [Google Scholar] [CrossRef]
- Ragan, C.M.; Ahmed, E.I.; Vitale, E.M.; Linning-Duffy, K.; Miller-Smith, S.M.; Maguire, J.; Lonstein, J.S. Postpartum State, but Not Maternal Caregiving or Level of Anxiety, Increases Medial Prefrontal Cortex GAD(65) and vGAT in Female Rats. Front. Glob. Women’s Health 2021, 2, 746518. [Google Scholar]
- Kass, I.; Hoke, D.E.; Costa, M.G.; Reboul, C.F.; Porebski, B.T.; Cowieson, N.P.; Leh, H.; Pennacchietti, E.; McCoey, J.; Kleifeld, O.; et al. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis. Proc. Natl. Acad. Sci. USA 2014, 111, E2524–E2529. [Google Scholar] [CrossRef]
- Keshavarzi, E.; Noveiry, B.B.; Rezaei, N. The relationship between GAD65 autoantibody and the risk of T1DM onset. J. Diabetes Metab. Disord. 2022, 21, 1935–1942. [Google Scholar] [CrossRef]
- Krause, S.; Landherr, U.; Agardh, C.D.; Hausmann, S.; Link, K.; Hansen, J.M.; Lynch, K.F.; Powell, M.; Furmaniak, J.; Rees-Smith, B.; et al. GAD autoantibody affinity in adult patients with latent autoimmune diabetes, the study participants of a GAD65 vaccination trial. Diabetes Care 2014, 37, 1675–1680. [Google Scholar] [CrossRef]
- Miao, D.; Guyer, K.M.; Dong, F.; Jiang, L.; Steck, A.K.; Rewers, M.; Eisenbarth, G.S.; Yu, L. GAD65 autoantibodies detected by electrochemiluminescence assay identify high risk for type 1 diabetes. Diabetes 2013, 62, 4174–4178. [Google Scholar] [CrossRef]
- Peng, Y.; Li, X.; Xiang, Y.; Yan, X.; Zhou, H.; Tang, X.; Cheng, J.; Niu, X.; Liu, J.; Ji, Q.; et al. GAD65 Antibody Epitopes and Genetic Background in Latent Autoimmune Diabetes in Youth (LADY). Front. Immunol. 2022, 13, 836952. [Google Scholar] [CrossRef]
- Bansal, N.; Hampe, C.S.; Rodriguez, L.; O’Brian Smith, E.; Kushner, J.; Balasubramanyam, A.; Redondo, M.J. DPD epitope-specific glutamic acid decarboxylase (GAD)65 autoantibodies in children with Type 1 diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2017, 34, 641–646. [Google Scholar] [CrossRef]
- Padoa, C.J.; Banga, J.P.; Madec, A.M.; Ziegler, M.; Schlosser, M.; Ortqvist, E.; Kockum, I.; Palmer, J.; Rolandsson, O.; Binder, K.A.; et al. Recombinant Fabs of human monoclonal antibodies specific to the middle epitope of GAD65 inhibit type 1 diabetes-specific GAD65Abs. Diabetes 2003, 52, 2689–2695. [Google Scholar] [CrossRef]
- Wyatt, R.C.; Brigatti, C.; Liberati, D.; Grace, S.L.; Gillard, B.T.; Long, A.E.; Marzinotto, I.; Shoemark, D.K.; Chandler, K.A.; Achenbach, P.; et al. The first 142 amino acids of glutamate decarboxylase do not contribute to epitopes recognized by autoantibodies associated with Type 1 diabetes. Diabet. Med. J. Br. Diabet. Assoc. 2018, 35, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Pollanen, P.M.; Harkonen, T.; Ilonen, J.; Toppari, J.; Veijola, R.; Siljander, H.; Knip, M. Autoantibodies to N-terminally Truncated GAD65(96-585): HLA Associations and Predictive Value for Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2022, 107, e935–e946. [Google Scholar] [CrossRef]
- Hampe, C.S.; Radtke, J.R.; Wester, A.; Carlsson, A.; Cedervall, E.; Jonsson, B.; Ivarsson, S.A.; Elding Larsson, H.; Larsson, K.; Lindberg, B.; et al. Reduced display of conformational epitopes in the N-terminal truncated GAD65 isoform: Relevance for people with stiff person syndrome or DQ8/8-positive Type 1 diabetes mellitus. Diabet. Med. J. Br. Diabet. Assoc. 2019, 36, 1375–1383. [Google Scholar] [CrossRef]
- Wester, A.; Skarstrand, H.; Lind, A.; Ramelius, A.; Carlsson, A.; Cedervall, E.; Jonsson, B.; Ivarsson, S.A.; Elding Larsson, H.; Larsson, K.; et al. An Increased Diagnostic Sensitivity of Truncated GAD65 Autoantibodies in Type 1 Diabetes May Be Related to HLA-DQ8. Diabetes 2017, 66, 735–740. [Google Scholar] [CrossRef]
