# Doppler Broadening of Spectral Line Shapes in Relativistic Plasmas

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Doppler Broadening

#### 2.1. Classical Doppler Broadening: Non Relativistic Case

#### 2.2. Relativistic Doppler Broadening

## 3. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Huang, Y.-S. Formulation of relativistic Doppler-broadened absorption line profile. Europhys. Lett.
**2012**, 97, 23001. [Google Scholar] [CrossRef] - Huang, Y.-S. Formulation of the classical and the relativistic Doppler effect by a systematic method. Can. J. Phys.
**2004**, 82, 957–964. [Google Scholar] [CrossRef] - Kichenassamy, S.; Krikorian, R.; Nikogosian, A. The relativistic Doppler broadening of the line absorption profile. J. Quant. Spectrosc. Radiat. Transf.
**1982**, 27, 653–655. [Google Scholar] [CrossRef] - McKinley, J.M. Relativistic transformations of light power. Am. J. Phys.
**1979**, 47, 602–605. [Google Scholar] [CrossRef] - Haines, M.G.; LePell, P.D.; Coverdale, C.A.; Jones, B.; Deeney, C.; Apruzese, J.P. Ion Viscous Heating in a Magnetohydrodynamically Unstable Z Pinch at Over 2 × 10
^{9}Kelvin. Phys. Rev. Lett.**2006**, 96, 075003. [Google Scholar] [CrossRef] [PubMed] - Jackson, J.D. Special Theory of Relativity. In Classical Electrodynamics, 3rd ed.; John Wiley: New York, NY, USA, 1962; Chapter 11; pp. 360–364. [Google Scholar]
- Zenitani, S. Loading relativistic Maxwell distributions in particle simulations. Phys. Plamas
**2015**, 22, 042116. [Google Scholar] [CrossRef] - Stehlé, C.; Gilles, D.; Demura, A.V. Asymmetry of Stark profiles: The microfield point of view. Eur. Phys. J. D
**2000**, 12, 355–367. [Google Scholar] [CrossRef] - Schwartz, L. Théorie des Distributions; Editions Hernmann: Paris, France, 1967. [Google Scholar]
- Huang, Y.-S.; Chiue, J.-H.; Huang, Y.-C.; Hsiung, T.-C. Relativistic formulation for the Doppler-broadened line profile. Phys. Rev. A
**2010**, 82, 010102(R). [Google Scholar] [CrossRef]

**Figure 1.**The fixed frame where the emitter moves with a velocity $\mathit{V}$ forming an angle $\theta $ with the observation direction Ox.

T = 10${}^{8}$ K, Fe${}^{+25}$ | T = 8.5 × 10${}^{8}$ K, W${}^{+73}$ | T = 1.5 × 10${}^{9}$ K, Fm${}^{+99}$ | T = 1.9 × 10${}^{9}$ K, Cn${}^{+111}$ | |
---|---|---|---|---|

${\widehat{\omega}}_{L}$ | 0.99955 | 0.99925 | 0.99915 | 0.99905 |

${\widehat{\omega}}_{R}$ | 1.00045 | 1.00075 | 1.00085 | 1.00095 |

$I({\widehat{\omega}}_{L})$ | 1.0802 | 1. 0303 | 1. 0195 | 0.95715 |

$I({\widehat{\omega}}_{R})$ | 1.0807 | 1. 0313 | 1. 0206 | 0.95849 |

$\frac{I({\widehat{\omega}}_{R})-I({\widehat{\omega}}_{L})}{I({\widehat{\omega}}_{R})+I({\widehat{\omega}}_{L})}\ast 100$ | 0.030 | 0.051 | 0.056 | 0.060 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Meftah, M.T.; Gossa, H.; Touati, K.A.; Chenini, K.; Naam, A. Doppler Broadening of Spectral Line Shapes in Relativistic Plasmas. *Atoms* **2018**, *6*, 16.
https://doi.org/10.3390/atoms6020016

**AMA Style**

Meftah MT, Gossa H, Touati KA, Chenini K, Naam A. Doppler Broadening of Spectral Line Shapes in Relativistic Plasmas. *Atoms*. 2018; 6(2):16.
https://doi.org/10.3390/atoms6020016

**Chicago/Turabian Style**

Meftah, Mohammed Tayeb, Hadda Gossa, Kamel Ahmed Touati, Keltoum Chenini, and Amel Naam. 2018. "Doppler Broadening of Spectral Line Shapes in Relativistic Plasmas" *Atoms* 6, no. 2: 16.
https://doi.org/10.3390/atoms6020016