- Galli, J.R.; Austin, S.D.; Greenlee, J.E.; Clardy, S.L. Stiff person syndrome with Anti-GAD65 antibodies within the national veterans affairs health administration. Muscle Nerve 2018, 58, 801–804. [Google Scholar] [CrossRef]
- Solimena, M.; Dirkx, R., Jr.; Hermel, J.M.; Pleasic-Williams, S.; Shapiro, J.A.; Caron, L.; Rabin, D.U. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. EMBO J. 1996, 15, 2102–2114. [Google Scholar] [CrossRef]
- Kim, S.J.; Jeong, D.G.; Jeong, S.K.; Yoon, T.S.; Ryu, S.E. Crystal structure of the major diabetes autoantigen insulinoma-associated protein 2 reveals distinctive immune epitopes. Diabetes 2007, 56, 41–48. [Google Scholar] [CrossRef]
- Seissler, J.; Nguyen, T.B.; Aust, G.; Steinbrenner, H.; Scherbaum, W.A. Regulation of the diabetes-associated autoantigen IA-2 in INS-1 pancreatic beta-cells. Diabetes 2000, 49, 1137–1141. [Google Scholar] [CrossRef][Green Version]
- Trajkovski, M.; Mziaut, H.; Schubert, S.; Kalaidzidis, Y.; Altkruger, A.; Solimena, M. Regulation of insulin granule turnover in pancreatic beta-cells by cleaved ICA512. J. Biol. Chem. 2008, 283, 33719–33729. [Google Scholar] [CrossRef]
- Jia, X.; Wenzlau, J.M.; Zhang, C.; Dong, F.; Waugh, K.; Leslie, R.D.; Rewers, M.J.; Michels, A.W.; Yu, L. Diabetes Autoimmunity Study in the Young (DAISY) and Autoimmunity Screening for Kids (ASK) Study Group and the Action LADA Consortium. Strong Association of Autoantibodies Targeting Deamidated Extracellular Epitopes of Insulinoma Antigen-2 with Clinical Onset of Type 1 Diabetes. Diabetes 2025, 74, 544–553. [Google Scholar] [PubMed]
- Leslie, R.D.; Atkinson, M.A.; Notkins, A.L. Autoantigens IA-2 and GAD in Type I (insulin-dependent) diabetes. Diabetologia 1999, 42, 3–14. [Google Scholar] [CrossRef][Green Version]
- Xie, H.; Zhang, B.; Matsumoto, Y.; Li, Q.; Notkins, A.L.; Lan, M.S. Autoantibodies to IA-2 and IA-2 beta in insulin-dependent diabetes mellitus recognize conformational epitopes: Location of the 37- and 40-kDa fragments determined. J. Immunol. 1997, 159, 3662–3667. [Google Scholar] [CrossRef]
- Torii, S. Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-tyrosine phosphatases. Endocr. J. 2009, 56, 639–648. [Google Scholar] [CrossRef]
- Zhao, T.; Huang, Q.; Su, Y.; Sun, W.; Huang, Q.; Wei, W. Zinc and its regulators in pancreas. Inflammopharmacology 2019, 27, 453–464. [Google Scholar] [CrossRef]
- Williams, C.L.; Long, A.E. What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia 2019, 62, 1969–1976. [Google Scholar] [CrossRef]
- Huang, Q.; Du, J.; Merriman, C.; Gong, Z. Genetic, Functional, and Immunological Study of ZnT8 in Diabetes. Int. J. Endocrinol. 2019, 2019, 1524905. [Google Scholar] [CrossRef]
- Dwivedi, O.P.; Lehtovirta, M.; Hastoy, B.; Chandra, V.; Krentz, N.A.J.; Kleiner, S.; Jain, D.; Richard, A.M.; Abaitua, F.; Beer, N.L.; et al. Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat. Genet. 2019, 51, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Daniels, M.J.; Jagielnicki, M.; Yeager, M. Structure/Function Analysis of human ZnT8 (SLC30A8): A Diabetes Risk Factor and Zinc Transporter. Curr. Res. Struct. Biol. 2020, 2, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E. ZnT8 and type 1 diabetes. Endocr. J. 2012, 59, 531–537. [Google Scholar] [CrossRef]
- Wenzlau, J.M.; Frisch, L.M.; Hutton, J.C.; Davidson, H.W. Mapping of conformational autoantibody epitopes in ZNT8. Diabetes/Metab. Res. Rev. 2011, 27, 883–886. [Google Scholar] [CrossRef]
- Noguera, M.E.; Primo, M.E.; Jakoncic, J.; Poskus, E.; Solimena, M.; Ermacora, M.R. X-ray structure of the mature ectodomain of phogrin. J. Struct. Funct. Genom. 2015, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Walther, D.; Eugster, A.; Jergens, S.; Gavrisan, A.; Weinzierl, C.; Telieps, T.; Winkler, C.; Ziegler, A.G.; Bonifacio, E. Tetraspanin 7 autoantibodies in type 1 diabetes. Diabetologia 2016, 59, 1973–1976. [Google Scholar] [CrossRef] [PubMed]
- Eugster, A.; Kraus, G.; Lidzba, V.; Muller, D.; Jolink, M.; Ziegler, A.G.; Bonifacio, E. Cytoplasmic ends of tetraspanin 7 harbour epitopes recognised by autoantibodies in type 1 diabetes. Diabetologia 2019, 62, 805–810. [Google Scholar] [CrossRef]
- Cao, M.; Mao, Z.; Kam, C.; Xiao, N.; Cao, X.; Shen, C.; Cheng, K.K.; Xu, A.; Lee, K.M.; Jiang, L.; et al. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance. PLoS Biol. 2013, 11, e1001541. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Kardorf, J.; Schulte, B.; Lampeter, E.F.; Gries, F.A.; Melchers, I.; Wagner, R.; Bertrams, J.; Roep, B.O.; Pfutzner, A. Autoantibodies to the islet antigen ICA69 occur in IDDM and in rheumatoid arthritis. Diabetologia 1995, 38, 351–355. [Google Scholar] [CrossRef]
- Infantino, M.; Manfredi, M.; Garrafa, E.; Pancani, S.; Lechiara, A.; Mobilia, E.M.; Grossi, V.; Lari, B.; Bizzaro, N.; Pesce, G. A comparison of current methods to measure antibodies in type 1 diabetes. Clin. Chem. Lab. Med. 2025, 63, 2104–2112. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Hu, J. Improved diagnosis of type-1 diabetes mellitus using multiplexed autoantibodies ELISA array. Anal. Biochem. 2022, 649, 114722. [Google Scholar] [CrossRef]
- Savvateeva, E.N.; Yukina, M.Y.; Nuralieva, N.F.; Filippova, M.A.; Gryadunov, D.A.; Troshina, E.A. Multiplex Autoantibody Detection in Patients with Autoimmune Polyglandular Syndromes. Int. J. Mol. Sci. 2021, 22, 5502. [Google Scholar] [CrossRef]
- Lind, A.; Freyhult, E.; de Jesus Cortez, F.; Ramelius, A.; Bennet, R.; Robinson, P.V.; Seftel, D.; Gebhart, D.; Tandel, D.; Maziarz, M.; et al. Childhood screening for type 1 diabetes comparing automated multiplex Antibody Detection by Agglutination-PCR (ADAP) with single plex islet autoantibody radiobinding assays. eBioMedicine 2024, 104, 105144. [Google Scholar] [CrossRef]
- Lind, A.; de Jesus Cortez, F.; Ramelius, A.; Bennet, R.; Robinson, P.V.; Seftel, D.; Gebhart, D.; Tandel, D.; Maziarz, M.; Agardh, D.; et al. Multiplex agglutination-PCR (ADAP) autoantibody assays compared to radiobinding autoantibodies in type 1 diabetes and celiac disease. J. Immunol. Methods 2022, 506, 113265. [Google Scholar] [CrossRef] [PubMed]
- Larman, H.B.; Laserson, U.; Querol, L.; Verhaeghen, K.; Solimini, N.L.; Xu, G.J.; Klarenbeek, P.L.; Church, G.M.; Hafler, D.A.; Plenge, R.M.; et al. PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. J. Autoimmun. 2013, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Gunarathne, S.M.S.; Liu, W.; Zhou, Y.; Jiang, Y.; Li, S.; Huang, J. PhIP-Seq: Methods, applications and challenges. Front. Bioinform. 2024, 4, 1424202. [Google Scholar] [CrossRef]
- Kawasaki, E.; Takahashi, Y.; Komeda, T.; Sakuma, M. Evaluation of Biochemical Characteristics and Performance of the 3 Screen ICA ELISA Kit. Int. J. Mol. Sci. 2024, 25, 12182. [Google Scholar] [CrossRef]
- Yu, L. Islet Autoantibody Detection by Electrochemiluminescence (ECL) Assay. Methods Mol. Biol. 2016, 1433, 85–91. [Google Scholar]
- Jia, X.; He, L.; Miao, D.; Zhang, C.; Rewers, M.; Yu, L. A High-throughput Multiplexed Screening for Type 1 Diabetes, Celiac Diseases, and COVID-19. J. Vis. Exp. JoVE 2022, 185, e63787. [Google Scholar] [CrossRef]
- He, L.; Jia, X.; Rasmussen, C.G.; Waugh, K.; Miao, D.; Dong, F.; Frohnert, B.; Steck, A.K.; Simmons, K.M.; Rewers, M.; et al. High-Throughput Multiplex Electrochemiluminescence Assay Applicable to General Population Screening for Type 1 Diabetes and Celiac Disease. Diabetes Technol. Ther. 2022, 24, 502–509. [Google Scholar] [CrossRef]
- Kreiner, F.F.; von Scholten, B.J.; Coppieters, K.; von Herrath, M. Current state of antigen-specific immunotherapy for type 1 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 411–418. [Google Scholar] [CrossRef]
- Tatovic, D.; McAteer, M.A.; Barry, J.; Barrientos, A.; Rodriguez Terradillos, K.; Perera, I.; Kochba, E.; Levin, Y.; Dul, M.; Coulman, S.A.; et al. Safety of the use of gold nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in type 1 diabetes. Immunother. Adv. 2022, 2, ltac002. [Google Scholar] [CrossRef]
- Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E. Advanced Hydrogels for the Controlled Delivery of Insulin. Pharmaceutics 2021, 13, 2113. [Google Scholar] [CrossRef]
- Alsayb, M.A. Innovations in immunotherapy for autoimmune diseases: Recent breakthroughs and future directions. Front. Immunol. 2025, 16, 1647066. [Google Scholar] [CrossRef]
- Zarei, M.; Sheikholeslami, M.A.; Mozaffari, M.; Mortada, Y. Innovative immunotherapies and emerging treatments in type 1 diabetes management. Diabetes Epidemiol. Manag. 2025, 17, 100247. [Google Scholar] [CrossRef]
- Thomas, R.; Carballido, J.M.; Wesley, J.D.; Ahmed, S.T. Overcoming Obstacles in the Development of Antigen-Specific Immunotherapies for Type 1 Diabetes. Front. Immunol. 2021, 12, 730414. [Google Scholar] [CrossRef]
- Brusko, M.A.; Stewart, J.M.; Posgai, A.L.; Wasserfall, C.H.; Atkinson, M.A.; Brusko, T.M.; Keselowsky, B.G. Immunomodulatory Dual-Sized Microparticle System Conditions Human Antigen Presenting Cells Into a Tolerogenic Phenotype In Vitro and Inhibits Type 1 Diabetes-Specific Autoreactive T Cell Responses. Front. Immunol. 2020, 11, 574447. [Google Scholar] [CrossRef]
- Smith, E.L.; Peakman, M. Peptide Immunotherapy for Type 1 Diabetes-Clinical Advances. Front. Immunol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Van Rampelbergh, J.; Achenbach, P.; Leslie, R.D.; Ali, M.A.; Dayan, C.; Keymeulen, B.; Owen, K.R.; Kindermans, M.; Parmentier, F.; Carlier, V.; et al. First-in-human, double-blind, randomized phase 1b study of peptide immunotherapy IMCY-0098 in new-onset type 1 diabetes. BMC Med. 2023, 21, 190. [Google Scholar] [CrossRef]
- Ling, E.M.; Lemos, J.R.N.; Hirani, K.; von Herrath, M. Type 1 diabetes: Immune pathology and novel therapeutic approaches. Diabetol. Int. 2024, 15, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, L.M.; Schatz, D.A. Insulin immunotherapy for pretype 1 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 390–396. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandinov, I.; Knyazeva, A.; Lander, E.; Gryadunov, D.; Savvateeva, E. Molecular Portrait of Autoantigens in Type 1 Diabetes. Biomolecules 2025, 15, 1723. https://doi.org/10.3390/biom15121723
Kandinov I, Knyazeva A, Lander E, Gryadunov D, Savvateeva E. Molecular Portrait of Autoantigens in Type 1 Diabetes. Biomolecules. 2025; 15(12):1723. https://doi.org/10.3390/biom15121723
Chicago/Turabian StyleKandinov, Ilya, Anastasia Knyazeva, Elizaveta Lander, Dmitry Gryadunov, and Elena Savvateeva. 2025. "Molecular Portrait of Autoantigens in Type 1 Diabetes" Biomolecules 15, no. 12: 1723. https://doi.org/10.3390/biom15121723
APA StyleKandinov, I., Knyazeva, A., Lander, E., Gryadunov, D., & Savvateeva, E. (2025). Molecular Portrait of Autoantigens in Type 1 Diabetes. Biomolecules, 15(12), 1723. https://doi.org/10.3390/biom15121723

